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Problem Statements

Finding an optimum of a real-valued function f on a Riemannian
manifold, i.e.,

min f (x), x ∈M

Finite dimensional manifold

Roughly speaking, a manifold is a set endowed with coordinate
patches that overlap smoothly, e.g.,

sphere: {x ∈ R
n|‖x‖2 = 1}.
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Motivations

Optimization on manifolds is used in many areas [AMS08].

Numerical linear algebra

Signal processing

Data mining

Statistical image analysis
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Frameworks of Optimization

Line search optimization methods

Find a search direction,
Apply a line search algorithm and obtain a next iterate.

Trust region optimization methods

Build a local model that approximates the objective function f ,
Optimize the local model and obtain a candidate of next iterate,
If the local model is close to f , then accept the candidate to be next
iterate, otherwise, reject the candidate,
Update the local model.
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Existing Euclidean Optimization Algorithms

There are many algorithms developed for problems in Euclidean space.
(see e.g. [NW06]) e.g.,

Newton-based (requires gradient and Hessian)

gradient-based (requires gradient only)

Steepest descent
Quasi-Newton

Restricted Broyden Family (BFGS, DFP)
Symmetric rank-1 update

These ideas can be combined with line search or trust region
strategies.
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Existing Riemannian Optimization Algorithms

The algorithmic and theoretical work
on Riemannian manifolds is quite
limited.

Trust region with
Newton-Steihaug CG (C. G.
Baker [Bak08])

Riemannian BFGS (C. Qi
[Qi11])

Riemannian BFGS (W. Ring
and B. Wirth [RW12])

Quadratic:

lim
k→∞

dist(xk+1, x
∗)

dist(xk , x∗)2
<∞

Superlinear:

lim
k→∞

dist(xk+1, x
∗)

dist(xk , x∗)
= 0

Linear:

lim
k→∞

dist(xk+1, x
∗)

dist(xk , x∗)
< 1
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Framework of Line Search Optimization Methods

Line search optimization methods on Euclidean space

x+ = x + αd ,

where d is a descent direction and α is a step size.

Cannot apply to problems on Riemannian manifold directly

direction?
addition?

Riemannian concepts can be found in [O’N83, AMS08].
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Tangent Space

γ is a curve onM. The
tangent vector shows the
direction along γ at x , for
which is γ′(0), where γ(0) = x .

Tangent space at x is the set of
all tangent vectors(directions)
at x , denoted by TxM.

Tangent space is a linear space.

x

ηx

TxMγ
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Riemannian Metric

A Riemannian metric g is defined on each TxM as an inner product
gx : TxM× TxM→ R. A Riemannian manifold is the combination
(M, g). This results in:

angle between directions and length of directions

distance:

d(x , y) = inf
γ
{

∫ 1

0

‖γ̇(t)‖gγ(t)
dt},

where γ is a curve onM with γ(0) = x and γ(1) = y .

neighborhood:

Bδ(x) = {y ∈M : d(x , y) < δ}.
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Retraction

Retraction is a mapping from a
tangent vector to a point onM,
denoted by Rx(ηx ) where x ∈M
and ηx ∈ TxM.

x

ηx

Rx(ηx)
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Framework of Line Search Optimization Methods

Line search optimization methods on Riemannian manifolds

x+ = Rx(αd),

where d ∈ TxM and α is a step size.

Optimization Algorithms on Riemannian Manifolds with Applications 11



Introduction
Line Search Optimization Methods

Trust Region Optimization Methods
Optimization for Partly Smooth Functions

Implementations
Experiments and Applications

Conclusions

Framework of Line Search Optimization Methods
Steepest Descent
Newton Method
Quasi-Newton Methods

Riemannian Gradient

The Riemannian gradient grad f of f at x is the unique tangent
vector such that

〈grad f (x), η〉x = D f (x)[η], ∀η ∈ TxM,

where D f (x)[η] denotes the derivative of f along η.

grad f (x) is the steepest ascent direction.
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Search Direction and Step Size

Search direction
The angle between − grad f

and d does not approach π/2.

Step size

f decreases sufficiently,
Step size is not too small,
e.g., the Wolfe conditions,
the Armijo-Goldstein
conditions.

Above conditions are sufficient
to guarantee convergence.

Example: The figure shows the
contour curves of f around a
minimizer x∗.

-grad f(x)

x∗
x

αd

M
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Steepest Descent

Riemannian steepest descent (RSD): d = − grad f (x),

Converges slowly, i.e., linearly

lim
k→∞

dist(xk+1, x
∗)

dist(xk , x∗)
< 1

The Riemannian Hessian of f at x is a linear operator on TxM.

Let Hess f (x∗) denote the Hessian at the minimizer x∗ and λmin and
λmax respectively denote the smallest and largest eigenvalue of
Hess f (x∗). The smaller λmin/λmax is, the more slowly steepest
descent converges. [AMS08, Theorem 4.5.6]
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An Example for Steepest Descent

f is a function defined on a Euclidean space.

x∗ is a minimizer and λmin/λmax is small.

The following figure shows contour curves of f (x) around x∗ and
iterates generated by an exact line search algorithm.

xk

xk+1

xk+2

x∗

−gradf(xk)

−gradf(xk+1)
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Newton Method

Riemannian Newton update formula:

x+ = Rx(α[−Hess f (x)−1 grad f (x)]),

where α is chosen to be 1 when x is close enough to x∗.
The search direction is not necessarily descent.
When xk is close enough to x∗, the search direction is descent.
Riemannian Newton method converges quadratically [AMS08,

Theorem 6.3.2], i.e.,limk→∞
dist(xk+1,x

∗)
dist(xk ,x∗)2

<∞.

xk

x∗

−Hessf(xk)
−1gradf(xk)

O(dist(xk, x
∗)2)

−gradf(xk)

O(dist(xk, x
∗))
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Quasi-Newton Methods

Steepest descent method

Converge slowly

Newton method

Requires the action of the Hessian which may be expensive or
unavailable
Search direction may be not descent. Therefore, extra considerations
are required.

Quasi-Newton method

Approximate the action of the Hessian or its inverse and therefore
accelerate the convergent rate
Provide an approach to produce a descent direction
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Secant Condition

An 1 dimension example to show the idea of the secant condition.

f(x) = x4
gradf(x) = 4x3

gradf(x) = 4x3

xkxk+1

update of Newton method

gradf(x) = 4x3

xk−1xk+1

update of Secant idea

xk

Newton: xk+1 = xk − (Hess f (xk ))
−1 grad f (xk )

Secant: xk+1 = xk − B−1k grad f (xk),
Bk (xk − xk−1) = grad f (xk )− grad f (xk−1)

Optimization Algorithms on Riemannian Manifolds with Applications 18
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Riemannian Secant Conditions

Euclidean:

grad f (xk+1)− grad f (xk ) = Bk+1(xk+1 − xk).

Riemannian:

xk+1 − xk can be replaced by R−1
xk

(xk+1)
grad f (xk+1) and grad f (xk) are in different tangent spaces. A
method of comparing tangent vectors in different tangent spaces is
required.

Optimization Algorithms on Riemannian Manifolds with Applications 19



Introduction
Line Search Optimization Methods

Trust Region Optimization Methods
Optimization for Partly Smooth Functions

Implementations
Experiments and Applications

Conclusions

Framework of Line Search Optimization Methods
Steepest Descent
Newton Method
Quasi-Newton Methods

Vector Transport

Vector transport

Transport a tangent vector from one
tangent space to another.

notation: Tηx
ξx , denotes transport of

ξx to tangent space of Rx(ηx). R is a
retraction associated with T .

An isometric vector transport, denoted
by TS , additionally satisfies

gx(ηx , ξx) = gy (TSζx
ηx , TSζx

ξx),

where x , y ∈ M, y = Rx(ζx ) and
ηx , ξx , ζx ∈ TxM.

x

ηx

Rx(ηx)

ξx

Tηx(ξx)
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Riemannian Secant Conditions

The secant condition of Qi [Qi11]:

grad f (xk+1)− P1←0
γk

grad f (xk) = Bk+1(P
1←0
γk

Exp−1xk
xk+1),

where Exp is a particular retraction, called the exponential mapping and
P is a particular vector transport, called the parallel translation.
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Riemannian Secant Conditions

The secant condition of Ring and Wirth [RW12]:

(grad f (xk+1)
♭TRξk

− grad f (xk )
♭)T −1Sξk

= (Bk+1TSξk
ξk)

♭

where TR is differentiated retraction of R , i.e.,

TRηx
ζx =

d

dt
Rx(ηx + tζx)|t=0

and η♭x denotes a function from TxM to R, i.e., η♭xξx = gx(ηx , ξx).
Their work is on infinite dimensional manifolds. It is rewritten in a finite
dimensional form so that it can be compared to our secant condition.
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Riemannian Secant Conditions

We use

grad f (xk+1)/βk − TSξk
grad f (xk) = Bk+1TSξk

ξk ,

where ξk = R−1xk
(xk+1), βk = ‖ξk‖/‖TRξk

ξk‖, TR is differentiated
retraction, and TS is an isometric vector transport that satisfies

TSξ
ξ = βTRξ

ξ.
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Euclidean DFP

The Euclidean secant condition and some additional constraints are
imposed.

min
B
‖B − Bk‖WB

s.t. B = BT ,

where WB is any positive definite matrix satisfying WByk = sk and

‖A‖WB
= ‖W

1/2
B AW

1/2
B ‖F .

Bk+1 = (I −
yks

T
k

yT
k sk

)Bk(I −
sky

T
k

yT
k sk

) +
yky

T
k

yT
k sk

,

where sk = xk+1 − xk and yk = grad f (xk+1)− grad f (xk). This is called
Davidon-Fletcher-Powell(DFP) update.
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Euclidean BFGS

Let Hk = B−1k .

min
H
‖H − Hk‖WH

s.t. H = HT ,

where WB is any positive definite matrix satisfying WByk = sk and

‖A‖WB
= ‖W

1/2
B AW

1/2
B ‖F .

Bk+1 = Bk −
Bk sks

T
k Bk

sTk Bksk
+

yky
T
k

yT
k sk

.

This is called Broyden-Fletcher-Goldfarb-Shanno(BFGS) update.
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Euclidean Broyden Family

The linear combination of BFGS update and DFP update is called
Broyden Family update, (1− φk )BFGS + φkDFP :

Bk+1 = Bk −
Bksks

T
k Bk

sTk Bk sk
+

yky
T
k

yT
k sk

+ (φk s
T
k Bksk)vkv

T
k ,

where

vk =
yk

yT
k sk
−

Bk sk

sTk Bksk
.

If φk ∈ [0, 1], then it is restricted Broyden Family update.

Properties

If yT
k sk > 0, then Bk+1 is positive definite if and only if Bk is positive

definite.
yT
k sk > 0 is guaranteed by the Wolfe second condition.
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Riemannian Broyden Family

Riemannian Restricted Broyden Family update is

Bk+1 = B̃k −
B̃ksk(B̃

∗
k sk)

♭

(B̃∗k sk)
♭sk

+
yky

♭
k

y ♭
k sk

+ φkg(sk , B̃ksk)vkv
♭
k ,

where φk ∈ [0, 1], η♭x denotes a function from TxM to R, i.e.,
η♭xξx = gx(ηx , ξx), sk = TSαkηk

αkηk and

yk = grad f (xk+1)/βk − TSαkηk
grad f (xk), B̃k = TSαkηk

◦ Bk ◦ T
−1
Sαkηk

and

vk =
yk

g(yk , sk)
−

B̃ksk

g(sk , B̃ksk)
.
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Riemannian Broyden Family

Properties

If g(yk , sk) > 0, then Bk+1 is positive definite if and only if Bk is
positive definite.

g(yk , sk) > 0 is not guaranteed by the most natural way of
generalizing the Wolfe second condition for arbitrary retraction and
isometric vector transport.

We impose another condition called the ’locking condition’

TSξ
ξ = βTRξ

ξ, β =
‖ξ‖

‖TRξ
ξ‖

,

where TR is differentiated retraction.
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Line Search Riemannian Broyden Family Method

(1) Given initial x0 and symmetric positive definite B0. Let k = 0.

(2) Obtain search direction by ηk = −B−1k grad f (xk )

(3) Set next iterate xk+1 = Rxk (αkηk), where αk is set to satisfy the
Wolfe conditions

f (xk+1) ≤ f (xk ) + c1αkg(grad f (xk ), ηk), (1)

d

dt
f (Rxk (tηk ))|t=αk

≥ c2
d

dt
f (Rxk (tηk )|t=0. (2)

where 0 < c1 < 0.5 < c2 < 1.

(4) Use update formula to obtain Bk+1.

(5) If not converged, then k ← k + 1 and go to Step 2.

Optimization Algorithms on Riemannian Manifolds with Applications 29



Introduction
Line Search Optimization Methods

Trust Region Optimization Methods
Optimization for Partly Smooth Functions

Implementations
Experiments and Applications

Conclusions

Framework of Line Search Optimization Methods
Steepest Descent
Newton Method
Quasi-Newton Methods

Euclidean Theoretical Results

If f ∈ C 2 and strongly convex, then the sequence {xk} generated by
a Broyden family algorithm with φk ∈ [0, 1− δ) converges to the
minimizer x∗, where δ > 0. Furthermore, the convergence rate is
linear.

If additionally, Hess f is Hölder continuous at the minimizer x∗, i.e.,
there exist p > 0 and L > 0 such that

‖Hess f (x)−Hess f (x∗)‖ ≤ L‖x − x∗‖p,

for all x in a neighborhood of x∗, then step size αk = 1 satisfies the
Wolfe conditions eventually. Moreover, if 1 is chosen to be the step
size whenever it satisfies the Wolfe conditions, {xk} converges to x∗

superlinearly, i.e.,

lim
k→∞

‖xk+1 − x∗‖2
‖xk − x∗‖2

= 0.

Optimization Algorithms on Riemannian Manifolds with Applications 30



Introduction
Line Search Optimization Methods

Trust Region Optimization Methods
Optimization for Partly Smooth Functions

Implementations
Experiments and Applications

Conclusions

Framework of Line Search Optimization Methods
Steepest Descent
Newton Method
Quasi-Newton Methods

Riemannian Theoretical Results

1 The (strong) convexity of a function is generalized to the
Riemannian setting and is called (strong) retraction-convexity.

2 Suppose some reasonable assumptions hold. If f ∈ C 2 and strongly
retraction-convex, then the sequence {xk} generated by a
Riemannian Broyden family algorithm with φk ∈ [0, 1− δ) converges
to the minimizer x∗, where δ > 0. Furthermore, the convergence
rate is linear.

3 If additionally, Hess f satisfies a generalization of Hölder continuity
at the minimizer x∗, then step size αk = 1 satisfies the Wolfe
conditions eventually. Moreover, if 1 is chosen to be the step size
whenever it satisfies the Wolfe conditions, {xk} converges to x∗

superlinearly, i.e.,

lim
k→∞

dist(xk+1, x
∗)

dist(xk , x∗)
= 0.
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Convergence Rate

Step size αk = 1:

Eventually works for Riemannian Broyden family algorithm and
Riemannian quasi-Newton algorithm

Does not work for RSD in general.

xk

x∗

−Hessf(xk)gradf(xk)

O(dist(xk, x
∗)2)

−gradf(xk)

O(dist(xk, x
∗))

−B−1k gradf(xk)

o(dist(xk, x
∗))

Optimization Algorithms on Riemannian Manifolds with Applications 32



Introduction
Line Search Optimization Methods

Trust Region Optimization Methods
Optimization for Partly Smooth Functions

Implementations
Experiments and Applications

Conclusions

Framework of Line Search Optimization Methods
Steepest Descent
Newton Method
Quasi-Newton Methods

Limited-memory RBFGS

Riemannian Restricted Broyden Family requires computing
B̃k = TSαkηk

◦ Bk ◦ T
−1
Sαkηk

.

Explicit form of TS may not exist.

Even though it exists, matrix multiplication is needed.

Limited-memory

Similar to Euclidean case, it requires less memory.

It avoids the requirement of explicit form of TS .

We only consider limited-memory RBFGS algorithm.
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Limited-memory RBFGS

Consider the update of inverse Hessian approximation of RBFGS,
Hk = B−1k . We have

Hk+1 = V
♭
kH̃kVk + ρksks

♭
k , where ρk =

1

g(yk , sk)
and Vk = id−ρkyks

♭
k .

If the number of latest sk and yk we use is m + 1, then

Hk+1 = Ṽ
♭
k Ṽ

♭
k−1 · · · Ṽ

♭
k−mH̃

0
k+1Ṽk−m · · · Ṽk−1Ṽk

+ ρk−mṼ
♭
k Ṽ

♭
k−1 · · · Ṽ

♭
k−m+1s

(k+1)
k−m s

(k+1)
k−m

♭
Ṽk−m+1 · · · Ṽk−1Ṽk

+ · · ·

+ ρks
(k+1)
k s

(k+1)
k

♭
,

where Ṽi = id−ρiy
(k+1)
i s

(k+1)
i

♭
and H0

k+1 =
g(sk ,yk )
g(yk ,yk )

id.
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Construct TS

Methods to construct TS satisfying the locking condition

TSξ
ξ = βTRξ

ξ, β =
‖ξ‖

‖TRξ
ξ‖

,

for all ξ ∈ TxM.

Method 1: Modifying an existing isometric vector transport

Method 2: Construct TS when a smooth function of building
orthonormal basis of tangent space is known.

Both ideas use Householder reflection twice.

Method 3: Given an isometric vector transport TS , a retraction is
obtained by solving d

dt
Rx(tηx ) = TStηx

ηx . In some cases, the closed
form of the solution exists.
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Framework of Trust Region Optimization Methods

Euclidean trust region method is to build a local model

mk(η) = f (xk) + grad f (xk )
Tη +

1

2
ηTBkη

and finds
ηk = arg min

‖η‖2≤δk
mk(η),

where δk is the radius of trust region. The candidate of next iterate is

x̃k+1 = xk + ηk .

If (f (xk )− f (x̃k ))/(mk(0)−mk(ηk) is big enough, then accept the
candidate xk+1 = x̃k+1, otherwise, reject the candidate. Finally, update
the local model.
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Framework of Trust Region Optimization Methods

Riemannian trust region builds a model on the tangent space of current
iterate xk ,

mk(η) = f (xk ) + g(grad f (xk ), η) +
1

2
g(η,Bkη)

and finds
ηk = arg min

‖η‖≤δk
mk(η),

where δk is the radius of trust region. The candidate of next iterate is

x̃k+1 = Rxk (ηk ).

If (f (xk )− f (x̃k ))/(mk(0)−mk(ηk) is big enough, then accept the
candidate xk+1 = x̃k+1, otherwise, reject the candidate. Finally, update
the local model.
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Steepest Descent

Riemannian trust region steepest descent(SD)

Bk = id,
If the local model is solved exactly, then

ηk = −min(1, δk/‖ grad f (xk)‖) grad f (xk ),

Converges linearly.

xk
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Newton Method

Riemannian trust region Newton method

Bk = Hess f (xk ),
Converges quadratically [Bak08],
In [Bak08], the local model is not required to be solved exactly and a
Riemannian truncated conjugate gradient is proposed.

xk
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Quasi-Newton Method

Symmetric rank-1 update

Euclidean: Bk+1 = Bk +
(yk−Bk sk)(yk−Bk sk )

T

(yk−Bk sk)T sk
,

Riemannian:Bk+1 = B̃k +
(yk−B̃k sk)(yk−B̃k sk )

♭

g(sk ,yk−B̃k sk)
,

where B̃k = TSηk
◦ Bk ◦ T

−1
Sηk

.

Properties:

It does not preserve positive definiteness of Bk ,
It produces better Hessian approximation as an operator.

These properties suggest we use trust region.
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Riemannian Trust region with symmetric rank-1 method

(RTR-SR1)

(1) Given τ1, c ∈ (0, 1), τ2 > 1, initial x0, and symmetric B0. Let k = 0.

(2) Obtain ηk by (approximately) solving the local model mk(η)

(3) Set the candidate of next iterate x̃k+1 = Rxk (ηk).

(4) Let ρk = (f (xk)− f (x̃k))/(mk (0)−mk(ηk ). If ρk > c , then
xk+1 = x̃k+1, otherwise xk+1 = xk .

(5) Update the local model by first using update formula to obtain Bk+1

and setting

δk+1 =







τ2δk , if ρk > 0.75 and ‖η‖ ≥ 0.8δk ;
τ1δk , if ρk < 0.1;
δk , otherwise.

(6) If not converge, then k ← k + 1 and go to Step 2.
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Euclidean Theoretical Results

If f is Lipschitz continuously differentiable and bounded below and
the ‖Bk‖ ≤ C for some constant C , then the sequence {xk}
generated by trust region with symmetric rank-1 update method
converges to a stationary point x∗. [NW06]

Suppose some reasonable assumptions hold. If f ∈ C 2 and the
Hess f is Lipschitz continuous around the minimizer x∗, then the
sequence {xk} converges to x∗ n + 1-step superlinearly, i.e.,

lim
k→∞

‖xk+n+1 − x∗‖2
‖xk − x∗‖2

= 0,

where n is the dimension of the domain. [BKS96]
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Riemannian Theoretical Results

Global convergence property has been proved in [Bak08] and is
applicable for RTR-SR1.

Suppose some reasonable assumptions hold. If f ∈ C 2 and the
Hess f satisfies a Riemannian generalization version of Lipschitz
continuity around the minimizer x∗, then the sequence {xk}
converges to x∗ d + 1-step superlinearly, i.e.,

lim
k→∞

dist(xk+d+1, x
∗)

dist(xk , x∗)
= 0,

where d is the dimension of the manifold.
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Limited-memory RTR-SR1

Same motivation as limited-memory RBFGS

Less storage complexity,
Avoid some expensive operations.

Similar techniques

Use a few previous sk and yk to approximate the action of the
Hessian.
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Important Theorems

Dennis and Moré conditions give necessary and sufficient conditions for a
sequence {xk} converging superlinearly to x∗ [DM77]. We have
generalized to

Riemannian Dennis Moré conditions for root solving

Riemannian Dennis Moré conditions for optimization
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Optimization for Partly Smooth Functions

f is called partly smooth on S if it is continuously differentiable on
an open dense subset.

Gradient sampling algorithm (GS) [BLO05],

Global convergence analysis.
Works for non-Lipschitz continuous functions empirically.

BFGS [LO13],

Modify the line search algorithm,
Modify the stopping criterion,
No convergence analysis.
Does not work for non-Lipschitz continuous functions empirically.
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Optimization for Partly Smooth Functions

Complexity

GS,

Many gradient evaluations in each iteration
Each iteration needs to solve a convex quadratic program.

BFGS,

Less gradient evaluations than GS
Solving a convex quadratic program is needed when the sequence is
close to convergence.

Solving a convex quadratical program is expensive.
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Optimization for Riemannian Partly Smooth Functions

Generalized the framework of GS to the Riemannian setting.

Generalized the modifications of BFGS to the Riemannian setting.

Empirical performance testing.
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General Implementations

All the discussions about Riemannian optimization algorithms are
general,

General implementations for Riemannian manifolds that can be
represented by R

n are given,

M is a subset of Rn,
M is a quotient manifold with total space be a subset of Rn,
M is a product of two or more manifolds each of which is any of the
first two types.
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General Implementations

The discussions include

Representation of metric, linear operator and vector transports,

n-dimensional representation,
d-dimensional representation (intrinsic approach),

Constructions and implementations of the vector transports.

Optimization Algorithms on Riemannian Manifolds with Applications 50



Introduction
Line Search Optimization Methods

Trust Region Optimization Methods
Optimization for Partly Smooth Functions

Implementations
Experiments and Applications

Conclusions

General Implementations
Implementations for Four Specific Manifolds

Implementations for Four Specific Manifolds

Providing detailed efficient implementations for four particular manifolds:

the sphere,

the compact Stiefel manifold,

the orthogonal group,

the Grassmann manifold.
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Experiments

Four cost functions are tested:

the Brockett cost function on the Stiefel manifold,

the Rayleigh quotient function on the Grassmann manifold,

the Lipschitz minmax function on the sphere,

the non-Lipschitz minmax function on the sphere.
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Experiments

Ten algorithms are compared

RBFGS,

Riemannian Broyden family using Davidon’s update φ [Dav75],

Riemannian Broyden family using a problem specific φ,

Limited-memory RBFGS,

Riemannian SD,

Riemannian GS,

RTR-SR1,

Limited-memory RTR-SR1,

RTR-SD,

RTR-Newton [Bak08].
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Experiments
Applications
The Joint Diagonalization Problem
The Synchronization of Rotation Problem
A Problem in Elastic Shape Analysis
Secant-based Nonlinear Dimension Reduction

Experiments

Systematic comparisons are made. The following are shown in the
dissertation.

Performance of different retractions and vector transports,

Performance of different choices of φk ,

Performance of different algorithms,

The locking condition yield robustness and reliability of Riemannian
Broyden family in our framework. Empirical evidence shows it is not
necessary but behavior then is often difficult to predict.

The value of limited-memory versions for large scaled problems,

The value of Riemannian GS for non-Lipschitz continuous function
on a manifold.
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The Synchronization of Rotation Problem
A Problem in Elastic Shape Analysis
Secant-based Nonlinear Dimension Reduction

Applications

Applications with smooth enough cost functions,

The joint diagonalization problem for independent component
analysis,
The synchronization of rotation problem,
Rotation and reparameterization problem of closed curves in elastic
shape analysis,
Secant-based nonlinear dimension reduction.

Application with a partly smooth cost function.

Secant-based nonlinear dimension reduction.
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The Joint Diagonalization Problem for Independent

Component Analysis

Independent component analysis (ICA)

Determine an independent component form of a random vector,
Determine a few components of an independent component form of
a random vector.

Different cost functions are used [AG06], [TCA09]. We used the
joint diagonalization cost function[TCA09].

The previous algorithm used is RTR-Newton. It is relatively slow
when the number of samples are large.
RTR-SR1 and LRBFGS are the two fastest algorithms when the
number of samples are large.
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The Synchronization of Rotation Problem

The Synchronization of Rotation Problem is to find N unknown
rotations R1, . . .RN from M noisy measurements, Hij of H̃ij = RiR

T
j .

A review and a Riemannian approach for this problem can be found
in [BSAB12].

Using Riemannian optimization algorithms for the Riemannian
approach, we showed that RBFGS and limited-memory RBFGS are
the two fastest and reliable algorithms.
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Rotation and Reparameterization Problem of Closed

Curves in Elastic Shape Analysis

In elastic shape analysis, a shape is invariant to
Scaling
Translation
Rotation
Reparametrization

shape1: x = cos(2πt3), y = sin(2πt3), t ∈ [0, 1]
shape2: x = cos(2πt), y = sin(2πt), t ∈ [0, 1]

Our work is based on the framework of [SKJJ11].
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Rotation and Reparameterization Problem of Closed

Curves in Elastic Shape Analysis

Elastic shape space is a quotient space. When two closed curves are
compared, an important problem in elastic space analysis is to find
the best rotation and reparametrization function.

Previous algorithm is a coordinate relaxation of rotation and
reparameterization.

Rotation: Singular value decomposition
Reparameterization: dynamic programming
One iteration

Difficulties

High complexity.
Not robust when more iterations are used.
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Rotation and Reparameterization Problem of Closed

Curves in Elastic Shape Analysis

Gradient methods:

Hessian is unknown,

Infinite dimensional problem,

Riemannian quasi-Newton algorithms can be applied,

Work for closed curves problem,
Reliable and much faster than the coordinate relaxation algorithm.
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Secant-based Nonlinear Dimension Reduction

SupposeM is a d-dimensional manifold embedded in R
n. The idea

is to find a projection π[U] = U(UTU)−1UT such that π[U]|M is
easy to invert, i.e., maximize kπ[U]

where

kπ[U]
= inf

x,y∈M,x 6=y

‖π[U](x − y)‖2

‖x − y‖2
.

The cost function φ([U]) = ‖π[U](x − y)‖2/‖x − y‖2 is partly
smooth.

An alternative smooth cost function F ([U]) is proposed in [BK05].

Discretization is needed to approximate F and φ, called F̃ and φ̃
respectively.
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Secant-based Nonlinear Dimension Reduction

Previous method used in [BK05] is Riemannian conjugate gradient
algorithm for F̃ ([U]).

An example (used in [BK00] and [BK05]) is tested

For the smooth function F̃ , RBFGS and LRBFGS is the two fastest
algorithms.
For the partly smooth function φ̃, RBFGS is the fastest algorithm.
Even though Riemannian GS is relatively slow, it can escape from
local optima and usually find the global optimum.
F̃ is a worse cost function than φ̃ in the sense the global optimum of
F̃ may be non-invertible.
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Conclusions

Generalized Broyden family update and symmetric rank-1 update to
the Riemannian setting; combined them with line search and trust
region strategy respectively and provided complete convergence
analysis.

Generalized limited-memory version of SR1 and BFGS to the
Riemannian setting.

The main work of generalizing quasi-Newton algorithms to
Riemannian setting is finished.

Generalized GS and modified version of BFGS to the Riemannian
setting.

Developed general, detailed and efficient implementations for
Riemannian optimization.

Empirical performances are accessed by experiments and four
applications.
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Thank you!

Thank you!
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