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PROBLEM AND APPLICATIONS
This study considers combining rank inequal-

ity constraints with a matrix manifold constraint
in a problem of the form

min
x∈M≤k

f(x), (1)

where M≤k = {x ∈ M|rank(x) ≤ k} and M is
a submanifold of Rm×n. Numerous applications
exist, e.g., [ZW03, FHB04, MLP+06, JHSX11].

BACKGROUND
Riemannian optimization methods play im-

portant roles:

• M = Rm×n in most of applications;

• Rm×nr := {x ∈ Rm×n|rank(x) = r} is a Rie-
mannian manifold.

Existing methods choose the k in (1) a priori.
However, it is not easy to choose a suitable k.

• The solution with too small k may be unac-
ceptable;

• The computational time may be unaccept-
able with too large k.

CONTRIBUTION

• Generalize the admissible set from Rm×n≤k to
M≤k;

• Define an algorithm solving a rank inequal-
ity constrained problem while finding a
suitable rank for approximation;

• Prove theoretical convergence results;

• Implementations based on Riemannian op-
timization methods.

BASIC IDEA
Apply Riemannian optimization methods on

a fixed rank manifold Mr while efficiently and
effectively updating the rank r.

UPDATE RANK
Increase rank if next two conditions hold.

• Condition I (angle threshold θ0):

∠(gradfF(xr), gradfr(xr)) = θ > θ0,

• Condition II (difference threshold, ε2):

‖gradfF(xr)− gradfr(xr)‖ ≥ ε2,

where xr ∈ Mr, gradfF(x) and gradfr(x) are
the Riemannian gradients with respect toM and
Mr respectively.

Figure 1. Strategy of increasing the rank.

RANK-RELATED OBJECTS
The new concepts of rank-related vector and

rank-related retraction play an important role in
updating the rank and avoiding increasing it ex-
cessively.

Figure 2. x ∈ Mr ; r < r̃; ηx,r̃ is a rank-r̃-related
vector, i.e., there exists a curve γ(t) such that γ(0) = x,
γ̇(0) = ηx,r̃ and rank(γ(t)) = r̃; R is a rank-related retrac-
tion, i.e., rank(Rx(tηx,r̃)) = r̃ for t ∈ (0, δ), δ > 0.

ALGORITHM

Algorithm 1
1: for n = 0,1, 2,. . . do
2: Approximately optimize f over Mr with

initial point xn and obtain x̃n;
3: if x̃n is not close to a set of lower rank ma-

trices then
4: if Both Conditions I and II are satisfied

then
5: Find a r̃ ∈ [r, k] and obtain a rank-r̃-

related vector.
6: Obtain xn+1 by applying a line search

algorithm along the rank-related vec-
tor using a rank-related retraction;

7: else
8: If xn+1 is accurate enough, stop.
9: end if

10: else
11: Reduce the rank of x̃n if the function

value at a lower rank point is nonincreas-
ing; Update r; Obtain next iterate xn+1;

12: end if
13: end for
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MAIN THEORETICAL RESULTS
Suppose some reasonable assumptions hold:

• (Global Result) The sequence {xn}
generated by Algorithm 1 satisfies
lim infn→∞ ‖PTxnM≤k

(gradfF(xn))‖ ≤(√
1 + 1

ε21

)
ε2, where ε1 = tan(θ0).

• (Local Result) The sequence {xn} enters a
neighborhood U∗ of a minimizer x∗ and re-
mains in U∗. The distance dist(xn, x∗) is
bounded based on ε1, ε2 and Hess fF(x∗).
The ranks of {xn} are fixed eventually.

WEIGHTED LOW RANK PROBLEMS
Weighted low rank problem concerns solving

min
X∈M≤k

‖A−X‖2W

where M = Rm×n, A is given, W ∈ Rmn×mn
is symmetric positive definite and ‖A − X‖2W =
vec(A−X)TWvec(A−X).

EXPERIMENTS
Algorithm 1 is compared with the state-of-the-

art methods for weighted low rank approxima-
tion problems.

The matrix A is generated by A1A
T
2 ∈ R10×80,

where A1 ∈ R10×4, A2 ∈ R80×4. W is a block
diagonal matrix and each block of W is Wi =
UiΣiU

T
i ∈ R10×10, where Ui is given by matlab’s

ORTH and RAND and Σi is given by randomly
scaling elements from matlab’s LOGSPACE.

k f R_err err time(s)
(1) 3 2.93−01 8.54−02 2.53+00 1.26−1

4 3.56−29 9.42−16 2.02−14 1.05−2
5 7.02−29 1.32−15 2.55−14 9.77−3

(2) 3 2.93−01 8.54−02 2.53+00 8.57−1
4 3.56−29 9.42−16 2.02−14 2.52−2
5 4.27−29 1.03−15 2.84−14 2.47−2

(3) 3 2.93−01 8.54−02 2.53+00 8.39−1
4 3.74−26 3.05−14 1.32−12 3.19−2
5 1.36−22 1.84−12 1.04−10 3.17−2

(4) 3 2.93−01 8.54−02 2.53+00 6.61−1
4 4.35−29 1.04−15 2.29−14 5.58−2
5 6.27−29 1.25−15 2.68−14 7.52−2

Table 1. (1), (2), (3) and (4) denote Algorithm 1, SULS
[SU14], EW-TLS [MLP+06] and APM [LPW97] respectively.
R_err denotes ‖A−X‖W /‖A‖W and err denotes ‖A−X‖F .
The subscript ±k indicates a scale of 10±k .


