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Why Riemannian Manifolds?

A manifold is a set that is
locally Euclidean.

A Riemannian manifold is a differentiable
manifold with a Riemannian metric:

• The manifold gives us topology.

• Differentiability gives us calculus.

• The Riemannian metric gives us geometry.

Riemannian manifolds strike a balance between power and practicality.

Manifold

Diff. Man.

Rie. Man.
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Riemannian Manifolds
Roughly, a Riemannian manifold is a smooth set with a smoothly-varying
inner product on the tangent spaces.
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Noteworthy Manifolds and Applications

• Stiefel manifold St(p, n) and orthogonal group Op = St(p, p) and
Unit sphere Sn−1 = St(1, n)

St(p, n) = {X ∈ Rn×p : XT X = Ip}

d = np− p(p+1)
2 , Applications: computer vision; principal

component analysis; independent component analysis...
• Grassmann manifold Gr(p, n)

Set of all p-dimensional subspaces of Rn

d = np− p2 Applications: various dimension reduction problems...
• Oblique manifold Rn×p

∗ /Sdiag+

Rn×p
∗ /Sdiag+ ' {Y ∈ Rn×p

∗ : diag(Y T Y ) = Ip} = Sn−1×· · ·×Sn−1

d = (n− 1)p2 Applications: blind source separation ...
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Noteworthy Manifolds and Applications

• Set of fixed-rank PSD matrices S+(p, n). A quotient representation:

X ∼ Y ⇔ ∃Q ∈ Op : Y = XQ

Applications: Low-rank approximation of symmetric matrices;
low-rank approximation of tensors...

• Flag manifold Rn×p
∗ /Supp∗

Elements of the flag manifold can be viewed as a p-tuple of linear
subspaces (V1, . . . ,Vp) such that dim(Vi) = i and Vi ⊂ Vi+1.
Applications: analysis of QR algorithm...

• Shape manifold On\Rn×p
∗

Y ∼ X ⇔ ∃U ∈ On : Y = UX

Applications: shape analysis
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Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk + ∆xk = xk + αksk .

This iteration is implemented in numerous ways, e.g.:

• Steepest descent: xk+1 = xk − αk∇f(xk)

• Newton’s method: xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk)
• Trust region method: ∆xk is set by optimizing a local model.

Riemannian Manifolds Provide

• Riemannian concepts describing
directions and movement on the
manifold

• Riemannian analogues for gradient
and Hessian

xk xk + sk
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Tangent Vectors

• The concept of direction is provided by
tangent vectors.

• Intuitively, tangent vectors are tangent to
curves on the manifold.

• Tangent vectors are an intrinsic property
of a differentiable manifold.

Definition
The tangent space TxM is the vector space comprised of the tangent
vectors at x ∈ M . The Riemannian metric is an inner product on each
tangent space.
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Riemannian gradient and Riemannian Hessian

Definition
The Riemannian gradient of f at x is the unique tangent vector in TxM
satisfying ∀η ∈ TxM

D f(x)[η] = 〈grad f(x), η〉

and grad f(x) is the direction of steepest ascent.

Definition
The Riemannian Hessian of f at x is a symmetric linear operator from
TxM to TxM defined as

Hess f(x) : TxM → TxM : η → ∇ηgrad f
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Retractions

Definition
A retraction is a mapping R from TM to M
satisfying the following:

• R is continuously differentiable

• Rx(0) = x

• D Rx(0)[η] = η

• maps tangent vectors back to the manifold

• lifts objective function f from M to TxM ,
via the pullback

f̂x = f ◦Rx

• defines curves in a direction

• exponential map Exp(tη) defines “straight
lines” geodesic

η

x Rx(tη)

TxM
x

η

Rx(η)

M
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Generic Riemannian Optimization Algorithm

1. At iterate x ∈ M , define f̂x = f ◦Rx.

2. Find η ∈ TxM which satisfies certain condition.

3. Choose new iterate x+ = Rx(η).
4. Goto step 1.

A suitable setting
This paradigm is sufficient for describing many optimization methods.

Tx0M
Tx1M

Tx2M

η2

x0

x3

η1

x1 = Rx0(η0)

η0 x2
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Categories of Riemannian optimization methods

Retraction-based: local information only
Line search-based: use local tangent vector and Rx(tη) to define line

• Steepest decent: geodesic in the direction −grad f(x)
• Newton

Local model-based: series of flat space problems

• Riemannian Trust region (RTR)

• Riemannian Adaptive Cubic Overestimation (RACO)

Retraction and transport-based: information from multiple
tangent spaces

• Conjugate gradient and accelerated iteration: multiple tangent
vectors

• Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces
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Basic principles

All/some elements required for optimizing a cost function (M, g):

• an efficient numerical representation for points x on M , for tangent
spaces TxM , and for the inner products gx(·, ·) on TxM ;

• choice of a retraction Rx : TxM → M ;

• formulas for f(x), grad f(x) and Hess f(x);

• formulas for combining information from multiple tangent spaces.
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Parallel transport

Figure: Parallel transport

• Parallel transport one tangent vector along some curve Y (t).
• It is often along the geodesic γη(t) : R → M : t → Expx(tηx).
• In general, geodesics and parallel translation require solving an

ordinary differential equation.
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Vector transport

Definition
We define a vector transport on a manifold M to be a smooth mapping

TM ⊕ TM → TM : (ηx, ξx) 7→ Tηx
(ξx) ∈ TM

satisfying the following properties for all x ∈ M .

• (Associated retraction) There exists a retraction R, called the
retraction associated with T , s.t. the following diagram holds

(ηx, ξx) Tηx(ξx)

ηx π (Tηx
(ξx))

��

//T

��
π

//
R

where π (Tηx
(ξx)) denotes the foot of the tangent vector Tηx

(ξx).
• (Consistency) T0x

ξx = ξx for all ξx ∈ TxM ;

• (Linearity) Tηx
(aξx + bζx) = aTηx

(ξx) + bTηx
(ζx).
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Vector transport

x

M

TxM

ηx

Rx(ηx)

ξx

Tηx
ξx

Figure: Vector transport.

• Want to be efficient while maintaining rapid convergence.
• Parallel transport is an isometric vector transport for γ(t) = Rx(tηx)

with additional properties.
• When Tηx

ξx exists, if η and ξ are two vector fields on M , this defines(
(Tη)−1ξ

)
x

:= (Tηx)−1 (ξRx(ηx)) ∈ TxM.
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Retraction/Transport-based Riemannian Optimization

Benefits

• Increased generality does not compromise the important theory

• Can easily employ classical optimization techniques

• Less expensive than or similar to previous approaches

• May provide theory to explain behavior of algorithms in a particular
application – or closely related ones

Possible Problems

• May be inefficient compared to algorithms that exploit application
details

Gallivan, Absil, Qi, Baker Algorithms for Riemannian Optimization 16



Introduction Background RTR RTR Experiments RBFGS Convergence Impl. Manifolds and Operations RBFGS Experiments fitting Conclusions

Retraction-based Riemannian optimization

Equivalence of the pullback f̂x = f ◦Rx

Expx Rx

grad f(x) = grad f̂x(0) yes yes

Hess f(x) = Hess f̂x(0) yes no

Hess f(x) = Hess f̂x(0) at critical points yes yes

Sufficient Optimality Conditions

If grad f̂x(0) = 0 and Hess f̂x(0) > 0,
then grad f(x) = 0 and Hess f(x) > 0,

so that x is a local minimizer of f .

Gallivan, Absil, Qi, Baker Algorithms for Riemannian Optimization 17
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Some History of Optimization On Manifolds (I)

Luenberger (1973), Introduction to linear and nonlinear programming.
Luenberger mentions the idea of performing line search along geodesics,
“which we would use if it were computationally feasible (which it
definitely is not)”.

Gabay (1982), Minimizing a differentiable function over a differential
manifold. Stepest descent along geodesics; Newton’s method along
geodesics; Quasi-Newton methods along geodesics. On Riemannian
submanifolds of Rn.
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Some History of Optimization On Manifolds (II)

Smith (1993-94), Optimization techniques on Riemannian manifolds.
Levi-Civita connection ∇; Riemannian exponential; parallel translation.
But Remark 4.9: If Algorithm 4.7 (Newton’s iteration on the sphere for
the Rayleigh quotient) is simplified by replacing the exponential update
with the update

xk+1 =
xk + ηk

‖xk + ηk‖
then we obtain the Rayleigh quotient iteration.

Helmke and Moore (1994), Optimization techniques on Riemannian
manifolds. dynamical systems, flows on manifolds, SVD, balancing,
eigenvalues
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Some History of Optimization On Manifolds (III)

The “pragmatic era” begins:

Manton (2002), Optimization algorithms exploiting unitary constraints
“The present paper breaks with tradition by not moving along
geodesics”. The geodesic update Expxη is replaced by a projective
update π(x + η), the projection of the point x + η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on Riemannian
manifolds and a geometric model for the human spine. The exponential
update is relaxed to the general notion of retraction. The geodesic can
be replaced by any (smoothly prescribed) curve tangent to the search
direction.

Absil, Mahony, Sepulchre (2007) Nonlinear CG using retractions.
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Some History of Optimization On Manifolds (IV)

Absil, Baker, Gallivan (2004-07), Theory and implementations of
Riemannian Trust Region method. Retraction-based approach. Matrix
manifold problems, software repository

http://www.math.fsu.edu/∼cbaker/GenRTR

Anasazi Eigenproblem package in Trilinos Library at Sandia National
Laboratory

Dresigmeyer (2007), Nelder-Mead using geodesics.

Absil, Gallivan, Qi (2007-10), Theory and implementations of
Riemannian BFGS and Riemannian Adaptive Cubic Overestimation.
Retraction-based and vector transport-based.

Gallivan, Absil, Qi, Baker Algorithms for Riemannian Optimization 21
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Trust-Region Method

1a. At iterate x, define pullback f̂x = f ◦Rx

1. Construct quadratic model mx of f around x

2. Find (approximate) solution to

η = argmin
‖η‖≤∆

mx(η)

3. Compute ρx(η):

ρx(η) =
f(x)− f(x + η)
mx(0)−mx(η)

4. Use ρx(η) to adjust ∆ and accept/reject new iterate:

x+ = x + η

Convergence Properties
Retains convergence of Euclidean trust-region methods:

• robust global and superlinear convergence (Baker, Absil, Gallivan)
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Riemannian Trust-Region Method

1a. At iterate x, define pullback f̂x = f ◦Rx

1b. Construct quadratic model mx of f̂x

2. Find (approximate) solution to

η = argmin
η∈TxM, ‖η‖≤∆

mx(η)

3. Compute ρx(η):

ρx(η) =
f̂x(0)− f̂x(η)

mx(0)−mx(η)

4. Use ρx(η) to adjust ∆ and accept/reject new iterate:

x+ = Rx(η)

Convergence Properties
Retains convergence of Euclidean trust-region methods:

• robust global and superlinear convergence (Baker, Absil, Gallivan)
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RTR Applications

Large-scale Generalized Symmetric Eigenvalue Problem and SVD (Absil,
Baker, Gallivan 2004-08)

Blind source separation on both Orthogonal group and Oblique manifold
(Absil and Gallivan 2006)

Low-rank approximate solution symmetric positive definite Lyapanov
AXM + MXA = C (Vandereycken and Vanderwalle 2009)

Best low-rank approximation to a tensor ( Ishteva, Absil, Van Huffel, De
Lathauwer 2010)
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RTR Applications

• RTR tends to be:
• robust and often yields final cost function values noticeably smaller

than other methods
• slightly to noticeably more expensive than less reliable or less

successful methods

• solutions:
• reduce cost of trust region adaptation and excessive reduction of cost

function by exploiting knowledge of cost function and application,
e.g., Implicit RTR for large scale eigenvalue problems (Absil, Baker,
Gallivan 2006)

• combine with linearly convergent initial linearly convergent but less
expensive method, RTR and TRACEMIN for large scale eigenvalue
problems (Absil, Baker, Gallivan, Sameh 2006)
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Joint diagonalization on Orthogonal Group

• x(t) = As(t), x(t) ∈ Rn, s(t) ∈ Rp, A ∈ Rn×p

• Measurements

X =

x1(t1) x1(t2) · · · x1(tm)
...

...
. . .

...
xn(t1) xn(t2) · · · xn(tm)

 = A

s1(t1) · · · s1(tm)
...

. . .
...

sp(t1) · · · sp(tm)


• Goal: Find a matrix W ∈ Rn×p such that the rows of

Y = WT X ∈ Rp×m

look as statistically independent as possible, Y Y T ≈ D ∈ Rp×p

• Decompose W = UΣV T . We have

Y = V T ΣUT X︸ ︷︷ ︸
=:X̃∈Rp×m

.
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Joint diagonalization on Orthogonal Group

• Whitening: Choose Σ and U such that X̃X̃T = Ip. Then

Y = V T X̃ ∈ Rp×m

Y Y T = V T X̃X̃T V = V T V = Ip

• Independence and dimension reduction: Consider a collection of
covariance-like matrix functions Ci(Y ) ∈ Rp×p such that
Ci(Y ) = V T Ci(X̃)V . Choose V to make the Ci(Y )’s as diagonal
as possible.

• Principle: Solve

max
V T V =Ip

N∑
i=1

‖diag(V T Ci(X̃)V )‖2F .

Gallivan, Absil, Qi, Baker Algorithms for Riemannian Optimization 26
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Joint diagonalization on Orthogonal Group

Blind source separation

Two mixed pictures are given as input to a blind source separation
algorithm based on a trust-region method on St22.

Nonorthogonal form Y = WT X on Oblique manifold also effective.

Gallivan, Absil, Qi, Baker Algorithms for Riemannian Optimization 27
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Joint diagonalization on Orthogonal Group
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Joint diagonalization on Orthogonal Group
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Riemannian BFGS: past and future

Previous work on BFGS on manifolds

• Gabay 1982 discussed a version using parallel translation

• Brace and Manton 2006 restrict themselves to a version on the
Grassmann manifold and the problem of weighted low-rank
approximations.

• Savas and Lim 2008 apply a version to the more complicated
problem of best multilinear approximations with tensors on a
product of Grassmann manifolds.

Our goals

• Make the algorithm more efficient.

• Understand its convergence properties.

Gallivan, Absil, Qi, Baker Algorithms for Riemannian Optimization 30
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Algorithm 1 The Riemannian BFGS (RBFGS) algorithm

1: Given: Riemannian manifold (M, g); vector transport T on M with
associated retraction R; real-valued function f on M ; initial iterate
x1 ∈ M ; initial Hessian approximation B1;

2: for k = 1, 2,. . . do
3: Obtain ηk ∈ Txk

M by solving: ηk = −B−1
k grad f(xk).

4: Perform a line search on R 3 α 7→ f(Rxk
(αηk)) ∈ R to obtain a

step size αk; set xk+1 = Rxk
(αkηk).

5: Define sk = Tαηk
αηk and yk = grad f(xk+1)− Tαηk

grad f(xk)
6: Define the linear operator Bk+1 : Txk+1M → Txk+1M as follows

Bk+1p = B̃kp− g(sk, B̃kp)
g(sk, B̃ksk)

B̃ksk +
g(yk, p)
g(yk, sk)

yk, ∀p ∈ Txk+1M

with B̃k = Tαkηk
◦ Bk ◦ (Tαkηk

)−1

7: end for

Gallivan, Absil, Qi, Baker Algorithms for Riemannian Optimization 31
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Other versions of the RBFGS algorithm

• An iterative method can be used to solve the system or a
factorization transported/updated.

• choice dictates what properties, e.g., positive definiteness, must be
preserved

• An alternative works with the inverse Hessian Hk = Bk
−1

approximation rather than the Hessian approximation Bk.
• Step 6 in algorithm 1 becomes:
Hk+1 =
H̃kp− g(yk,H̃kp)

g(yk,sk) sk − g(sk,pk)
g(yk,sk)H̃kyk + g(sk,p)g(yk,H̃kyk)

g(yk,sk)2 sk + g(sk,sk)
g(yk,sk)p

with

H̃k = Tηk
◦ Hk ◦ (Tηk

)−1

• Makes it possible to cheaply compute an approximation of the
inverse of the Hessian. This may make BFGS advantageous even in
the case where we have a cheap exact formula for the Hessian but
not for its inverse.

Gallivan, Absil, Qi, Baker Algorithms for Riemannian Optimization 32
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Global convergence of RBFGS

Assumption 1
(1) The objective function f is twice continuously differentiable
(2) The level set Ω = {x ∈ M : f(x) ≤ f(x0)} is convex. In addition,
there exists positive constants n and N such that

ng(z, z) ≤ g(G(x)z, z) ≤ Ng(z, z) for all z ∈ M and x ∈ Ω

where G(x) denotes the lifted Hessian.

Theorem
Let B0 be any symmetric positive definite matrix, and let x0 be starting
point for which assumption 1 is satisfied.Then the sequence xk generated
by algorithm 1 converge to the minimizer of f .

Gallivan, Absil, Qi, Baker Algorithms for Riemannian Optimization 33
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Superlinear convergence of RBFGS

Generalized Dennis-Moré condition Let M be a manifold endowed with a
C2 vector transport T and an associated retraction R. Let F be a C2

tangent vector field on M . Also let M be endowed with an affine
connection ∇ and let DF (x) denote the linear transformation of TxM
defined by DF (x)[ξx] = ∇ξx

F for all tangent vectors ξx to M at x. Let
{Bk} be a sequence of bounded nonsingular linear transformation of
Txk

M , where k = 0, 1, · · · , xk+1 = Rxk
(ηk), and ηk = −B−1

k F (xk).
Assume that DF (x∗) is nonsingular, xk 6= x∗,∀k, and lim

k→∞
xk = x∗.

Then {xk} converges superlinearly to x∗ and F (x∗) = 0 if and only if

lim
k→∞

‖[Bk − Tξk
DF (x∗)T −1

ξk
]ηk‖

‖ηk‖
= 0 (1)

where ξk ∈ Tx∗M is defined by ξk = R−1
x∗ (xk), i.e. Rx∗(ξk) = xk.
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Superlinear convergence of RBFGS

Assumption 2 The lifted Hessian matrix Hess f̂x is Lipschitz-continuous
at 0x uniformly in a neighbourhood of x∗, i.e., there exists
L∗ > 0, δ1 > 0, and δ2 > 0 such that, for all x ∈ Bδ1(x

∗) and all
ξ ∈ Bδ2(0x), it holds that

‖Hess f̂x(ξ)−Hess f̂x(0x)‖x ≤ L∗‖ξ‖x

Theorem
Suppose that f is twice continuously differentiable and that the iterates
generated by the RBFGS algorithm converge to a nondegenerate
minimizer x∗ ∈ M at which Assumption 2 holds. Suppose also that∑∞

k=1 ‖xk − x∗‖ < ∞ holds. Then xk converges to x∗ at a superlinear
rate.
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Implementation Choices

Approach 1: Realize Bk by an n-by-n matrix B
(n)
k .

Let Bk be the linear operator Bk : Txk
M −→ Txk

M , B
(n)
k ∈ Rn×n, s.t

ixk
(Bkηk) = B

(n)
k (ixk

(ηk)),∀ηk ∈ Txk
M,

from Bkηk = −grad f(xk)

we have B
(n)
k (ixk

(ηk)) = −ixk
(grad f(xk)).
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Implementation Choices

Approach 2: Use bases.
Let [Ek,1, · · · , Ek,d] =: Ek ∈ Rn×d be a basis of Txk

M . We have

E+
k B

(n)
k Ek E+

k ixk
(ηk) = −E+

k ixk
(grad f(xk))

where E+
k = (ET

k Ek)−1ET
k

Bd
k = E+

k B
(n)
k Ek ∈ Rd×d

B
(d)
k (ηk)(d) = −(grad f(xk))(d)

Gallivan, Absil, Qi, Baker Algorithms for Riemannian Optimization 37
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Additional Transport Constraints

BFGS: symmetry and positive definiteness of Bk are preserved

RBFGS: we want to know

1. When transport information between multiple tangent spaces

• Are symmetry/positive definite of Bk preserved?

• Is it possible?

• Is it important?

2. Implementation efficiency

3. Projection frame work for embedded submanifold allows us to do
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Additional Transport Constraints
Embedded submanifold: projection-based

• Nonisometric vector transport

• Isometric vector transport ( symmetry preserving)

• Efficiency via multiple choices
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t

t

~

T
x

T
x

~

t
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~

L

Figure: Orthogonal and oblique projections relating t and t̃
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On the Unit Sphere Sn−1

• Exp(tηx) only slightly more expensive than Rx(tηx)

• Parallel transport only slightly more expensive than this
implementation of this choice of vector transport

• key issue is therefore the effect on convergence of the use of vector
transport and retraction
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On compact Stiefel manifold St(p, n)

• Exp(tηx) requires SVD/EVD that is expensive relative to QR
decomposition-based Rx(tηx) as p → n; only slightly more expensive
when p is small or when a canonical basis-based Rx(tηx) is used.

• Parallel transport is much more expensive than most choices of
vector transport; tolerance of integration of ODE is a key efficiency
parameter.

• Vector transport efficiency is also a key consideration.

• key issue is therefore the effect on convergence of the use of vector
transport and retraction
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On the Unit Sphere Sn−1

Riemannian metric: g(ξ, η) = ξT η
The tangent space at x is:

TxSn−1 = {ξ ∈ Rn : xT ξ = 0} = {ξ ∈ Rn : xT ξ + ξT x = 0}

Orthogonal projection to tangent space:

Pxξx = ξ − xxT ξx

Retraction:

Rx(ηx) = (x + ηx)/‖(x + ηx)‖, where ‖ · ‖ denotes 〈·, ·〉1/2

Exponential map:

Exp(ηx) = x cos(‖ηx‖t) +
ηx

‖ηx‖
sin(‖ηx‖t)
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Transport on the Unit Sphere Sn−1

Parallel Transport of ξ ∈ TxSn−1 along the geodesic from x in direction
η ∈ TxSn−1:

P t←0
γη

ξ =
(
In + (cos(‖η‖t)− 1)

ηηT

‖η‖2
− sin(‖η‖t)xηT

‖η‖

)
ξ;

Vector Transport by orthogonal projection:

Tηxξx =
(

I − (x + ηx)(x + ηx)T

‖x + ηx‖2

)
ξx

Inverse Vector Transport:

(Tηx
)−1(ξRx(ηx)) =

(
I − (x + ηx)xT

xT (x + ηx)

)
ξRx(ηx)

Other vector transports possible.
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Implementation on compact Stiefel manifold St(p, n)

View St(p, n) as a Riemannian submanifold of Rn×p

Riemannian metric:
g(ξ, η) = tr(ξT η)

The tangent space at X is:

TXSt(p, n) = {Z ∈ Rn×p : XT Z + ZT X = 0}.

Orthogonal projection to tangent space is :

PXξX = (I −XXT )ξX + Xskew(XT ξX)

Retraction:
RX(ηX) = qf(X + ηX)

where qf(A) = Q ∈ Rn×p
∗ , where A = QR
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Parallel transport on Stiefel manifold Let Y T Y = Ip and A = Y T H is
skew-symmetric.
The geodesic from Y in direction H:

γH(t) = Y M(t) + QN(t),

Q and R: the compact QR decomposition of (I − Y Y T )H
M(t) and N(t) given by:(

M(t)
N(t)

)
= exp

(
t

(
A −RT

R 0

) ) (
Ip

0

)
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Parallel transport on Stiefel manifold
The parallel transport of ξ 6= H along the geodesic,γ(t), from Y in
direction H:

w(t) = P t←0
γ ξ

w′(t) = −1
2
γ(t)(γ′(t)T w(t) + w(t)T γ′(t)), w(0) = ξ

In practice, the ODE is solved discretely.
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Vector transport on St(p, n) Projection based nonisometric vector
transport:

TηX
ξX = (I − Y Y T )ξX + Y skew(Y T ξX), where Y := RX(ηX)

Inverse vector transport:

(TηX
)−1ξY = ξY + Y S, where Y := RX(ηX)

S is symmetric matrix such that XT (ξY + Y S) is skew-symmetric.
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Rayleigh quotient minimization on Sn−1

Cost function on Sn−1

f : Sn−1 → R : x 7→ xT Ax, A = AT

Cost function embedded in Rn

f̄ : Rn → R : x 7→ xT Ax, so that f = f̄
∣∣∣
Sn−1

TxSn−1 = {ξ ∈ Rn : xT ξ = 0}, Rx(ξ) =
x + ξ

‖x + ξ‖

Df̄(x)[ζ] = 2ζT Ax → grad f(x) = 2Ax

Projection onto TxRn : Pxξ = ξ − xxT ξ

Gradient: grad f(x) = 2Px(Ax)
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Numerical Result for Rayleigh Quotient on Sn−1

• Problem sizes n = 100 and n = 300 with many different initial
points.

• All versions of RBFGS converge superlinearly to local minimizer.

• Updating L and B−1 combined with Vector transport display similar
convergence rates.

• Vector transport Approach 1 and Approach 2 display the same
convergence rate, but Approach 2 takes more time due to
complexity of each step.

• The updated B−1 of Approach 2 and Parallel transport has better
conditioning, i.e. more positive definite.

• Vector transport versions converge as fast or faster than Parallel
transport.
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A Procrustes Problem on St(p, n)

f : St(p, n) → R : X → ‖AX −XB‖F

where A: n× n matix, B : p× p matix, XT X = Ip.

Cost function embedded in Rn×p:

f̄ : Rn×p → R : X → ‖AX −XB‖F , with f = f̄
∣∣
St(p,n)

grad f(X) = PXgrad f̄(X) = Q−Xsym(XT Q), where

Q := AT AX −AT XB −AXBT + XBBT .

Hess f(X)[Z] = PXDgrad f(X)[Z]
= Dgrad f(X)[Z]−Xsym(XT Dgrad f(X)[Z])
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Numerical Result for Procrustes on St(p, n)

• Problem sizes (n, p) = (7, 4) and (n, p) = (12, 7) with many
different initial points.

• All versions of RBFGS converge superlinearly to local minimizer.

• Updating L and B−1 combined with Vector transport display B−1 is
slightly faster converging.

• Vector transport Approach 1 and Approach 2 display the same
convergence rate, but Approach 2 takes more time due to
complexity of each step.

• The updated B−1 of Approach 2 and Parallel transport has better
conditioning, i.e. more positive definite.

• Vector transport versions converge noticably faster than Parallel
transport. This depends on numerical evaluation of ODE for Parallel
transport.
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Vector transports on Sn−1

• NI: nonisometric vector transport by orthogonal projection onto the
new tangent space (see above)

• CB: a vector transport relying on the canonical bases between the
current and next subspaces

• CBE: a mathematically equivalent but computationally efficient form
of CB

• QR: the basis in the new suspace is obtained by orthogonal
projection of the previous basis followed by Gram-Schmidt.

Rayleigh quotient, n = 300
NI CB CBE QR

Time (sec.) 4.0 20 4.7 15.8
Iteration 97 92 92 97
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RBFGS: Rayleigh quotient on Sn−1 The vector transport property is
crucial in achieving the desired results.
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Figure: RBFGS with 3 transports for Rayleigh quotient. n=100.
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RBFGS: Rayleigh quotient on Sn−1 and Procrustes on St(p, n)

Table: Vector transport vs. Parallel transport

Rayleigh Procrustes
n = 300 (n, p) = (12, 7)

Vector Parallel Vector Parallel

Time (sec.) 4.0 4.2 24.0 304.0

Iteration 97 95 83 175
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Procrustes Problem on St(p, n)
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Figure: RBFGS parallel and vector transport for Procrustes. n=12, p=7.
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RBFGS: Procrustes on St(p, n)

0 10 20 30 40 50 60 70 80 90
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration #

no
rm

(g
ra

d)

 

 
Non−isometric vecotor transport
Carnonical isometric vecotor transport
qf isometric vecotor transport

Figure: RBFGS using different vector transports for Procrustes. n=12, p=7.
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RBFGS: Procrustes problem on St(p, n)
Three vector transports have similar efficiencies and convergence rate.
Evidence that the nonisometric vector transport can converge effectively.

Table: Nonisometric vs. canonical isometric (SVD) vs. Isometric(qf)

Procrustes
n = 12, p = 7

Nonisometric Canonical Isometric(qf)

Time (sec.) 4.3 2.5 3.7

Iteration 83 79 81
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Application: Curve Fitting

• Shape manifold: landmarks and infinite dimensional forms
• Srivastava, Klassen, Gallivan (FSU), Absil and Van Dooren (UC

Louvain), Samir (U Clermont-Ferrand)
• interpolation/fitting via geodesic ideas, e.g., Aitken interpolation, de

Casteljau algorithm, generalizations for algorithms
• optimization problem (Leite and Machado)

E2 : Γ2 → R : γ 7→ E2(γ) = Ed(γ) + λEs,2(γ)

=
1
2

N∑
i=0

d2(γ(ti), pi) +
λ

2

∫ 1

0

〈D
2γ

d t2
,
D 2γ

d t2
〉d t,

(2)

where Γ2 is a suitable set of curves on M .
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Fitting via de Casteljau-like algorithms
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Curve fitting on manifolds

Γ

R

E
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Curve fitting on shape manifold
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Conclusions

Basic convergence theory complete for:

• Riemannian Trust Region
• Riemannian BFGS
• Riemannian Adaptive Cubic Overestimation

Software:

• Riemannian Trust Region for standard and large scale problems
• Riemannian BFGS for standard (current) and large scale problems

(still needed)
• Riemannian Adaptive Cubic Overestimation (current)

Needed:

• Better understanding of the choice of retraction and transport
relative to the structure of the cost function and convergence rate.

• Unified “computational” theory for retraction and transport.
• More application studies.
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