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ABSTRACT

Symmetric positive definite (SPD) matrices have become fundamental computational objects in

many areas. It is often of interest to average a collection of symmetric positive definite matri-

ces. This dissertation investigates different averaging techniques for symmetric positive definite

matrices. We use recent developments in Riemannian optimization to develop efficient and robust

algorithms to handle this computational task. We provide methods to produce efficient numerical

representations of geometric objects that are required for Riemannian optimization methods on the

manifold of symmetric positive definite matrices. In addition, we offer theoretical and empirical

suggestions on how to choose between various methods and parameters. In the end, we evaluate

the performance of different averaging techniques in applications.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and problem

Symmetric positive definite (SPD) matrices have become fundamental computational objects in

many areas. For example, they appear as diffusion tensors in medical imaging [23, 34, 81], as data

covariance matrices in radar signal processing [13, 62], and as elasticity tensors in elasticity [71].

In these and similar applications, it is often of interest to average or find a representative for a

collection of SPD matrices. Averaging is required, e.g., to aggregate several noisy measurements of

the same object. It also appears as a subtask in interpolation methods [1] and segmentation [14,78].

In clustering methods, finding a cluster center as a representative of each cluster is crucial. Hence

it is desirable to find a center that is intrinsically representative and can be computed efficiently.

The Karcher mean proposed in [56] has been recognized as one of the most suitable means for

SPD matrices as it holds a list of desired properties. It is defined as the minimizer to an optimization

problem on the manifold of SPD matrices. Various methods have been used to compute the Karcher

mean, and most of them resort to the framework of Riemannian optimization, see [16,52,53,82,83].

We revisit this problem because recently there are substantial developments on the theory and

efficient implementations in the field of Riemannian optimization. At this point, we are able to

provide theoretical explanations to what was observed in the literature. Moreover, we can go

beyond the state-of-the-art by using recent advances from [46, 48, 49, 50, 51, 96] to develop a more

efficient and robust approach for Karcher mean computation.

Even though the Karcher mean is attractive from the theoretical point of view, its computational

cost increases dramatically with the size of the SPD matrices. This motivates us to investigate

other definitions of matrix means based on information-theoretic divergences. A divergence is

similar to a distance which also provides a measure of dissimilarity between two elements. Since

several divergence functions on the set of SPD matrices have been discussed in the literature, an

extensive overview of the divergences is presented, along with a summary of related means and

their properties. Then we employ our Riemannian optimization techniques on the manifold of
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SPD matrices to compute the divergence-based means more efficiently than the state-of-the-art

approach.

The mean provides an intuitive central representative of a collection of elements, which is,

however, sensitive to outliers. A median is more robust against outliers than a mean. Therefore,

another contribution of our work is to address the problem of defining and computing the median

of a collection of SPD matrices.

Important applications of averaging are found in the supervised classification and unsupervised

clustering tasks. We evaluate and compare the performance of different averaging techniques in real

world applications as well as synthetic datasets. We also contribute a C++ toolbox for different

averaging techniques using a large number of optimization algorithms.

1.2 Overview and dissertation statement

This dissertation investigates different averaging techniques and similarity measures for SPD

matrices. We propose to use recent developments in Riemannian optimization to develop efficient

and robust algorithms to compute different central representatives of a collection of SPD matrices;

to understand the state-of-the-art methods and provide theoretical explanations for the numerical

observations in the literature; to provide a C++ toolbox to compute matrix means, medians, and

minimax centers using various Riemannian optimization methods; to provide user guidelines on

how to choose between various methods and parameters; to evaluate the performance of different

averaging techniques in applications.

This dissertation asserts that the proposal above can be achieved by the following:

1. An analysis on the conditioning of the Riemannian and Euclidean Hessians of the cost function

on the manifold of SPD matrices (Chapter 2)

2. The development of efficient numerical representations of geometric objects that are required

for Riemannian optimization methods on the manifold of SPD matrices to improve the per-

formance of state-of-the-art algorithms (Chapter 2)

3. The use of a limited-memory Riemannian BFGS method to reduce storage requirements and

computation time (Chapter 2)

4. A computational complexity analysis on problem-related, manifold-related, and algorithm-

related operations (Chapter 2, 3)
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5. Investigating other definitions of means for SPD matrices based on information-theoretic

divergences (Chapter 3)

6. A proof of the geodesic convexity of the log-determinant α-divergence (Chapter 3)

7. For the log-determinant α-divergence-based mean computation, cast the state-of-the-art fixed

point algorithm into a Riemannian steepest descent for a choice of the cost function, retrac-

tion, and stepsize strategy (Chapter 3)

8. A numerical illustration of the relationship between the Barzilai-Borwein stepsizes and the

eigenvalues of the Riemannian Hessian of the objective function (Chapter 3)

9. Systematic numerical experiments to compare and evaluate the performance of various opti-

mization algorithms (Chapter 2, 3, 4, 5)

10. Tackling the problem of finding the Riemannian median and minimax center of a collection

of SPD matrices (Chapter 4, 5)

11. The use of the modified Riemannian quasi-Newton algorithms and the nonsmooth quasi-

Newton algorithms to handle nonsmooth functions in the median computation and minimax

center computation problems (Chapter 4, 5)

12. The use of applications to evaluate the performance of different averaging techniques in su-

pervised classification and unsupervised clustering (Chapter 6)

1.3 Dissertation outline

This dissertation is organized as follows.

Chapter 1. The remainder of Chapter 1 reviews some important definitions and concepts for

Riemannian manifolds and optimization algorithms.

Chapter 2. This chapter addresses the problem of computing the Karcher mean of a collection

of SPD matrices. We start with an analysis on the conditioning of the problem, and provide

theoretical explanations for numerical observations in the literature. Then we propose to use recent

developments in Riemannian optimization to develop efficient and robust algorithms for Karcher

mean computation.
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Chapter 3. This chapter investigates other definitions of means for SPD matrices based

on information-theoretic divergences. We study the properties of these means, and apply our

Riemannian optimization techniques developed in Chapter 2 to compute them and outperforms the

state-of-the-art fixed-point method. Moreover, we cast the fixed-point algorithm into Riemannian

optimization framework.

Chapter 4. This chapter tackles the problem of finding the median of a collection of SPD ma-

trices based on the Riemannian geodesic distance and the log-determinant α-divergence. We exploit

the modified Riemannian quasi-Newton algorithms and the nonsmooth quasi-Newton algorithms

to handle this computational task.

Chapter 5. This chapter handles the problem of computing the minimax center of a collection

of SPD matrices based on the Riemannian geodesic distance and the log-determinant α-divergence.

Chapter 6. This chapter is devoted to applications that require averaging SPD matrices,

and we focus on the supervised classification and unsupervised clustering tasks. In the supervised

scenario, we revisit the Electroencephalography (EEG) classification problem using the Minimum

Distance to Mean (MDM) classifier. In the unsupervised case, we consider the problem of material

categorization using K-means clustering.

Chapter 7. This chapter gives a summary of completed work.

1.4 Basic principles for manifolds

This section reviews some important concepts and definitions that are extensively used in the

dissertation, see also [2].

1.4.1 Optimization on a manifold

Optimization on Riemannian manifolds, also called Riemannian optimization, addresses the

problem of finding an optimum of a real-valued function f defined on a Riemannian manifold, i.e.,

min
x∈M

f(x), (1.4.1)

where M is a Riemannian manifold. Roughly speaking, a d-dimensional manifold is a set that is

locally smoothly identified with open subsets of Euclidean space Rd.
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1.4.2 Tangent vector and tangent space

In order to apply line search algorithms, we must consider the direction of motion on a manifold.

Let γ(t) : R→M : t 7→ γ(t) be a smooth mapping onM satisfying γ(0) = x. That is, γ is a curve

through x at t = 0. Given a smooth real-valued function f on M, the function f ◦ γ : t 7→ f(γ(t))

is a smooth function from R to R with a well-defined classical derivative. Let Fx(M) denote the

set of smooth real-valued functions on a neighborhood of x. We can define the mapping γ̇(0) from

Fx(M) to R by

γ̇(0) = (f ◦ γ)′(0)

= lim
h→0

f(γ(h))− f(γ(0)))

h
.

(1.4.2)

This mapping is a tangent vector to the curve γ at t = 0 and it defines the direction at x along γ.

The formal definition of tangent vector is as follows.

Definition 1.4.1 (tangent vector). A tangent vector ξx to a manifoldM at a point x is a mapping

from Fx(M) to R such that there exists a curve γ on M with γ(0) = x, satisfying

ξxf = γ̇(0)f :=
d(f(γ(t)))

dt

∣∣∣∣
t=0

(1.4.3)

for all f ∈ Fx(M). The curve γ is said to realize the tangent vector ξx. The point x is called the

root of the tangent vector ξx.

The tangent space to M at x, denoted by TxM, is the set of all tangent vectors at x. The

tangent space is a vector space, and has the same dimension as the manifold. So we perform line

search on the tangent space, and use retraction (see Section 1.4.5) to get back to the manifold. The

union of all tangent spaces is called the tangent bundle of the manifold, denoted by TM.

Another important concept is the vector field. A vector field ξ on a manifold M is a smooth

function from M to the tangent bundle ξ :M→ TM : x 7→ ξx ∈ TxM. It assigns to each point

a tangent vector.

1.4.3 Riemannian metric

The tangent space at a point on the manifold provides us with a vector space that approximates

the manifold locally. Endowing the tangent space with an inner product allows us to compute angles

and lengths of tangent vectors.
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Definition 1.4.2 (inner product). Let M be a smooth manifold and x ∈ M. An inner product

〈·, ·〉x on TxM is a bilinear, symmetric positive-definite form, i.e., ∀ξ, ζ, η ∈ TxM, a, b ∈ R,

〈aξ + bζ, η〉x = a〈ξ, η〉x + b〈ζ, η〉x, 〈ξ, ζ〉x = 〈ζ, ξ〉x, and 〈ξ, ξ〉x ≥ 0 with 〈ξ, ξ〉x = 0⇔ ξ = 0.

A Riemannian metric g defined on the tangent spaces of x is a smoothly varying inner product

gx : TxM× TxM→ R. We will use interchangeably the notation

gx(ξ, η) = 〈ξ, η〉x (1.4.4)

to denote the Riemannian metric, where ξ, η ∈ TxM and the subscript x is dropped when clear

from the context. A notation, flat [, is also used in later sections. We define ξ[ as a function from

TxM to R such that ξ[η = gx(ξ, η) for all η ∈ TxM. A Riemannian manifold is the combination

(M, g).

The length of a curve γ : [0, 1]→M on a Riemannian manifold (M, g) is defined by

d(x, y) =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt =

∫ 1

0
‖γ̇(t)‖gγ(t)dt. (1.4.5)

The Riemannian distance on the manifold is

d(x, y) = inf
γ
L(γ), (1.4.6)

where γ is a curve on M with γ(0) = x and γ(1) = y.

1.4.4 Affine connections, geodesics, exponential mapping and parallel
translation

In Euclidean space Rn, straight lines are curves γ with zero acceleration, i.e.,

d2

dt2
γ(t) = 0, for all t.

Geodesics on manifolds generalize the concept of straight lines in Rn. In order to define acceleration

on manifolds, we need the notion of affine connection, which provides the idea of differentiating

tangent vectors.

Definition 1.4.3 (affine connection). Let Fx(M) denote the set of all smooth functions on a

neighborhood of x, and X (M) denote the set of smooth vector fields on M. An affine connection

∇ on a manifold M is a mapping

∇ : X (M)×X (M)→ X (M) : (ξ, η) 7→ ∇ξη (1.4.7)

that satisfies the following properties: for all f, g ∈ Fx(M), a, b ∈ R, and η, ξ, ζ ∈ X (M):
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1. F(M)-linearity in the first argument: ∇fη+gζξ = f∇ηξ + g∇ζξ;

2. R-linearity in the second argument: ∇η(aξ + bζ) = a∇ηξ + b∇ηζ;

3. Product rule (Leibniz’s law): ∇η(fξ) = (ηf)ξ + f∇ηξ.

The resulting vector field ∇ξη is called the covariant derivative of ξ with respect to η for the affine

connection ∇.

Remark 1.4.1. 1. ηf denotes the application of the vector field η to the function f defined by

(ηf)(x) := ηxf ; 2. The multiplication of a vector field ξ by a function f is defined by (fξ)x :=

f(x)ξx; 3. The addition of two vector fields is defined by (ξ + ζ)x := ξx + ζx for all x ∈M.

Any manifold M admits an infinite number of affine connections. However, there are certain

affine connections that may be preferred due to particular properties. On a Riemannian manifold

(M, g), a preferred affine connection, called the Riemannian connection or Levi-Civita connection,

satisfies the following two additional conditions:

1. symmetry: (∇ηξ −∇ξη)f = η(ξf)− ξ(ηf);

2. compatibility with Riemannian metric: ζg(η, ξ) = g(∇ζη, ξ) + g(η,∇ζξ).

A curve γ on a Riemannian manifold (M, g) endowed with an affine connection ∇ is a geodesic

if it has zero acceleration:

∇γ̇(t)γ̇(t) :=
d2

dt2
γ(t) :=

d

dt
γ̇(t) = 0 (1.4.8)

for all t. With the Riemannian connection, one of the geodesics linking two points on the manifold

is also a minimal length curve. In this dissertation, we only consider the Riemannian connection.

Given a point x ∈ M and a tangent vector η ∈ TxM, there exists a unique geodesic γ(t;x, η)

satisfying γ(0) = x and γ̇(0) = η. In addition, the geodesic has the homogeneity property,

γ(t;x, aη) = γ(at;x, η). The mapping

Expx : TxM→M : η 7→ Expx η = γ(1;x, η), (1.4.9)

is called the exponential mapping at x. A manifold (M, g) is called geodesically complete if and

only if Expx is defined for all x ∈ M and all η ∈ TxM. That is, every geodesic of a geodesically
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complete manifold can be extended indefinitely. When performing line search algorithms, expo-

nential mapping allows us to move in the direction of a tangent vector in the tangent space, and

then map the tangent vector to a point on the manifold.

A related concept is the log-mapping. It is defined as the inverse of the exponential mapping

Exp−1
x :M→ TxM : y 7→ Exp−1

x (y) = η, (1.4.10)

where the geodesic curve t 7→ γ(t) with γ(0) = x and γ̇(0) = η satisfies γ(1) = y. We may also use

notation Logx to denote the log-mapping.

In many situations, we may need to compare or combine tangent vectors at different points on

the manifold, which are in different tangent spaces. So we need to ”transport” them to a common

tangent space. The affine connection can be used to define the notion of moving a tangent vector

from one tangent space to another, called parallel translation.

A vector field ξ on a curve γ that satisfies d
dtξ = ∇γ̇ξ = 0 is called parallel. Give a ∈ R in

the domain of γ and ξγ(a) ∈ Tγ(a)M, there exists a unique parallel vector field ξ on γ such that

ξ(a) = ξγ(a). The operator P b←aγ sending ξ(a) to ξ(b) is called parallel translation along γ. In other

words, we have
d

dt
(P t←aγ ξ(a)) = 0. (1.4.11)

If ∇ is the Riemannian connection, the parallel translation is an isometry, i.e.,

〈P t←aγ ξ(a), P t←aγ ζ(a)〉 = 〈ξ(a), ζ(a)〉.

1.4.5 Retraction and vector transport

A retraction is a smooth mapping that maps a tangent vector to a point on the manifold. That

is, we perform line search on the tangent space, and use retraction to get back to the manifold to

obtain the next iterate. A retraction allows us to move in the direction of a tangent vector while

staying on the manifold. The exponential mapping is a special retraction. When the exponential

mapping is used to map a tangent vector back to the manifold, we actually move along the geodesic

defined by the tangent vector. The formal definition of retraction follows.

Definition 1.4.4 (retraction). A retraction on a manifold M is a smooth mapping R from the

tangent bundle TM onto M with the following properties.
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1. R(0x) = x for all x ∈M, where 0x denotes the zero element of TxM.

2. d
dtR(tξx)|t=0 = ξx for all ξx ∈ TxM.

The restriction of R to TxM is denoted by Rx.

A vector transport is a mapping that transports a tangent vector from one tangent space to

another tangent space. It is a more general concept related to parallel translation along geodesics.

Much like the exponential mapping, the parallel translation is often computationally demanding.

Vector transport provides an alternative to parallel translation, and may reduce the computational

cost.

Definition 1.4.5 (vector transport). A vector transport on a manifold M is a smooth mapping

T : TM⊕ TM→ TM, (ηx, ξx) 7→ Tηxξx

satisfying the following properties for all x ∈M;

1. (Associated retraction) There exists a retraction R, called the retraction associated with T ,

such that the following diagram commutes

(ηx, ξx)
T−−−−−−−−→ Tηx(ξx)y

yπ
ηx −−−−−−−−−→

R
π(Tηx(ξx))

(1.4.12)

where π(Tηx(ξx)) denotes the foot of the tangent vector Tηx(ξx).

2. (Consistency) T0xξx = ξx for all ξx ∈ TxM;

3. (Linearity) Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx).

A vector transport is called isometric if it satisfies

〈Tηxξx, Tηxζx〉Rηx = 〈ξx, ζx〉x. (1.4.13)

Given a retraction R on a manifold M, vector transport by differentiated retraction is an

important approach to produce vector transport, which is given by

Tηxξx = DRx(ηx)[ξx]

=
d

dt
Rx(ηx + tξx)|t=0 .

(1.4.14)

The choice of retraction and vector transport is a key step in the design of efficient Riemannian

optimization algorithms, which we will see in later sections.
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1.4.6 Riemannian gradient and Hessian

The gradient of a function gives the direction in which the function increases most rapidly, and

is proved to be useful for optimization methods in an Euclidean space. The gradient of a function

on a Riemannian manifold is a tangent vector, which is defined as follows.

Definition 1.4.6 (Riemannian gradient). Let f be a function defined on a Riemannian manifold

(M, g). The Riemannian gradient of f at x ∈ M, denoted by grad f , is the unique tangent vector

that satisfies

〈grad f(x), ξ〉x = D f(x)[ξ], ∀ξ ∈ TxM . (1.4.15)

The element Df(x)[ξ] is called the directional derivative of f at x along ξ.

Second-order optimization algorithms, such as Newton’s method, may require the Hessian. For

a real-valued function f defined on the Euclidean space Rn, its Hessian matrix is a square matrix

whose elements are second-order partial derivatives of f , i.e., Hess f(x) = (∂2
ijf(x)). Consider the

directional derivative of grad f(x) along direction v

lim
h→

grad f(x+ tv)− grad f(x)

t
= Hess f(x)[v].

That is, we can view the Hessian as an operator acting on v. This idea is used to formalize the

Hessian on a manifold.

Definition 1.4.7 (Riemannian Hessian). Let f be a real-valued function defined on a Riemannian

manifold (M, g), the Riemannian Hessian of f at x ∈M is a linear mapping, denoted by Hess f(x),

from TxM to TxM defined by

Hess f(x)[ξx] = ∇ξx grad f

for all ξx in TxM, where ∇ is the Riemannian connection on M.

From the symmetry of the Riemannian connection, we know the Hessian is a self-adjoint operator

in terms of Riemannian metric, i.e.,

〈Hess f(x)[η], ξ〉x = 〈η,Hess f(x)[ξ]〉,

for all η, ξ ∈ TxM.
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1.4.7 Geodesic convexity

Convexity plays an important role in Euclidean optimization. Geodesic convexity, also termed as

g-convexity, generalizes the notion of convexity from linear space to nonlinear Riemannian manifold.

Here we review some important definitions that can be found in [80,98].

Definition 1.4.8. (geodesically convex set) Let (M, g) be a Riemannian manifold. A subset S ⊂M

is said to be geodesically convex if any two points of S are joined by a geodesic belonging to S, i.e.,

for all x, y ∈ S, there exists a geodesic curve γ : [0, 1]→ S such that γ(0) = x and γ(1) = y.

Definition 1.4.9. (geodesically convex function) Let (M, g) be a Riemannian manifold. A function

f :M→ R is said to be geodesically convex if for any x, y ∈M, a geodesic γ such that γ1(0) = x1

and γ(1) = y, and t ∈ [0, 1], it holds that

f(γ(t)) ≤ (1− t)f(x) + tf(y) (1.4.16)

An equivalent definition is that for any x, y ∈M,

f(y) ≥ f(x) + 〈grad f(x),Exp−1
x (y)〉x. (1.4.17)

Definition 1.4.10. (jointly geodesically convex function) Let (M, g) be a Riemannian manifold.

A function f :M×M→ R is said to be jointly geodesically convex if for any x1, x2, y1, y2 ∈ M,

geodesics γx and γy such that γx(0) = x1, γx(1) = x2, γy(0) = y1 and γy(1) = y2, and t ∈ [0, 1], it

holds that

f(γx(t), γy(t)) ≤ (1− t)f(x1, y1) + tf(x2, y2). (1.4.18)

Definition 1.4.11. (Lipschitzness) Let (M, g) be a Riemannian manifold. A function f :M→ R

is said to be geodesically Lf -Lipschitz if for any x, y ∈M,

|f(x)− f(y)| ≤ Lfdist(x, y), (1.4.19)

where dist is the Riemannian distance on M and Lf is a positive real number.

Definition 1.4.12. (smoothness) Let (M, g) be a Riemannian manifold. A function f : M→ R

is said to be geodesically Lg-smooth if its gradient is Lg-Lipschitz, i.e., for any x, y ∈M,

‖ grad f(x)− P x←yγ grad f(y)‖ ≤ Lg dist(x, y), (1.4.20)

where P x←yγ is the parallel translation from y to x and Lg is a positive real number.
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1.5 Geometry of Sn++

In this dissertation, we focus on solving problems on the manifold of n× n symmetric positive

definite matrices. In this section, we review the geometry of this manifold.

Let Sn be the set of symmetric n× n matrices

Sn = {A ∈ Rn×n|A = AT }, (1.5.1)

and Sn
++ be the set of symmetric positive definite n× n matrices

Sn
++ = {A ∈ Rn×n|A = AT , A > 0}. (1.5.2)

Here A > 0 denotes that the quadratic form xTAx > 0 for all non zero vectors x ∈ Rn.

There are two important definitions related to elements in Sn
++:

• Matrix exponential: for any n × n matrix A, its exponential, denoted by eA or exp(A), is

given by

eA =

∞∑
k=0

1

k!
Ak. (1.5.3)

If A ∈ Sn
++, then it can factored as

A = QΛQT , (1.5.4)

where Q is orthogonal and Λ is diagonal. In this case, we have

eA = QeΛQT . (1.5.5)

Since Λ is diagonal, its exponential is simply an diagonal matrix with diagonal elements equal

to the exponential of the diagonal elements of Λ.

• Matrix logarithm: the matrix logarithm is defined as the inverse of matrix exponential. Even

though it is not always well defined for arbitrary matrices, it always exists and is unique for

symmetric positive definite matrices.

For a symmetric positive definite matrix A = QΛQT , its logarithm is given by

A = Q log(Λ)QT , (1.5.6)

where log(Λ) is a diagonal matrix with diagonal elements equal to the logarithm of the

diagonal elements of Λ. Note that since A is positive definite, the diagonal elements of Λ are

positive and their logarithms are always well defined.

12



It is easy to verify that the matrix exponential map exp : Sn → Sn
++ : A 7→ eA is one-to-one

and onto. That is, for any symmetric matrix A, with eigenvalue decomposition A = QΛQT , its

exponential eA = QeΛQT is symmetric positive definite since eΛ > 0. On the other hand, for any

symmetric positive definite matrix B, there exists a unique symmetric matrix X such that eX = B,

i.e., X = log(B).

Since Sn++ is an open subset of the vector space Sn, its tangent space at point X—denoted

by TX Sn++—can be identified with Sn. A typical Riemannian metric on TX Sn
++ is the Euclidean

metric inherited from Sn, given by

gX(ξX , ηX) = tr(ξTXηX), (1.5.7)

where ξX , ηX ∈ TX Sn
++. Under the Euclidean metric, the geodesic emanating from X ∈ Sn

++ in

the direction of ηX ∈ TX Sn
++ is given by

γ(t) = X + tηX , t ∈ [0,∞). (1.5.8)

The geodesic between two matrices X, Y ∈ Sn
++ is

γ(t) = X + t(Y −X), t ∈ [0, 1] (1.5.9)

and the geodesic distance between X and Y is

δ(X,Y ) = ‖X − Y ‖F . (1.5.10)

However, Sn
++ endowed with the Euclidean metric is not geodesically complete.

A more suitable Riemannian metric for Sn
++ is proposed in [78], called the affine-invariant

metric, given by

gX(ξX , ηX) = trace(ξXX
−1ηXX

−1). (1.5.11)

Under the affine-invariant metric (2.1.1), the geodesic γ(t) such that γ(0) = X and γ̇(0) = ηX is

given by

γ(t) = X1/2 exp(tX1−/2ηXX
−1/2)X1/2. (1.5.12)

The geodesic between two matrices X, Y ∈ Sn
++ is

γ(t) = X1/2(X−1/2Y X−1/2)tX1/2, (1.5.13)
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and the geodesic distance between X and Y is

δ(X,Y ) = ‖ log(X−1/2Y X−1/2)‖. (1.5.14)

Notice that geodesic (1.5.12) can be extended indefinitely, and Sn
++ is geodesically complete.

Also notice from (1.5.14) that the distance between any SPD matrices and symmetric matrices

with null or negative eigenvalues is infinite.

Under the affine-invariant metric (2.1.1), the Riemannian connection is given by [53]

∇ζX ξ = D(ξ)(X)[ζX ]− 1

2
(ζXX

−1ξ + ξX−1ζX). (1.5.15)
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CHAPTER 2

KARCHER MEAN COMPUTATION ON Sn++

This chapter addresses the problem of computing the Karcher mean of a collection of symmetric

positive definite (SPD) matrices. A condensed version of this chapter can be found in [96].

2.1 Introduction

A natural way to average over a collection of SPD matrices, {A1, . . . , AK}, is to take their

arithmetic mean, i.e., G(A1, . . . , AK) = (A1 + · · ·+AK)/K. However, this is not appropriate in ap-

plications where invariance under inversion is required, i.e., G(A1, . . . , AK)−1 = G(A−1
1 , . . . , A−1

K ).

In addition, the arithmetic mean may cause a “swelling effect” that should be avoided in diffu-

sion tensor imaging. Swelling is defined as an increase in the matrix determinant after averaging,

see [34] for example. An alternative is to generalize the definition of geometric mean from scalars to

matrices, which yields G(A1, . . . , AK) = (A1 . . . AK)1/K . However, this generalized geometric mean

is not invariant under permutation since matrices are not commutative in general. Ando et al. [6]

introduced a list of fundamental properties, referred to as the ALM list, that a matrix “geometric”

mean should possess:

P1 Consistency with scalars. If A1, . . . , AK commute then G(A1, . . . , AK) = (A1 · · ·AK)1/K .

P2 Joint homogeneity. G(α1A1, . . . , αKAK) = (α1 · · ·αK)1/KG(A1, . . . , AK).

P3 Permutation invariance. For any permutation π(A1, . . . , AK) of (A1, . . . , AK), G(A1, . . . , AK) =

G(π(A1, . . . , AK)).

P4 Monotonicity. If Ai ≥ Bi for all i, then G(A1, . . . , AK) ≥ G(B1, . . . , BK) in the positive

semidefinite ordering.

P5 Continuity from above. If {A(n)
1 }, . . . , {A

(n)
k } are monotonic decreasing sequences (in the

positive semidefinite ordering) converging to A1, . . . , AK , respectively, then G(A
(n)
1 , . . . , A

(n)
K )

converges to G(A1, . . . , AK).

P6 Congruence invariance. G(STA1S, . . . , S
TAKS) = STG(A1, . . . , AK)S for any invertible S.

P7 Joint concavity. G(λA1 + (1 − λ)B1, . . . , λAK + (1 − λ)AK) ≥ λG(A1, . . . , AK) + (1 −
λ)G(B1, . . . , BK).
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P8 Invariance under inversion. G(A1, . . . , AK)−1 = G(A−1
1 , . . . , A−1

K ).

P9 Determinant identity. detG(A1, . . . , AK) = (detA1 · · · detAK)1/K .

These properties are known to be important in numerous applications, e.g. [15,63,71]. However,

they do not uniquely define a mean for K ≥ 3. There can be many different definitions of means

that satisfy all the properties. The Karcher mean proposed in [56] has been recognized as one of

the most suitable means for SPD matrices in the sense that it satisfies all properties in the ALM

list [15,63].

Karcher mean. Let Sn++ be the manifold of n × n SPD matrices. Since Sn++ is an open

submanifold of the vector space of n×n symmetric matrices, its tangent space at point X, denoted

by TX Sn++, can be identified as the set of n× n symmetric matrices. The manifold Sn++ becomes

a Riemannian manifold when endowed with the affine-invariant metric, see [78], given by

gX(ξX , ηX) = trace(ξXX
−1ηXX

−1). (2.1.1)

The Karcher mean of {A1, . . . , AK}, also called the Riemannian center of mass, is the minimizer

of the sum of squared distances

µ = arg min
X∈Sn++

F (X), with F : Sn
++ → R, X 7→ 1

2K

K∑
i=1

δ2(X,Ai), (2.1.2)

where δ(p, q) = ‖ log(p−1/2qp−1/2)‖F is the geodesic distance associated with Riemannian metric

(2.1.1). It is proved in [56] that function F has a unique minimizer. Hence a point µ ∈ Sn++

is a Karcher mean if it is a stationary point of F , i.e., gradF (µ) = 0, where gradF denotes the

Riemannian gradient of F under metric (2.1.1). However, a closed-form solution for problem (2.1.2)

is unknown in general, and for this reason, the Karcher mean is usually computed by iterative

methods.

Related work. Various methods have been used to compute the Karcher mean of SPD matri-

ces. Most of them resort to the framework of Riemannian optimization (see, e.g., [2]). In particular,

[53] presents a survey of several optimization algorithms, including Riemannian versions of steep-

est descent, conjugate gradient, BFGS, and trust-region Newton methods. The authors conclude

that the first order methods, steepest descent and conjugate gradient, are the preferred choices for

problem (2.1.2) in terms of computation time. The benefit of fast convergence of Newton’s method
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and BFGS is nullified by their high computational costs per iteration, especially as the size of the

matrices increases. It is also empirically observed in [53] that the Riemannian metric yields much

faster convergence for their tested algorithms compared with the induced Euclidean metric, which

is given by gX(ηX , ξX) = trace(ξXηX).

A Riemannian version of the Barzilai-Borwein method (RBB) has been considered in [52].

Several stepsize selection rules have been investigated for the Riemannian steepest descent (RSD)

method. A constant stepsize strategy is proposed in [83] and a convergence analysis is given. An

adaptive stepsize selection rule based on the explicit expression of the Riemannian Hessian of the

cost function F is studied in [82, Algorithm 2], and is shown to be the optimal stepsize for strongly

convex function in Euclidean space, see [73, Theorem 2.1.14]. That is, the stepsize is chosen as αk =

2/(Mk+Lk), whereMk and Lk are the lower and upper bounds on the eigenvalues of the Riemannian

Hessian of F , respectively. A version of Newton method for the Karcher mean computation is also

provided in [82]. A Richardson-like iteration is derived and evaluated empirically in [16], and is

available in the Matrix Means Toolbox1. It is seen in Section 1.4.5 that the Richardson-like iteration

is a steepest descent method with stepsize αk = 1/Lk.

The main contributions of this dissertation for the SPD Karcher mean computation are:

• By providing lower and upper bounds on the condition number of the Riemannian and Eu-

clidean Hessians of the cost function (2.1.2), we give a theoretical explanation for the above-

mentioned behavior of the Riemannian and Euclidean steepest descent algorithms for SPD

Karcher mean computation. Then we provide a detailed description of a limited-memory

Riemannian BFGS (LRBFGS) method for this mean computation problem. Riemannian op-

timization methods such as LRBFGS involve manipulation of geometric objects on manifolds,

such as tangent vectors, evaluation of a Riemannian metric, retraction, and vector transport.

We present detailed methods to produce efficient numerical representations of those objects

on the Sn
++ manifold. In fact, there are several alternatives to choose from for geometric

objects on Sn
++. We offer theoretical and empirical suggestions on how to choose between

those alternatives for LRBFGS based on computational complexity analysis and numerical

experiments. Our numerical experiments indicate that as a result, and in spite of the fa-

vorable bound on the Riemannian Hessian that ensures Riemannian steepest descent to be

an efficient method, the obtained LRBFGS method outperforms state-of-the-art methods on

various instances of the problem. We also show that RBB is a special case of LRBFGS.

1http://bezout.dm.unipi.it/software/mmtoolbox/
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• Another contribution of our work is to provide a C++ toolbox for the SPD Karcher mean

computation, which includes LRBFGS, RBFGS, RBB, and RSD. The toolbox2 relies on

ROPTLIB, an object-oriented C++ library for optimization on Riemannian manifolds [50].

To the best of our knowledge, there is no other publicly available C++ toolbox for the SPD

Karcher mean computation. Our previous work [96] provides a MATLAB implementation3 for

this problem. The Matrix Means Toolbox1 developed by Bini et al. in [16] is also written in

MATLAB. As an interpreted language, MATLAB’s execution efficiency is lower than compiled

languages, such as C++. In addition, the timing measurements in MATLAB can be skewed

by MATLAB’s overhead, especially for small-size problems. As a result, we resort to C++

for efficiency and reliable timing.

• We test the performance of LRBFGS on problems of various sizes and conditioning, and

compare with the state-of-the-art methods mentioned above. The size of a problem is charac-

terized by the number of matrices as well as the dimension of each matrix, and the conditioning

of the problem is characterized by the condition number of matrices. It is shown empirically

that LRBFGS is appropriate for large-size problems or ill-conditioned problems. Especially

when one has little knowledge of the conditioning of a problem, LRBFGS becomes the method

of choice since it is robust to problem conditioning and parameter setting. The numerical

results also illustrate the speedup of using C++ vs. MATLAB, especially for small-size prob-

lems. It is observed that the C++ implementation is faster than MATLAB by a factor of 100

or more with the factor gradually reducing as the size of the problem gets larger.

2.2 Analysis on the conditioning of the problem

The convergence speed of optimization methods depends on the conditioning of the Hessian of

the cost function at the minimizer. Large values of condition number lead to slow convergence of

optimization algorithms, especially for steepest descent methods. The choice of the metric has an

important influence on the difficulty of an optimization problem via influencing the conditioning of

the Hessian of the cost function. A good choice of metric may reduce the condition number of the

Hessian.

Rentmeesters et al. [82, inequality (3.29)] give bounds on the eigenvalues of the Riemannian

Hessian of the squared distance function fA(X) = 1
2δ

2(X,A) given A ∈ Sn
++. On this basis, the

bounds on the eigenvalues of the Riemannian Hessian of F can be obtained trivially. We summarize

the results from [82] in Theorem 2.2.1 and, for completeness, we give the proof omitted by [82].

2http://www.math.fsu.edu/~whuang2/papers/RMKMSPDM.htm
3http://www.math.fsu.edu/~whuang2/papers/ARLBACMGM.htm
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Theorem 2.2.1. Let F be the objective function defined in problem (2.1.2) and X ∈ Sn
++. Then

the eigenvalues of the Riemannian Hessian of F at X are bounded by

1 ≤ HessF (X)[∆X,∆X]

‖∆X‖2
≤ 1 +

log(maxi κi)

2
, (2.2.1)

where κi denotes the condition number of matrix X−1/2AiX
−1/2 (or equivalently L−1

x AiL
−T
x with

X = LxL
T
x being the Cholesky decomposition of X).

Proof. The proof is a simple generalization from [82, inequality (3.29)], which gives bounds on the

eigenvalues of the Riemannian Hessian of the function fA(X) as

1 ≤ Hess fA(X)[∆X,∆X]

‖∆X‖2
≤ log κ

2
coth(

log κ

2
), (2.2.2)

where κ is condition number of X−1/2AX−1/2. Notice that the objective function F (X) =

1
K

∑K
i=1 fAi(X). Thus, we have

1 ≤ HessF (X)[∆X,∆X]

‖∆X‖2
≤ 1

K

K∑
i=1

log κi
2

coth(
log κi

2
). (2.2.3)

Since x coth(x) is strictly increasing and bounded by 1+x on [0,∞], the right hand side of inequal-

ity (2.2.3) is thus bounded by 1 + log(maxi κi)/2.

Theorem 2.2.1 implies that we should not expect a very ill-conditioned Riemannian Hessian in

practice. However, this is not the case when the Euclidean metric is used. In Theorem 2.2.2, we

derive bounds on the condition number of the Euclidean Hessian of F at the minimizer. We need

the following lemma before deriving the bounds.

Lemma 2.2.1. Let A ∈ Sn
++ be a symmetric positive definite matrix with eigenvalues satisfying

0 < λ1 ≤ λ2 ≤ · · · ≤ λn, and η ∈ Rn×n be an n× n real symmetric matrix. Then, we have

max
η=ηT

tr(AηAη)

‖η‖2F
= λ2

n, and min
η=ηT

tr(AηAη)

‖η‖2F
= λ2

1. (2.2.4)

Proof. LetA = QΣQT be the eigenvalues decomposition ofA, whereQQT = I and Σ = diag(λ1, . . . , λn).

Then, we have

tr(AηAη)

‖η‖2F
=

tr(QΣQT ηTQΣQT η)

‖QT ηQ‖2F
=

tr(Ση̃TΣη̃)

‖η̃‖2F
. (2.2.5)
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Notice that we can rewrite the trace term on the right hand of equation (2.2.5) as

tr(Ση̃TΣη̃) = vec(η̃Σ)T vec(Ση) = vec(η̃)T (In⊗Σ)(Σ⊗In) vec(η̃) = vec(η̃)T (Σ⊗Σ) vec(η̃). (2.2.6)

On one hand, we have

max
η̃=η̃T

tr(Ση̃TΣη̃)

‖η̃‖2F
≤ max

η̃∈Rn×n
tr(Ση̃TΣη̃)

‖η̃‖2F
= max

η̃∈Rn×n
vec(η̃)T (Σ⊗ Σ) vec(η̃)

vec(η̃)T vec(η̃)
= λ2

n. (2.2.7)

The last equality comes from the fact that the eigenvalues of Σ ⊗ Σ are λiλj , i = 1, . . . , n, j =

1, . . . , n. On the other hand,

max
η̃=η̃T

tr(Ση̃TΣη̃)

‖η̃‖2F
≥ tr(ΣηT0 Ση0)

‖η0‖2F
= λ2

n, (2.2.8)

where η0 = ene
T
n and en = (0, . . . , 0, 1)T . That is, η0 is an n×n zero matrix except the (n, n) entry

is 1. Combining inequalities (2.2.7) and (2.2.8), we obtain the first part of (2.2.4).

Similarly, we have

min
η̃=η̃T

tr(Ση̃TΣη̃)

‖η̃‖2F
≥ min

η̃∈Rn×n
tr(Ση̃TΣη̃)

‖η̃‖2F
= min

η̃∈Rn×n
vec(η̃)T (Σ⊗ Σ) vec(η̃)

vec(η̃)T vec(η̃)
= λ2

1. (2.2.9)

On the other hand, we let η0 = e1e
T
1 and e1 = (1, 0, . . . , 0)T . Then, we have

min
η̃=η̃T

tr(Ση̃TΣη̃)

‖η̃‖2F
≤ tr(ΣηT0 Ση0)

‖η0‖2F
= λ2

1. (2.2.10)

Combining inequalities (2.2.9) and (2.2.10) immediately lead to the second part of (2.2.4).

For notational simplicity, we use super script ‘E’ and ‘R’ to differentiate the Euclidean metric

and the Riemannian metric.

Theorem 2.2.2. Let f : Sn
++ → R be twice continuously differentiable and µ be a stationary point

for f . Assume the largest and smallest eigenvalues of the Riemannian Hessian of f at µ are Λmax

and Λmin respectively, i.e.,

Λmin ≤
〈HessR f(µ)[η], η〉R

〈η, η〉R
≤ Λmax. (2.2.11)

Then the condition number of the Euclidean Hessian of f at µ, denoted by κ(HE), is bounded by

1

κ(HR)
κ2(µ) ≤ κ(HE) ≤ κ(HR)κ2(µ), (2.2.12)

where κ(µ) is the condition number of µ, and κ(HR) = Λmax/Λmin is the condition number of the

Riemannian Hessian of f at µ.
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Proof. Recall that the condition number of the Euclidean Hessian of f at µ can be expressed as

κ(HE) = max
η=ηT

〈HessE f(µ)[η], η〉E

〈η, η〉E
/ min
η=ηT

〈HessE f(µ)[η], η〉E

〈η, η〉E
, (2.2.13)

and that of the Riemannian Hessian can be written in a similar way.

For any X ∈ Sn
++ and η ∈ TX Sn

++, the action of Hessian of f on η under the Riemannian

metric is given by [53]

HessR f(X)[η] = D(gradR f)(X)[η]− 1

2
(ηX−1 gradR f(X) + gradR f(X)X−1η). (2.2.14)

WhenX = µ is a stationary point of f , i.e., gradR f(µ) = 0, we have HessR f(µ)[η] = D(gradR f)(µ)[η].

As 〈gradE f(X), η〉E = D f(X)[η] = 〈gradR f(X), η〉R, we have

gradR f(X) = X gradE f(X)X. (2.2.15)

Therefore, equation (2.2.14) yields

HessR f(µ)[η] = η gradE f(µ)µ+ µ(D(gradE f)(µ)[η])µ+ µ gradE f(µ)η (2.2.16)

= µ(D(gradE f)(µ)[η])µ = µ(HessE f(µ)[η])µ. (2.2.17)

This gives us

〈HessR f(µ)[η], η〉R = tr(µ−1 HessR f(µ)[η]µ−1η) = tr(HessE f(µ)[η]η) = 〈HessE f(µ)[η], η〉E.

(2.2.18)

It follows that
〈HessE f(µ)[η], η〉E

〈η, η〉E
=
〈HessR f(µ)[η], η〉R

〈η, η〉R
· 〈η, η〉

R

〈η, η〉E
. (2.2.19)

By assumption, we have

Λmin ≤
〈HessR f(µ)[η], η〉R

〈η, η〉R
≤ Λmax. (2.2.20)

Assume that the eigenvalues of µ are 0 < λ1 ≤ · · · ≤ λn, and then the eigenvalues of µ−1 are

0 < 1/λn ≤ · · · ≤ 1/λ1. From Lemma 2.2.1, we have

max
η=ηT

〈η, η〉R

〈η, η〉E
=

1

λ2
1

and min
η=ηT

〈η, η〉R

〈η, η〉E
=

1

λ2
n

. (2.2.21)

Multiplying inequality (2.2.20) and equation (2.2.21) gives

Λmin

λ2
1

≤ max
η=ηT

〈HessE f(µ)[η], η〉E

〈η, η〉E
≤ Λmax

λ2
1

, (2.2.22)
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and
Λmin

λ2
n

≤ min
η=ηT

〈HessE f(µ)[η], η〉E

〈η, η〉E
≤ Λmax

λ2
n

. (2.2.23)

Dividing inequality (2.2.22) by (2.2.23) gives us the lower and upper bounds on the condition

number of the Euclidean Hessian of f at stationary point µ:

Λmin

Λmax

λ2
n

λ2
1

≤ κ(HE) ≤ Λmax

Λmin

λ2
n

λ2
1

. (2.2.24)

That is,
1

κ(HR)
κ2(µ) ≤ κ(HE) ≤ κ(HR)κ2(µ). (2.2.25)

Remark 2.2.1. Notice that equality (2.2.18) can be simply obtained by the fact that 〈HessF (µ)[η], η〉

is independent of the metric when µ is a critical point of F . The proof can be found in [2, Section

5.5].

For the cost function F in (2.1.2), it is seen from Theorem 2.2.2 that the condition number

of the Euclidean Hessian at the minimizer (stationary point) is bounded below by the square of

the condition number of the minimizer scaled by the reciprocal of the condition number of the

Riemannian Hessian of F . Hence when the minimizer is ill-conditioned, the Euclidean Hessian of

F at the minimizer is ill-conditioned as well, which will slow down the optimization methods. Our

numerical experiments in Section in 2.5.3 demonstrate this expectation.

2.3 Implementation techniques on Sn++

This section is devoted to the implementation details of the required objects for Riemannian

optimization methods on Sn
++, as well as the SPD Karcher mean computation problem. Manifold-

related objects include tangent vectors, the Riemannian metric, isometric vector transport, and

retraction. Problem-related objects include the cost function and Riemannian gradient evaluations.

We also provide a floating point operation (flop) count4, for most operations.

4see [40, Section 1.2.4]
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2.3.1 Representations of a tangent vector and Riemannian metric on Sn++

As mentioned in Section 1.5, the tangent space of Sn
++ at X is the set of symmetric matrices,

i.e., TX Sn++ = {S ∈ Rn×n|S = ST }. The dimension of Sn
++ is d = n(n + 1)/2. Thus, a tangent

vector ηX in TX Sn++ can be represented either by an n2-dimensional vector in Euclidean space

E , or a d-dimensional vector of coordinates in a given basis BX of TX Sn++. The n2-dimensional

representation is called the extrinsic approach, and the d-dimensional one is called the intrinsic

approach. For notational simplicity, we use w to denote the dimension of the embedding space,

and d to denote the dimension of the manifold, i.e., w = n2 and d = n(n+ 1)/2.

The computational benefits of using intrinsic representation are addressed in [47,48]: (i) Working

in d-dimension reduces the computational complexity of linear operations on the tangent space.

(ii) There exists an isometric vector transport, called vector transport by parallelization, whose

intrinsic implementation is simply the identity. (iii) The Riemannian metric can be reduced to the

Euclidean metric. However, the intrinsic representation requires a basis of tangent space, and in

order to obtain the computational benefits mentioned above, it must be orthonormal. Hence, if a

manifold admits a smooth field of orthonormal tangent space bases with acceptable computational

complexity, the intrinsic representation often leads to a very efficient implementation. This property

holds for Sn++ as shown next.

The orthonormal basis BX of TX Sn++ that we select is given by

{LeieTi LT : i = 1, . . . , n}
⋃
{ 1√

2
L(eie

T
j + eje

T
i )LT , i < j, i = 1, . . . , n, j = 1, . . . , n}, (2.3.1)

where X = LLT denotes the Cholesky decomposition, and {e1, . . . , en} is the standard basis of

n-dimensional Euclidean space. Another choice is to use the matrix square root X1/2 instead of

Cholesky decomposition of X, which however costs more [44]. It is easy to verify the orthonormality

of BX under the Riemannian metric (2.1.1), i.e., B[
XBX = Id×d for all X ∈ Sn

++. We assume

throughout this section that BX stands for our selected orthonormal basis of TX Sn++ defined

in (2.3.1).

Notice that {eieTi : i = 1, . . . , n}
⋃
{ 1√

2
(eie

T
j + eje

T
i ), i < j, i = 1, . . . , n, j = 1, . . . , n} also

forms a basis for TX Sn
++. However, this basis is orthonormal under the Euclidean metric (1.5.7),

not the affine-invariant metric (2.1.1).

Let ηX be a tangent vector in TX Sn
++ and vX be its intrinsic representation. We define function

E2DX : ηX 7→ vX = B[
XηX that maps the extrinsic representation to the intrinsic representation.
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Using the orthonormal basis defined in (2.3.1), the intrinsic representation of ηX is obtained by

taking the diagonal elements of L−1ηXL
−T , and its upper triangular elements row-wise and multi-

plied by
√

2. A detailed description of function E2D is given in Algorithm 1. The number of flops

for each step is given on the right of the algorithm.

Since BX forms an orthonormal basis of TX Sn
++, the Riemannian metric (2.1.1) reduces to the

Euclidean metric under the intrinsic representation, i.e.,

g̃X(vX , uX) := gX(ηX , ξX) = gX(BXvX , BXuX) = vTXuX , (2.3.2)

where ηX = BXvX , ξX = BXuX ∈ TX Sn
++. The evaluation of (2.3.2) requires 2d flops, which is

cheaper than the evaluation of (2.1.1).

For the intrinsic approach, retractions require mapping the intrinsic representation of tangent

vectors back to the extrinsic representation, which may need extra work. Let function D2EX :

vX 7→ ηX = BXvX denote this mapping. In practice, the function D2EX using basis (2.3.1) is

described in Algorithm 2.

Algorithm 1 Compute E2DX(ηX)

Input: X = LLT ∈ Sn
++, ηx ∈ TX Sn

++.

1: Compute Y = L−1ηX by solving linear system LY = ηX ; . # n3

2: Y ← Y T (i.e., Y = ηXL
−T ) ;

3: Compute Z = L−1ηXL
−T by solving linear system LZ = Y ; . # n3

4: return vX = (z11, . . . , znn,
√

2z12, . . . ,
√

2z1n,
√

2z23, . . . ,
√

2z2n, . . . ,
√

2z(n−1)n)T ; . # d

2.3.2 Retraction and vector transport on Sn++

The choice of retraction and vector transport is a key step in the design of efficient Riemannian

optimization algorithms. As seen in Section 1.4.4, the exponential mapping is a natural choice for

retraction. When Sn++ is endowed with the Riemannian metric (2.1.1), the exponential mapping is

given by, see [35],

ExpX(ηX) = X1/2 exp(X−1/2ηXX
−1/2)X1/2, (2.3.3)

for all X ∈ Sn++ and ηX ∈ TX Sn++. Using the Cholesky factorization instead of the matrix square

root, (2.3.3) can be rewritten as

ExpX(ηX) = L exp(L−1ηXL
−T )LT , (2.3.4)
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Algorithm 2 Compute D2EX(vX)

Input: X = LLT ∈ Sn
++, vx ∈ Rn(n+1)/2.

1: for i = 1, . . . , n do . # n

2: ηii = vX(i);

3: end for

4: k = n+ 1;

5: for i = 1, . . . , n do . # n2 − n(n+ 1)/2

6: for j = i+ 1, . . . , n do

7: ηij = vX(k) and ηji = vX(k);

8: k = k + 1;

9: end for

10: end for

11: return LηLT ; . # 2n3

where X = LLT . In practice, the exponential mapping (2.3.4) is expensive to compute due to the

matrix exponential. The exponential of matrix M is computed as exp(M) = U exp(Σ)UT , with

M = UΣUT being the eigenvalue decomposition. Obtaining Σ and U by Golub-Reinsch algorithm

requires 12n3 flops, see [40, Figure 8.6.1]. Hence the evaluation of exp(M) requires 16n3 flops in

total. More importantly, when computing the matrix exponential exp(M), eigenvalues of large

magnitude can lead to numerical difficulties. Jeuris et al. [53] proposed a retraction

RX(ηX) = X + ηX +
1

2
ηXX

−1ηX , (2.3.5)

which is a second order approximation to the exponential mapping (2.3.4). Retraction (2.3.5) is

cheaper to compute and requires 3n3 + o(n3) flops. More importantly, it tends to avoid numerical

overflow. An important property of retraction (2.3.5) is stated in Proposition 2.3.1.

Proposition 2.3.1. Retraction RX(η) defined in (2.3.5) remains symmetric positive-definite for

all X ∈ Sn++ and η ∈ TX Sn
++.

Proof. For all X ∈ Sn
++ and η ∈ TX Sn

++, we have

X + η +
1

2
ηX−1ξ =

1

2
(X + 2η + ηX−1η) +

1

2
X

=
1

2
(X1/2 + ηX−1/2)(X1/2 + ηX−1/2)T +

1

2
X

(2.3.6)
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Then, for any v 6= 0,

vTRX(η)v =
1

2
vT (X1/2 + ηX−1/2)(X1/2 + ηX−1/2)T v +

1

2
vTXv

=
1

2
{(X1/2 + ηX−1/2)T v}T {(X1/2 + ηX−1/2)T v}+

1

2
vTXv

> 0

(2.3.7)

Another retraction that can be computed efficiently is the first order approximation to (2.3.4),

i.e.,

RX(ηX) = X + ηX . (2.3.8)

In fact, retraction (2.3.8) is the exponential mapping when Sn
++ is endowed with the Euclidean

metric (1.5.7). However, the result of retraction (2.3.8) is not guaranteed to be positive definite.

Therefore one must be careful when using this Euclidean retraction. One remedy is to reduce the

stepsize when necessary. The Richardson-like iteration in [16] is a steepest descent method using

Euclidean retraction (2.3.8).

Parallel translation is a particular instance of vector transport. The parallel translation on Sn++

is given by, see [35],

TpξX (ηX) = X1/2 exp(
X−1/2ξXX

−1/2

2
)X−1/2ηXX

−1/2 exp(
X−1/2ξXX

−1/2

2
)X1/2. (2.3.9)

Again, we can rewrite parallel translation (2.3.9) as

TpξX (ηX) = L exp(
L−1ξXL

−T

2
)L−1ηXL

−T exp(
L−1ξXL

−T

2
)LT , (2.3.10)

where X = LLT . The computation of parallel translation involves the matrix exponential, which

is computationally expensive. Note, however, that if parallel translation is used together with the

exponential mapping (2.3.4), the most expensive exponential computation can be shared by rewrit-

ing (2.3.10) and (2.3.4) as shown in Algorithm 4. Even so, the matrix exponential computation is

still required. We thus resort to another vector transport.

Recently, Huang et al. [47, Section 2.3.1] proposed a novel way to construct an isometric vector

transport, called vector transport by parallelization. It is defined by

TS = BYB
[
X , (2.3.11)
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where BX and BY are orthonormal bases of TX Sn
++ and TY Sn

++ defined in (2.3.1) respectively.

Let vX = B[
XηX be the intrinsic representation of ηX . Then, the intrinsic approach of (2.3.11),

denoted by T dS , is given by

T dS vX = B[
Y TSηX = B[

YBYB
[
XBXvX = vX (2.3.12)

That is, the intrinsic representation of vector transport by parallelization is simply the identity,

which is the cheapest vector transport one can expect.

Another possible choice for the vector transport is the identity mapping: TidξX (ηX) = ηX .

However, vector transport Tid is not applicable to the LRBFGS in [51, Algorithm 2] since it is not

isometric under Riemannian metric (2.1.1).

Given a retraction, Huang et al. [51, Section 2] provides a method to construct an isometric

vector transport such that the pair satisfies the locking condition5, denoted by TL, which is given

by

TLξX ηX = BY (I − 2v2v
T
2

vT2 v2
)(I − 2v1v

T
1

vT1 v1
)B[

1ηX , (2.3.13)

where v1 = B[
XξX−z, v2 = z−βB[

Y TRξX ξX , β = ‖ξX‖/‖TRξX ξX‖, and TR denotes the differentiated

retraction. z can be any tangent vector satisfying ‖z‖ = ‖B[
1ξX‖ = ‖βB[

2TRξX ξX‖. In particular,

z = −B[
1ξX and z = −βB[

2ξX are natural choices. The intrinsic representation of (2.3.13) is given

by

T dL vX = B[
YBY (I − 2v2v

T
2

vT2 v2
)(I − 2v1v

T
1

vT1 v1
)B[

1ηX (2.3.14)

= (I − 2v2v
T
2

vT2 v2
)(I − 2v1v

T
1

vT1 v1
)vX . (2.3.15)

Note that when computing (2.3.15), (I − 2v1vT1
vT1 v1

)vX is computed as vX −
2(vT1 vX)

vT1 v1
v1, which requires

6d flops. Hence the evaluation of intrinsic vector transport (2.3.15) requires 12d flops, i.e., 6n2.

Suppose retraction (2.3.5) is used, its differential is given by

TRηx ξx = DRx(ηx)[ξx]

= ξX +
1

2
(ηXX

−1ξX + ξXX
−1ηX).

(2.3.16)

5see [51, Section 2 Equation (2.8)] for the definition of locking condition
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2.3.3 Riemannian gradient of the sum of squared distances function

The cost function (2.1.2) can be rewritten as

f(X) =
1

2K

K∑
i=1

‖ log(A
−1/2
i XA

−1/2
i )‖2F (2.3.17)

=
1

2K

K∑
i=1

‖ log(L−1
Ai
XL−TAi )‖2F (2.3.18)

where Ai = LAiL
T
Ai

. We use Cholesky factorization rather than the matrix square root due to

computational efficiency. The matrix logarithm is computed in a similar way as exponential, i.e.,

log(M) = U log(Σ)UT with M = UΣUT being the eigenvalue decomposition. So the number of

flops required by the evaluation of (2.3.18) is 18Kn3.

The Riemannian gradient of the cost function f in (2.1.2) is given by, see [56],

grad f(X) = − 1

K

K∑
i=1

Exp−1
X (Ai), (2.3.19)

where Exp−1
X (Y ) is the log-mapping. On Sn++, the log-mapping is

Exp−1
X (Y ) = X1/2 log(X−1/2Y X−1/2)X1/2 = log(Y X−1)X. (2.3.20)

Note that the computational complexity of the Riemannian gradient is less than that conveyed in

formula (2.3.20) since the most expensive logarithm computation is already available from the eval-

uation of the cost function at X. Specifically, each term in (2.3.19) is computed as −Exp−1
X (Ai) =

− log(AiX
−1)X = log(XA−1

i )X = LAi log(L−1
Ai
XL−TAi )L−1

Ai
X, and the term log(L−1

Ai
XL−TAi ) is avail-

able from the evaluation of the cost function F (X) in (2.3.18). Hence the computation of gradient

requires 5Kn3 flops if log(L−1
Ai
XL−TAi ) is given.

2.4 Description of the SPD Karcher mean computation methods

In this section, we discuss the algorithms for SPD Karcher mean computation. We first review

the Riemannian steepest descent methods (RSD) without line search in the literature, including

RSD with stepsize selection rule proposed by Q. Rentmeesters (RSD-QR) [82] and a Richardson-

like iteration (RL) [16]. Then we review the line-search-based Riemannian Barzilai-Borwein (RBB)

in [52]. Note that RBB is a steepest descent method combined with the Barzilai-Borwein stepsize.
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We also consider an adaptive BB stepsize selection rule proposed in [39]. In particular, we applied

the intrinsic approach to the implementation of RBB, and compare with the implementation in [52].

It is seen that the former implementation leads to a significant decrease in computation time. In

the end we provide detailed descriptions of a line-search-based limited-memory Riemannian BFGS

(LRBFGS) [51] on Sn
++.

All the algorithms considered are retraction-based methods, namely, an iterate xk on a manifold

M is updated by

xk+1 = Rxk(αkηk), (2.4.1)

where R is a retraction onM, ηk ∈ TxkM is the search direction and αk ∈ R denotes the stepsize.

2.4.1 Riemannian steepest descent methods without line search

For the steepest descent method, the search direction in (2.4.1) is taken as the negative gradient,

i.e.,

ηk = − grad f(xk). (2.4.2)

We summarize RSD without line search for the SPD Karcher mean computation in Algorithm 3.

The differences between RSD-QR and RL are the choices of stepsize strategy in Step 11 and

retraction in Step 13 of Algorithm 3. For RL, the stepsize is taken as αRL = 1/∆, where ∆ is the

upper bound on the eigenvalues of the Hessian of the cost function as computed in Step 10, and the

Euclidean retraction (2.3.8) is used. The number of flops required per iteration is 22Kn3 +o(Kn3).

For RSD-QR, the chosen stepsize is αQR = 2/(U + ∆), where U = 1 is the lower bound on the

eigenvalues of the Hessian of the cost function. It is easy to verify that 1/∆ ≤ 2/(1 + ∆), with

equality when ∆ = 1. Since the eigenvalues of the Hessian of the cost function are bounded by U

and ∆, then ∆ = 1 implies that all the eigenvalues of the Hessian are exactly 1. So αRL = αQR

if and only if the Hessian of the cost function is the identity matrix, and we have αRL < αQR in

general. The exponential mapping (2.3.3) is used by RSD-QR in [82, Algorithm 2]. In practice,

we use retraction (2.3.5), since the exponential mapping contains matrix exponential evaluation,

and it turns out to be a problem if the eigenvalues of matrices in some intermediate iterations

become too large, resulting in numerical overflow. Then each iteration in RSD-QR needs 22Kn3 +

4/3n3 + o(Kn3) flops. Even though RSD-QR is slightly more expensive per iteration than RL due

to the choice of retraction, it will be seen in our experiments to require fewer iterations to achieve
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a desired tolerance, to perform very well on small-size problems in terms of computation time, and

to consistently outperform RL in various situations.

Algorithm 3 RSD without line search for the SPD Karcher mean computation

Input: Ai = LAiL
T
Ai

; tolerance for stopping criteria ε; initial iterate x0 ∈ Sn
++;

1: k = 0;

2: while ‖ grad f(xk)‖ > ε do

3: for i = 1, . . . ,K do

4: Compute Mi = L−1
Ai
xkL

−T
Ai

; . # 2n3

5: Compute Mi = UΣU−1 and set λ = diag(Σ); . # 12n3

6: Compute the condition number ci = max(λ)/min(λ); . # 1

7: Compute Ki = U log(Σ)U−1; . # 4n3

8: Compute Gi = LAiKiL
−1
Ai
xk; . # 4n3

9: end for

10: Compute the upper bound on the eigenvalues of the Hessian of the cost

function: ∆ = 1
K

K∑
j=1

log cj
2 coth(

log cj
2 ); . # 5K

11: Compute stepsize αk = α(∆);

12: Compute grad f(xk) = 1
K

K∑
i=1

Gi; . # (K + 1)n2

13: Compute xk+1 = Rxk(−αk grad f(xk));

14: k = k + 1;

15: end while

2.4.2 Riemannian Barzilai-Borwein method with line search

The Barzilai-Borwein (BB) stepsize makes implicit use of second order information of the cost

function, see [31,52] for details. The most two frequently used versions of the BB stepsize are

αBB1
k+1 =

g(sk, sk)

g(sk, yk)
, (2.4.3)

αBB2
k+1 =

g(sk, yk)

g(yk, yk)
, (2.4.4)

where sk = Tαkηk(αkηk), yk = grad f(xk+1) − Tαkηk(grad f(xk)), and g(sk, yk) > 0. An adaptive

BB stepsize selection rule given in [39], denoted by ABBmin, is defined as

αABBmin
k+1 =

min{αBB2
j : j = max(1, k −ma), . . . , k}, if

αBB2
k+1

αBB1
k+1

< τ

αBB1
k+1 , otherwise

(2.4.5)
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where ma is a nonnegative integer and τ ∈ (0, 1). αABBmin
k+1 tends to compute small BB2 stepsizes,

spaced out with some BB1 stepsizes. Notice that when τ = 1, αABBmin
k+1 is the smallest BB2 stepsize

in several previous iterations.

In [52], RBB based on (2.4.3) has been applied to the SPD Karcher mean computation. We

summarize their implementation in Algorithm 4, which uses an extrinsic representation of a tan-

gent vector, exponential mapping (2.3.4) and parallel translation (2.3.10). Algorithm 5 states our

implementation of RBB using the intrinsic representation approach, retraction (2.3.5) and vec-

tor transport by parallelization (2.3.12). We present the number of flops for each step on the

right-hand side of the algorithms, except problem-related operations, i.e., function, gradient evalu-

ations and line search procedure. Note that Step 7 and Step 11 in Algorithm 4 share the common

term exp(αkx
−1
k ηk), which dominates the computational time and is only computed once. Having

w = n2 and d = n(n+ 1)/2, the number of flops per iteration for Algorithm 4 and Algorithm 5 are

103n3/3 + o(n3) and 22n3/3 + o(n3) respectively. The number of flops required by Algorithm 5 is

smaller than that of Algorithm 4, and the computational efficiency mainly comes from the choice

of retraction and vector transport, and the fact that Riemannian metric reduces to the Euclidean

metric using the intrinsic representation of a tangent vector.

2.4.3 A Limited-memory Riemannian BFGS

In this section, we employed a limited-memory RBFGS method (LRBFGS) for the SPD Karcher

mean computation. The limited-memory BFGS method is based on the BFGS method which

stores and transports the inverse Hessian approximation as a dense matrix. Specifically, the search

direction in RBFGS is ηk = −B−1
k grad f(xk), where Bk is a linear operator that approximates

the action of the Hessian on TxkM, and requires a rank-two update at each iteration, see [51,

Algorithm 1] for the update formula. Unlike BFGS, its limited-memory version stores only some

relatively small number of vectors that represent the approximation implicitly. Therefore LRBFGS

is appropriate for large-size problems, due to its benefit in reducing storage requirements and

computation time per iteration.

Our implementation of LRBFGS depends on [51, Algorithm 2]. We modified this version to use

an alternate update from [49] that allows the line search using the Riemannian Wolfe conditions

to be replaced by the Armijo line search used in [2, Section 4.2]. We provide LRBFGS for the

SPD Karcher mean computation in Algorithm 6 and 7. In fact, those two algorithms are ready
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Algorithm 4 RBB for the SPD Karcher mean computation using extrinsic representation [52]

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); initial iterate x0 ∈
Sn

++; the first stepsize αBB0 ;

1: k = 0;

2: Compute f(xk), grad f(xk);

3: while ‖ grad f(xk)‖ > ε do

4: Set stepsize αk = αBBk ;

5: Set ηk = − grad f(xk); . # w

6: If ‖ grad grad f(xk)‖/‖ grad f(x0)‖ < accuracy

then set xk+1 = xk exp(αkx
−1
k ηk) and go to Step 10;

7: Compute x̃k = xk exp(αkx
−1
k ηk); . # 61n3/3

8: If f(x̃k) ≤ f(xk) + δαkg(grad f(xk), ηk),

then set xk+1 = x̃k and go to Step 10;

9: Set αk = %αk and go to Step 7;

10: Compute grad f(xk+1);

11: Compute sk = αkηk exp(αkx
−1
k ηk), yk = grad f(xk+1) + ηk exp(αkx

−1
k ηk); . # 2n3 + n2

12: Compute αBBk+1 = g(sk, sk)/g(sk, yk); . # 12n3

13: Set αBBk+1 = min{αmax,max{ε, αBBk+1}} if g(sk, yk) > 0; otherwise, αBBk+1 = αmax;

14: k = k + 1;

15: end while

to solve any optimization problems on Sn
++ as long as the readers provide a cost function and its

Riemannian gradient. Algorithm 6 uses the extrinsic representation and general vector transport.

Algorithm 7 uses the intrinsic representation and vector transport by parallelization. The number

of flops for each step is given on the right-hand side of the algorithms. For simplicity of notation,

we use λm, λr, and λt to denote the flops in the metric, retraction, and vector transport evaluation

respectively, and use superscripts, w and d, to denote the extrinsic and intrinsic representations

respectively. The numbers of flops per iteration for Algorithm 6 and Algorithm 7, respectively, are

#w = 2(l + 2)λwm + 4lw + λwr + 4w + 2(l + 1)λwt (2.4.6)

#d = 2(l + 2)λdm + 4ld+ λdr + 4d+ (13n3/3 + 2d) (2.4.7)

Notice that m is the upper limit of the limited-memory size l. Also notice that there is no λdt

term in equation (2.4.7) since the vector transport by parallelization (2.3.12) is used, which is the

identity. The last term (13n3/3 + 2d) in (2.4.7) comes from the evaluation of functions E2D and
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Algorithm 5 RBB for the SPD Karcher mean computation using intrinsic representation and

vector transport by parallelization

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); initial iterate x0 ∈
M; the first stepsize αBB0 ;

1: k = 0;

2: Compute grad f(xk);

3: Compute xk = LkL
T
k ; . #n3/3

4: Compute gfdk = E2Dxk(grad f(xk)) by Algorithm 1; . # 2n3 + d

5: while ‖gfdk‖ > ε do

6: Set stepsize αk = αBBk ;

7: Set ηk = −gfdk; . #d

8: Compute ηwk = D2Exk(ηk) by Algorithm 2; . #2n3 + n(n+ 1)/2

9: If ‖gfdk‖/‖gfd0‖ < accuracy

then set xk+1 = Rxk(αkη
w
k ) using (2.3.5) and go to Step 13;

10: Compute x̃k = Rxk(αkη
w
k ) using (2.3.5) ; . # 3n3 + 3n2

11: If f(x̃k) ≤ f(xk) + δαkη
T
k gfdk,

then set xk+1 = x̃k and go to Step 13;

12: Set αk = %αk and go to Step 10;

13: Compute grad f(xk+1);

14: Compute xk+1 = Lk+1L
T
k+1; . #n3/3

15: Compute gfdk = E2Dxk(grad f(xk)) by Algorithm 1; . # 2n3 + d

16: Compute sk = αkηk, yk = gfdk+1 − gfdk; . #2d

17: Compute αBBk+1 = sTk sk/s
T
k yk; . # 4d

18: Set αBBk+1 = min{αmax,max{ε, αBBk+1}} if g(sk, yk) > 0; otherwise, αBBk+1 = αmax;

19: k = k + 1;

20: end while

D2E given in Algorithm 1 and 2. For the metric evaluation using different representations, we have

λwm = 6n3 + o(n3) and λdm = n2 + o(n2). Simplifying and rearranging (2.4.6) and (2.4.7), we have

#w = 12ln3 + 24n3 + λwr + 2(l + 1)λwt + o(ln3) + o(n3) (2.4.8)

#d = 4ln2 + 13n3/3 + λdr + o(ln2) + o(n3). (2.4.9)

From (2.4.8) and (2.4.9), the computational benefit of the intrinsic representation is substantial.

The limited-memory size l imposes a much heavier burden on Algorithm 6 where the extrinsic

representation is used. In our implementation of Algorithm 7, we suggest retraction (2.3.5), which
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needs 3n3 + o(n3) flops. Hence the overall flops required by Algorithm 7 is #d = 4ln2 + 22n3/3 +

o(ln2) + o(n3). Notice that if the locking condition is imposed on Algorithm 7, extra 12(l + 1)n2

flops are needed. For Algorithm 6, any choice of retraction and vector transport would yield a

larger flop compared to Algorithm 7.

However, our complexity analysis above focuses on manifold- and algorithm-related operations,

the problem-related operations—function, gradient evaluations and line search—are not consid-

ered. From the discussion in (2.3.3), the evaluation of cost function requires 18Kn3 flops, and the

computation of gradient requires extra 5Kn3 flops given the function evaluation. The line search

procedure may take a few steps to terminate, and each step requires one cost function evaluation.

In the ideal case where the initial stepsize satisfies the Armijo condition in Step 20 in Algorithm 7,

i.e., the cost function is evaluated only once, the flops required by problem-related operations is

23Kn3. As n gets larger, the proportion of computational time spent on function and gradient

evaluations is

23Kn3

23Kn3 + 4ln2 + 22n3/3
≈ 23K

23K + 22/3
(2.4.10)

≥ 23 · 3
23 · 3 + 22/3

≈ 90.39%. (2.4.11)

Inequality (2.4.11) comes from the fact that K ≥ 3 and (2.4.10) is an increasing function of K. It

is shown that the problem-related operations dominate the computation time for high dimensional

matrices, which is consistent with our empirical observations in experiments that 80%−90% timing

comes from function and gradient evaluations. If the line search procedure requires more steps

to terminate, then the problem-related operations would result in a larger proportion of total

computational time. Therefore, it is crucial to have a good initial stepsize.

Finally, note that LRBFGS with zero memory size, i.e., m = 0, is equivalent to RBB. This is

easy to verify by setting m = 0 in Algorithm 6 and 7. Just like there are different versions of the

BB stepsize, different alternatives are available for the initial scaling γk+1 in step 22 of Algorithm 6

and step 27 of Algorithm 7, such as BB1 (2.4.3), BB2 (2.4.4), and ABBmin (2.4.5). In particular,

we use BB2 (2.4.4) as the default.

6If the locking condition is imposed, then y
(k+1)
k = grad f(xk+1)/βk − Tαkηk grad f(xk), where βk =

‖αkηk‖/‖TRαkηkαkηk‖.
7If retraction (2.3.5) and isometric vector transport (2.3.15) that satisfy the locking condition are used, sk and

yk are computed as follows: compute zw = TRαkηwk (αkη
w
k ), where TRξη = η + (ηX−1ξ + ξX−1η)/2; obtain the
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2.5 Numerical experiments

In this section, we compare the performance of LRBFGS described in Algorithm 7 and exist-

ing state-of-the-art methods, including the Riemannian Barzilai-Borwein method (RBB) provided

in [52] (using implementation in Algorithm 5), the Riemannian steepest descent method with

stepsize selection rule proposed by Q. Rentmeesters et al. (RSD-QR) in [82, Section 3.6], the

Richardson-like iteration (RL) of [16], and the Riemannian BFGS method (RBFGS) presented

in [49,51].

All experiments are performed on the Florida State University HPC system using Quad-Core

AMD Opteron(tm) Processor 2356 2.3GHz. Experiments in Section (2.5.2) are carried out using

C++, compiled with gcc-4.7.x. Section 2.5.4 presents a comparison of computation time between

MATLAB and C++ implementations. All MATLAB experiments are performed using MATLAB

R2015b (8.6.0.267246) 64-bit (glnxa64). In particular, we use the MATLAB implementation of RL

in Bini et al.’s Matrix Means Toolbox1.

Regarding the parameter setting, we set Armijo parameter δ = 10−4, backtracking reduction

factor % = 0.5 for well-conditioned data sets and % = 0.25 for ill-conditioned ones, maximum

stepsize αmax = 100, and minimum stepsize αmin is machine epsilon. We mention here that it

is found from our experiments (not shown in this paper) that LRBFGS is much less sensitive to

% that RBB. We use % = 0.25 since it leads to the best performance of RBB, while LRBFGS

behaves similarly for different values of %. The initial stepsize in the first iteration is chosen by the

strategy in [82], i.e., α0 = 2/(1 + U), where U is the upper bound at the initial iterate defined in

inequality (2.2.3). For LRBFGS, we use different memory sizes m as specified in the legends of the

figures, and impose the locking condition for ill-conditioned matrices. Specifically, we impose the

locking condition on LRBFGS in the bottom plots of Figure 2.1, 2.2, 2.3, and 2.4. As we have shown

in Section 2.4, imposing the locking condition requires extra complexity. For well-conditioned data

sets, the problem is easy to handle, and the locking condition is not necessary. While in the ill-

conditioned case, imposing the locking condition can reduce the number of iterations. The extra

time caused by the locking condition is smaller than the time saved by a reduction in the number

of function and gradient evaluations. The benefit of the locking condition is also demonstrated

intrinsic representation z of zw by Algorithm 1; compute β = α2
kη
T
k ηk/z

T z, v1 = 2αkηk, v2 = −αkηk − βz; Define
sk = (I − 2v2v

T
2 /v

T
2 v2)(I − 2v1v

T
1 /v

T
1 v1)(αkηk), yk = gfdk+1/β − (I − 2v2v

T
2 /v

T
2 v2)(I − 2v1v

T
1 /v

T
1 v1)gfdk.
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in [49]. In order to achieve sufficient accuracy, we skip the line search procedure when the iterate is

close enough to the minimizer by setting accuracy = 10−5 in Algorithm 5 and 7. Unless otherwise

specified, our choice of the initial iterate is the Arithmetic-Harmonic mean of data points [54]. We

run the algorithms until they reach their highest accuracy.

For simplicity of notation, throughout this section we denote the number, dimension, and

condition number of the matrices by K, n, and κ respectively. For each choice of (K,n) and

the range of conditioning desired, a single experiment comprises generating 5 different sets of K

random n× n matrices with appropriate condition numbers, and running all 5 algorithms on each

set with identical parameters. The result of the experiment is the distance to the true Karcher

mean averaged over the 5 sets as a function of iteration and time. To obtain sufficiently stable

timing results, an average time is taken of several runs for a total runtime of at least 1 minute.

2.5.1 Experiment design

When defining each set of experiments, we choose a desired (true) Karcher mean µ, and con-

struct data matrices Ai’s such that their Karcher mean is exactly µ, i.e.,
∑K

i=1 Exp−1
µ (Ai) = 0 holds.

The benefits of this scheme are: (i) We can control the conditioning of µ and Ai’s, and observe

the influence of the conditioning on the performance of algorithms. (ii) Since the true Karcher

mean µ is known, we can monitor the distance δ between µ and the iterates produced by various

algorithms, thereby removing the need to consider the effects of termination criteria.

Given a Karcher mean µ, the Ai’s are constructed as follows: (i) Generate Wi in Matlab, with

n the size of matrix, f the order of magnitude of the condition number, and p some number less

than n,

[O, ˜ ] = qr (randn(n ) ) ;
D = diag ( [ rand (1 , p)+1 , (rand (1 , n−p)+1)∗10ˆ(− f ) ] ) ;
W = O ∗ D ∗ O’ ; W = W/norm(W, 2 ) ;

(ii) Compute ηi = Exp−1
µ (Wi). (iii) Enforce the condition

∑K
i=1 ηi = 0 on ηi’s. Specifically, we test

on data sets with K = 3, 30, 100. In the case of K = 3, we enforce η3 = −η1 − η2. When K = 30

or K = 100, let ki = 5(k − 1) + i for 1 ≤ k ≤ K/5 and 1 ≤ i ≤ 5. We enforce ηk4 = −ηk1 − 0.5ηk3

and ηk5 = −ηk2 − 0.5ηk3 , which gives
∑5

i=1 ηki = 0, and thus
∑K/5

k=1

∑5
i=1 ηki = 0. (iv) Compute

Ai = Expµ(ηi).
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Note that instead of producing ηi directly, we produce Wi first and obtain ηi from the log-

mapping, since this procedure gives us greater control over the conditioning of data points. As

discussed in Section 2.2, we can take the Karcher mean µ as the identity matrix in numerical

experiments, so we “translate” the data set {µ,A1, . . . , AK} to {I, L−1A1L
−T , . . . , L−1AKL

−T }

using an isometry, where µ = LLT as the final step.

2.5.2 Comparison of performances between different algorithms using C++

We now compare the performances of all 5 algorithms on various data sets by examining results

from representative experiments for different choices of (K,n, κ).

Figure 2.1 displays the performance results of different algorithms running on small-size prob-

lems, taking K = 3 and n = 3. Both well-conditioned (1 ≤ κ(Ai) ≤ 20) and ill-conditioned

(105 ≤ κ(Ai) ≤ 1010) data sets are tested. In the well-conditioned case, it is seen that all 5 algo-

rithms are comparable in terms of computation time even though they require different numbers

of iterations. For ill-conditioned matrices, RL and RSD-QR require significantly more iterations,

but they are still efficient in terms of timing due to the low computational cost per iteration.

RBB and LRBFGS require similar numbers of iterations, but LRBFGS with m > 0 takes more

time. The computational complexity per iteration for Algorithm 7 with the locking condition is

23Kn3 + 22n3/3 + 16ln2 + o(ln2) + o(n3) as discussed in Section 2.4. So when the size of the

problem is small, the impact of memory size l is visible. But this is not the case when the size of

the problem gets larger, as shown in Figure 2.2 and 2.3.

Figure 2.2 and Figure 2.3 report the results of tests conducted on data sets with large K (K =

100, n = 3) and large n (K = 30, n = 100) respectively. Note that when n = 100, the dimension

of Sn++ is d = n(n + 1)/2 = 5050. In each case, both well- and ill-conditioned data sets are

tested. For well-conditioned matrices, we observe that LRBFGS and RBB perform similarly, with

a slight advantage for LRBFGS. The advantage of LRBFGS becomes larger as the matrices become

increasingly ill-conditioned. Note that RBFGS is very inefficient for large n as expected and shown

in Figure 2.3.

As the last test in this section, we compare the performances of the algorithms using two

different initial iterates: the Arithmetic-Harmonic mean and the Cheap mean [17]. The Cheap

mean is known to be a good approximation of the Karcher mean, but, is not cheap to compute.

We use Bini et al.’s Matrix Means Toolbox1 for the computation of Cheap mean. We consider 30
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badly conditioned 30 × 30 matrices (106 ≤ κ(Ai) ≤ 109). The results are presented in Figure 2.4.

Notice that the time required to compute the initial iterate is included in the plots. The x-axis

of the bottom-right plot does not start from 0, which shows that the computation of the Cheap

mean is time demanding. We observe that the choice of initial iterate is crucial to RBFGS, and it

affects the other algorithms in the early steps. When the initial iterate is close enough to the true

solution, as shown in the bottom right plot in Figure 2.4, we observe a faster convergence in the

first a few steps for all algorithms. In both cases, LRBFGS outperforms the other algorithms in

terms of computation time and number of iterations per unit of accuracy required.
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Figure 2.1: Evolution of averaged distance between current iterate and the exact Karcher
mean with respect to time and iterations with K = 3, n = 3. Top: 1 ≤ κ(Ai) ≤ 20;
Bottom: 105 ≤ κ(Ai) ≤ 1010.

2.5.3 Comparison of the Riemannian metric and Euclidean metric

In this section we compare two different metrics, the Euclidean metric and Riemannian metric,

for RSD, LRBFGS and RBFGS. RSD refers to the standard steepest descent in [53], and the initial

stepsize is taken as the classical strategy in [93, (3.44)]. Notice that LRBFGS with m = 0 is RBB,

i.e., RSD with the BB stepsize. In this test, we generate the true Karcher mean (minimizer) of
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Figure 2.2: Evolution of averaged distance between current iterate and the exact Karcher
mean with respect to time and iterations with K = 100 and n = 3; Top: 1 ≤ κ(Ai) ≤ 200;
Bottom: 103 ≤ κ(Ai) ≤ 107.

various sizes as described in Section 2.5.1 with condition number between 10 and 20. The majority

(> 60%) of the data matrices in each data set are well-conditioned (κ < 100). The results are

reported in Figure 2.5. In the legends, ‘Euc’ refers to the Euclidean metric and ‘Rie’ refers to the

Riemannian metric. We observe that the Riemannian metric shows more than two hundreds times

faster convergence speed for RSD. When the Riemannian metric is used, LRBFGS with m = 0 and

m = 2 behave similarly just as the well-conditioned case in Section 2.5.2. However, in the case of

the Euclidean metric, LRBFGS with m = 2 is much faster than m = 0. For RBFGS, the influence

of the metric becomes less significant compared to simpler methods.

2.5.4 Comparison between C++ and MATLAB implementations

In this section, we compare the computation time of the algorithms on the SPD Karcher mean

computation implemented by C++ and MATLAB. The results are reported in Figure 2.6. The first

column indicates that the C++ and MATLAB implementations are identical in terms of iterations.

The second column displays the log-log plots of computation time vs. average distance between
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Figure 2.3: Evolution of averaged distance between current iterate and the exact Karcher
mean with respect to time and iterations with K = 30 and n = 100; Top: 1 ≤ κ(Ai) ≤ 20;
Bottom: 104 ≤ κ(Ai) ≤ 107.

each iterate and the exact Karcher mean. For small-size problem, the C++ implementation is

faster than that of MATLAB by a factor of 100 or more with the factor gradually reducing as n

or K gets larger. This phenomenon can be explained by the fact that when n or K is small, the

difference of efficiency between C++ and Matlab implementations is mainly due to the difference

between compiled languages and interpreted languages. When n or K gets larger, the BLAS and

LAPACK calls start to dominate the computation time, which leads to a decrease in the factor.

Note that we implemented LRBFGS and RBB as a user-friendly library. It is observed that the

overhead of MATLAB library machinery dominates the computation time for k = 3 and n = 3,

but it becomes negligible for large-size problems.

2.6 Conclusions

In this chapter, we present an LRBFGS method for the SPD Karcher mean computation, and

provide efficient implementation techniques. There are several alternatives from which to choose
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Figure 2.4: Comparison of different algorithms using different initial iterates with K = 30,
n = 30, and 106 ≤ κ(Ai) ≤ 109. Top: using the Arithmetic-Harmonic mean as initial
iterate; Bottom: using the Cheap mean as initial iterate.

for the representation of a tangent vector, retraction and vector transport. We provide complexity-

based recommendations for those alternatives.

Our numerical experiments provide empirical guidelines to choose between various methods

and two metrics. It is observed that RSD-QR and RL perform very well when n and K are small,

and RSD-QR systematically outperforms RL. As n or K gets larger, RSD-QR and RL become

less appealing, while RBB and LRBFGS single out. We recommend using LRBFGS as the default

method for the SPD Karcher mean computation mainly for three reasons: (i) When the data matri-

ces are well-conditioned, LRBFGS and RBB are competitive, with a slight advantage for LRBFGS

on some test sets. (ii) As the data matrices get ill-conditioned, LRBFGS outperforms RBB. (iii)

The performance of RBB depends on the choice of parameters, such as the reduction factor % in

the back tracking line search procedure, while LRBFGS is much less sensitive to parameter choices.

Since RBB is in fact LRBFGS with m = 0, that is to say, LRBFGS can benefit from choosing

m > 0.
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Figure 2.5: Comparison of different algorithms using Riemannian metric and Euclidean
metric. Top row: K = 3, n = 3, and 1 ≤ κ(Ai) ≤ 104; Middle row: K = 100, n = 3, and
1 ≤ κ(Ai) ≤ 106; Bottom: K = 30, n = 100, and 1 ≤ κ(Ai) ≤ 105.

We also present empirical illustration of the speedup of C++ implementation compared with

MATLAB implementation. Notice that it is demonstrated theoretically and empirically that for

large-size problems, the dominant computation time (70% - 90%) is in the problem-related opera-

tions, i.e., function and gradient evaluations, and our implementations of manifold- and algorithm-

related objects is the cheapest we can get so far.
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Figure 2.6: Comparison between C++ and MATLAB implementations with different
choices of (K,n, κ). Top row: K = 3, n = 3, and 1 ≤ κ(Ai) ≤ 20; Middle row: K = 100,
n = 3, and 1 ≤ κ(Ai) ≤ 20; Bottom: K = 30, n = 100, and 1 ≤ κ(Ai) ≤ 20.
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Algorithm 6 LRBFGS for problems on Sn
++ using extrinsic representation

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); initial iterate x0 ∈
M; an integer m > 0;

1: k = 0, γ0 = 1, l = 0, compute grad f(xk);

2: while ‖ grad f(xk)‖ > ε do

3: H0
k = γk id. Obtain ηk ∈ TxkM by the following algorithm, Step 4 to Step 13:

4: q ← grad f(xk);

5: for i = k − 1, k − 2, . . . , k − l do . # l(λwm + 2w)

6: ξi ← ρig(s
(k)
i , q); q ← q − ξiy(k)

i ;

7: end for

8: r ← H0
kq; . # w

9: for i = k − l, k − l + 1, . . . , k − 1 do . # l(λwm + 2w)

10: ω ← ρig(y
(k)
i , r);

11: r ← r + s
(k)
i (ξi − ω);

12: end for

13: Set ηk = −r, αk = 1; . # w

14: If ‖ grad f(xk)‖/‖ grad f(x0)‖ < accuracy

then set xk+1 = Rxk(αkηk) and go to Step 18; . # λwr
15: Compute x̃k = Rxk(αkηk); . # λwr
16: If f(x̃k) ≤ f(xk) + δαkg(grad f(xk), ηk),

then set xk+1 = x̃k and go to Step 18;

17: Set αk = %αk and go to Step 15;

18: Compute grad f(xk+1);

19: Define s
(k+1)
k = Tαkηkαkηk and y

(k+1)
k = grad f(xk+1)− Tαkηk grad f(xk);

6 . # 2λwt + 2w

20: Compute a = g(y
(k+1)
k , s

(k+1)
k ) and b = ‖s(k+1)

k ‖2; . # 2λwm
21: if a

b ≥ 10−4‖ grad f(xk)‖ then . # λwm
22: Compute c = ‖y(k+1)

k ‖2 and define ρk = 1/a and γk+1 = a/c; . # λwm
23: Add s

(k+1)
k , y

(k+1)
k and ρk into storage and if l ≥ m, then discard vector pair

{s(k)
k−l, y

(k)
k−l} and scalar ρk−l from storage, else l ← l + 1; Transport s

(k)
k−l+1, s

(k)
k−l+2, . . . , s

(k)
k−1

and y
(k)
k−l+1, y

(k)
k−l+2, . . . , y

(k)
k−1 from TxkM to Txk+1

M by T , then get s
(k+1)
k−l+1, s

(k+1)
k−l+2, . . . , s

(k+1)
k−1

and y
(k+1)
k−l+1, y

(k+1)
k−l+2, . . . , y

(k+1)
k−1 ; . # 2(l − 1)λwt

24: else

25: Set γk+1 ← γk, {ρk, . . . , ρk−l+1} ← {ρk−1, . . . , ρk−l}, {s
(k+1)
k , . . . , s

(k+1)
k−l+1} ←

{Tαkηks
(k)
k−1, . . . , Tαkηks

(k)
k−l} and {y(k+1)

k , . . . , y
(k+1)
k−l+1} ← {Tαkηky

(k)
k−1, . . . , Tαkηky

(k)
k−l}; . # 2lλwt

26: end if

27: k = k + 1;

28: end while
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Algorithm 7 LRBFGS for problems on Sn
++ using intrinsic representation

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); initial iterate x0 ∈
M; an integer m > 0;

1: k = 0, γ0 = 1, l = 0;

2: Compute grad f(xk);

3: Compute gfdk = E2Dxk(grad f(xk)) by Algorithm 1; . # 2n3 + d

4: while ‖gfdk‖ > ε do

5: Obtain ηk ∈ Rd, intrinsic representation of a tangent vector ηw ∈ TxkM, by the following

algorithm, Step 6 to Step 16:

6: q ← gfdk;

7: for i = k − 1, k − 2, . . . , k − l do . # l(λdm + 2d)

8: ξi ← ρiq
T si;

9: q ← q − ξiyi;
10: end for

11: r ← γkq; . # d

12: for i = k − l, k − l + 1, . . . , k − 1 do . # l(λdm + 2d)

13: ω ← ρir
T yi;

14: r ← r + si(ξi − ω);

15: end for

16: set ηk = −r, αk = 1; . # d

17: Compute ηwk = D2Exk(ηk) by Algorithm 2; . # 2n3 + n(n+ 1)/2

18: If ‖ grad gfdk‖/‖gfd0‖ < accuracy,

then set xk+1 = Rxk(αkη
w
k ) and go to Step 22; . # λdr

19: Compute x̃k = Rxk(αkη
w
k ); . # λdr

20: If f(x̃k) ≤ f(xk) + δαkη
T
k gfdk,

then set xk+1 = x̃k and go to Step 22;

21: Set αk = %αk and go to Step 19;

22: Compute xk+1 = Lk+1L
T
k+1, grad f(xk+1);

23: Compute gfdk = E2Dxk(grad f(xk)) by Algorithm 1; . # 2n3 + d

24: Define sk = αkηk and yk = gfdk+1 − gfdk;
7 . # 2d

25: Compute a = yTk sk and b = ‖sk‖22; . # 2λdm

45



26: if a
b ≥ 10−4‖gfdk‖2 then . # λdm

27: Compute c = ‖y(k+1)
k ‖22 and define ρk = 1/a and γk+1 = a/c; . # λdm

28: Add sk, yk and ρk into storage and if l ≥ m, then discard vector pair

{sk−l, yk−l} and scalar ρk−l from storage, else l← l + 1;

29: else

30: Set γk+1 ← γk, {ρk, . . . , ρk−l+1} ← {ρk−1, . . . , ρk−l}, {sk, . . . , sk−l+1} ←
{sk−1, . . . , sk−l} and {yk, . . . , yk−l+1} ← {yk−1, . . . , yk−l}

31: end if

32: k = k + 1;

33: end while
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CHAPTER 3

DIVERGENCE FUNCTIONS ON Sn++ AND

DIVERGENCE-BASED MEANS

3.1 Introduction

As discussed in Chapter 2, the geodesic distance induced by the affine-invariant metric (2.1.1)

provides a natural dissimilarity measure between two SPD matrices

δR(X,Y ) = ‖ log(L−1Y L−T )‖F, (3.1.1)

where X,Y ∈ Sn
++ and X = LLT . The Karcher mean based on δR provides an attractive way

of averaging a collection of SPD matrices as it satisfies all the desired geometric properties in the

ALM list [6]. However, the computational cost of the geodesic distance (3.1.1) and the Karcher

mean associated with it increases dramatically with the dimension of the manifold (i.e., the size

of the SPD matrices). As shown in Section 2.4.3, the dominant computation time for the Karcher

mean computation using LRBFGS is in the problem-related operations, i.e., function and gradient

evaluations. Our implementation of manifold- and algorithm-related objects is the cheapest we

can get so far. This motivates us to consider using divergences as alternatives to the geodesic

distance (3.1.1).

A divergence is similar to a distance except that it does not need to satisfy the triangle inequality

nor symmetry, which also provides a measure of dissimilarity between two elements. In fact, in

recent years, the matrix divergences have begun to draw more and more attention due to its

simplicity, efficiency and robustness to outliers, e.g., see [5,8,21,26,27,75,89,91]. The idea of using

divergences to define the mean of a collection of SPD matrices has been studied in literature [22,25,

71, 72, 84, 85]. The divergence-based mean is defined in a similar way as the Karcher mean, which

also requires solving an optimization problem on Sn
++. Unlike the Karcher mean computation that

is extensively tackled by Riemannian optimization methods, the divergence-based mean is mainly

computed by fixed point algorithms when the closed form solution is not available. This chapter is

devoted to various divergences on Sn
++ and the computation of divergence-based means.
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The main contributions of this chapter are:

• We provide a review of commonly used divergences on Sn
++ and divergence-based means for

a set of SPD matrices.

• We generalize the proof for the geodesic convexity of the log-determinant α-divergence from

the case of α = 0 in [84] to the general case of −1 < α < 1.

• We apply our Riemannian optimization techniques on Sn
++ developed in Chapter 2 to com-

pute the divergence-based mean when the closed form expression is not available, which

outperforms the state-of-the-art fixed point algorithm.

• For the SPD log-determinant α-divergence-based mean computation, we cast the state-of-the-

art fixed point algorithm into a Riemannian steepest descent for a choice of the cost function,

retraction, and stepsize strategy.

• We use the problem of computing the SPD log-determinant α-divergence-based mean to

empirically illustrate the relationship between the BB stepsizes and the eigenvalues of the

Riemannian Hessian of the cost function. We consider different versions of BB stepsizes,

including BB1, BB2, and ABBmin.

3.2 The α-divergence from Jensen convexity gap

3.2.1 Preliminaries and definitions

Let ϕ : Ω → R be a strictly convex and differentiable real-valued function defined on a closed

convex set Ω ⊂ Rm. A one parameter family of skewed divergences [22, 74] generated by ϕ, called

the Jensen divergence, is defined as

δ2
ϕ,λ(x, y) =

1

λ(1− λ)
[(1− λ)ϕ(x) + λϕ(y)− ϕ((1− λ)x+ λy)] (3.2.1)

=
1

λ(1− λ)
[(ϕ(x)ϕ(y))λ − ϕ((xy)λ)], (3.2.2)

where x, y ∈ Ω, λ ∈ (0, 1), and (ab)λ = (1 − λ)a + λb denotes the linear interpolant between a

and b. A geometrical illustration of the Jensen divergence for scalars is given in Figure 3.1. As

depicted in Figure 3.1, the Jensen divergence is proportional to the vertical distance between the

point ((xy)λ, (ϕ(x)ϕ(y))λ) lying on the line segment connecting points (x, ϕ(x)) and (y, ϕ(y)) and

the point ((xy)λ, ϕ((xy)λ)) lying on the curve of ϕ.
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x y(1− λ)x+ λy

λ = 0.2

α−divergence

ϕ
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λ = 0.5

Jensen divergence
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x y(1− λ)x+ λy

λ = 0.8

α−divergence

Figure 3.1: Geometrical illustration of the skewed Jensen divergence.

With the change of parameter λ = (1 + α)/2, the skewed Jensen divergence (3.2.1) can be

written as

δ2
ϕ,α(x, y) =

4

1− α2
[
1− α

2
ϕ(x) +

1 + α

2
ϕ(y)− ϕ(

1− α
2

x+
1 + α

2
y)], (3.2.3)

where α ∈ (−1, 1). The α-version (3.2.3) of the Jensen divergence is called the α-divergence family

in [99]. The α-version is preferred since this version possess a dual symmetry with respect to the

change α→ −α.

For values α = 1 and α = −1, the α-divergence is defined by taking limit as α→ 1 and α→ −1.

As α→ 1, we have

δ2
ϕ,1(x, y) = lim

α→1
δ2
ϕ,α(x, y) (3.2.4)

= lim
α→1

2

1 + α
[ϕ(x)− ϕ(y)− 2

1− α
(ϕ(y +

1− α
2

(x− y))− ϕ(y))] (3.2.5)

= ϕ(x)− ϕ(y)− lim
α→1

ϕ(y + t(x− y))− ϕ(y)

t
(3.2.6)

= ϕ(x)− ϕ(y)−Dϕ(y)[x− y] (3.2.7)

= ϕ(x)− ϕ(y)− 〈Oϕ(y), x− y〉. (3.2.8)

Note that equation (3.2.8) is actually the Bregman divergence defined in [20], denoted by δ2
ϕ,B(x, y).

Similarly, when α→ −1, we have δ2
ϕ,−1(x, y) = δ2

ϕ,B(y, x). Throughout this dissertation, we follow

the tradition and call (3.2.8) the Bregman divergence. A geometrical illustration of the Bregman

divergence is given in Figure 3.2. It measures the vertical distance between the point (x, ϕ(x)) and

the tangent at (y, ϕ(y)).

Both the α-divergence (3.2.3) and the Bregman divergence (3.2.8) can be naturally extended to

Sn
++, e.g., see [22,71,74]. Given a strictly convex and differentiable real-valued function φ : Sn

++ → R
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y x

Bregman divergence

Figure 3.2: Geometrical illustration of the Bregman divergence.

and X,Y ∈ Sn
++, the α-divergence with −1 < α < 1 is defined as

δ2
φ,α(X,Y ) =

4

1− α2
[
1− α

2
φ(X) +

1 + α

2
φ(Y )− φ(

1− α
2

X +
1 + α

2
Y )]. (3.2.9)

The Bregman divergence, denoted by δ2
φ,B, is defined as

δ2
φ,B((X,Y ) = φ(X)− φ(Y )− 〈Oφ(Y ), X − Y 〉, (3.2.10)

where 〈X,Y 〉 = tr(XY ). Different choices of φ give different divergences. Commonly used convex

functions on Sn
++ are [74]:

• quadratic entropy:

φ(X) = tr(XTX), (3.2.11)

• log-determinant (also called Burg) entropy:

φ(X) = − log detX, (3.2.12)

• von Neumann entropy:

φ(X) = tr(X logX −X). (3.2.13)

In this chapter, we focus on the log-determinant entropy (3.2.12) and the von Neumann en-

tropy (3.2.13).

3.2.2 Symmetrized divergence

A divergence is asymmetric in general. There are two common ways to symmetrize a diver-

gence [27]:
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• Type 1:

δ2
Sφ(X,Y ) =

1

2
(δ2
φ(X,Y ) + δ2

φ(Y,X)), (3.2.14)

• Type 2:

δ2
Sφ(X,Y ) =

1

2
(δ2
φ(X,

X + Y

2
) + δ2

φ(Y,
X + Y

2
)). (3.2.15)

3.2.3 The LogDet α-divergence

When the associated function φ(X) in (3.2.9) is the log-determinant function (3.2.12), we get

the log-determinant α-divergence [22]. Below gives the formal definition.

Definition 3.2.1. For −1 < α < 1, the family of log-determinant (hereafter abbreviated LD or

LogDet) α-divergence functions on Sn
++ is defined as

δ2
LD,α(X,Y ) =

4

1− α2
log

det(1−α
2 X + 1+α

2 Y )

det(X)
1−α
2 det(Y )

1+α
2

. (3.2.16)

Remark 3.2.1. With the change of parameter p = 1−α
2 , the LogDet α-divergence can be written as

δ2
LD,p(X,Y ) =

1

p(1− p)
log

det(pX + (1− p)Y )

detXp detY 1−p , 0 < p < 1. (3.2.17)

The most frequently mentioned advantage of the LogDet α-divergence (3.2.16) against the

geodesic distance δR is its computational efficiency. The computation of (3.2.16) requires three

Cholesky factorizations (for 1−α
2 X + 1+α

2 Y , X, and Y ), while computing the geodesic distance

involves eigenvalue decomposition. We will see later that the computational advantage of the

LogDet α-divergence is more impressive when one wants to compute the related means. In addition,

the LogDet α-divergence enjoys several desired invariance properties [22]:

1. Invariance under congruence transformations

δ2
LD,α(SAST , SBST ) = δ2

LD,α(A,B) for any invertible S. (3.2.18)

2. Dual-invariance under inversion

δ2
LD,α(A−1, B−1) = δ2

LD,−α(A,B). (3.2.19)

3. Dual symmetry

δ2
LD,α(A,B) = δ2

LD,−α(B,A). (3.2.20)
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The LogDet α-divergence (3.2.16) is asymmetric except for α = 0. But it can be symmetrized

using (3.2.14) and (3.2.15), and two symmetric forms of the LogDet α-divergence are expressed as

δ2
S1LD,α(X,Y ) =

2

1− α2
log

det(1−α
2 X + 1+α

2 Y )(1−α
2 Y + 1+α

2 X)

det(XY )
, (3.2.21)

and

δ2
S2LD,α(X,Y ) =

2

1− α2
log

det(3−α
4 X + 1+α

4 Y )(3−α
4 Y + 1+α

4 X)

det(XY )
1−α
2 det(X+Y

2 )1+α
. (3.2.22)

Remark 3.2.2. δ2
LD,0 is also called the Stein divergence, and fully studied in [84, 85]. It is shown

in [84] that δ2
LD,0 is the square of a distance function (i.e., δLD,0 is a distance function), and it

shares several common geometric properties with the geodesic distance δ2
R, see [84, Table 4.1].

3.2.4 The LogDet Bregman divergence

Recall that the Bregman divergence on Sn
++, denoted by δ2

φ,B, is defined as

δ2
φ,B(X,Y ) = φ(X)− φ(Y )− 〈Oφ(Y ), X − Y 〉, (3.2.23)

where X,Y ∈ Sn
++ and 〈X,Y 〉 = tr(XY ). The LogDet Bregman divergence is defined using

φ(X) = − log detX, and is given as

δ2
LD,B(X,Y ) = tr(Y −1X − I)− log det(Y −1X). (3.2.24)

The LogDet Bregman divergence is also called the Kullback-Leibler divergence in [72]. It is easy to

verify that the LogDet Bregman divergence is invariant under congruence transformations. In addi-

tion, the LogDet Bregman divergence is asymmetric, but it can be easily symmetrized using (3.2.14)

and (3.2.15). Two symmetric versions of the LogDet Bregman divergence are expressed as

δ2
S1LD,B(X,Y ) =

1

2
tr(Y −1X +X−1Y − 2I), (3.2.25)

and

δ2
S2LD,B(X,Y ) = log det(

X + Y

2
)− 1

2
log det(XY ). (3.2.26)

Notice that (3.2.26) coincides with the LogDet α-divergence with α = 0. The type 1 symmetrized

LogDet Bregman divergence (3.2.25) is also called the Jeffrey divergence (or J-divergence) in [42,91].

We can verify that both (3.2.25) and (3.2.26) are invariant under congruence and inversion.

52



3.2.5 The von Neumann α-divergence

The von Neumann function φ(X) = tr(X logX −X) arises in quantum mechanics [76], whose

domain is the set of positive semidefinite matrices by using the convention that 0 log 0 = 0. The

von Neumann α-divergence is defined as

δ2
VN,α(X,Y ) =

4

1− α2
tr{1− α

2
X logX+

1 + α

2
Y log Y−(

1− α
2

X+
1 + α

2
Y ) log(

1− α
2

X+
1 + α

2
Y )}.

(3.2.27)

From (3.2.27), we can verify that the von Neumann α-divergence satisfies the following invariance

properties:

1. Invariance under rotations

δ2
VN,α(OXOT , OY OT ) = δ2

VN,α(X,Y ) for any O ∈ SO(n). (3.2.28)

2. Dual symmetry

δ2
VN,α(X,Y ) = δ2

VN,−α(Y,X). (3.2.29)

It is clear from the dual symmetry that the von Neumann divergence is asymmetric except for

α = 0, which is given by

δ2
VN,0(X,Y ) = 4 tr{1

2
X logX +

1

2
Y log Y − (

X + Y

2
) log(

X + Y

2
)}. (3.2.30)

We note that the computation of the von Neumann α-divergence (3.2.27) requires 3 eigenvalue

decompositions, which makes it more expensive than the computation of the geodesic distance δR,

the LogDet α-divergence δ2
LD,α, and the LogDet Bregman divergence δ2

LD,B. The advantage of the

von Neumann α-divergence is that it is defined over positive semidefinite matrices. But in this

dissertation, we focus on the symmetric positive definite matrices.

3.2.6 The von Neumann Bregman divergence

The von Neumann Bregman divergence [74], denoted by δ2
VN,B, is defined using φ(X) =

tr(X logX −X) for the Bregman divergence (3.2.23)

δ2
VN,B(X,Y ) = tr(X(logX − log Y )−X + Y ). (3.2.31)

Note that (3.2.31) is referred to as the von Neumann divergence in [30, 59, 74] and the quantum

relative entropy in [76]. We keep the word “Bregman” just to emphasize that it is a Bregman
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divergence other than a α-divergence from Jensen convexity gap. The von Neumann Bregman

divergence (3.2.31) is invariant under rotations, and its computation requires two eigenvalue de-

compositions. It is shown in [30] that (3.2.31) is finite if and only if the range of Y contains the

range of X, i.e., range(X) ⊆ range(Y ). For this reason, the von Neumann Bregman divergence is

often used in low-rank matrix nearness problems, e.g., see [30,59,60].

The von Neumann Bregman divergence is asymmetric, and its symmetrized versions are given

by

δ2
S1VN,B(X,Y ) =

1

2
tr(X logX + Y log Y −X log Y − Y logX) (3.2.32)

=
1

2
tr(X(logX − log Y ) + Y (log Y − logX)), (3.2.33)

and

δ2
S2VN,B(X,Y ) = tr(

1

2
X logX +

1

2
Y log Y − (

X + Y

2
) log(

X + Y

2
)). (3.2.34)

Since δ2
S1VN,B(X,Y ) is obtained using (δ2

VN,B(X,Y ) + δ2
VN,B(Y,X))/2, it is finite if and only if

range(X) = range(Y ). That is, the type 1 symmetrized von Neumann Bregman divergence

δ2
S1VN,B(X,Y ) enjoys a range-space preserving property, which appears to be important for the

analysis of rank deficient matrices. But in this dissertation, we only consider the positive definite

matrices. In addition, we note that the symmetrized von Neumann Bregman divergence (3.2.34)

coincides with the von Neumann α-divergence with α = 0, i.e., equation (3.2.30).

3.3 Sided and symmetrized means based on the divergence

3.3.1 Definitions

Given a divergence function on Sn
++, one can define the mean of a collection of SPD matrices

{A1, . . . , AK} in a similar way as the Karcher mean. Due to the asymmetry of divergence functions,

the notion of right mean and left mean are used. The right mean and left mean coincide if the

divergence is symmetric.

Definition 3.3.1. The right mean of a collection of SPD matrices {A1, . . . , AK} associated with

divergence function δ2
φ(x, y) is defined as the minimizer to the sum of divergence

µr = arg min
X∈Sn++

f(X), with f : Sn
++ → R, X 7→

K∑
i=1

δ2
φ(Ai, X). (3.3.1)
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Definition 3.3.2. The left mean of a collection of SPD matrices {A1, . . . , AK} associated with

divergence function δ2
φ(x, y) is defined as the minimizer to the sum of divergence

µl = arg min
X∈Sn++

f(X), with f : Sn
++ → R, X 7→

K∑
i=1

δ2
φ(X,Ai). (3.3.2)

3.3.2 Means based on the LogDet α-divergence

The right mean based on the LogDet α-divergence for a set of SPD matrices, {A1, . . . , AK} ∈

Sn
++, is defined as

µr = arg min
X∈Sn++

f(X), with f : Sn
++ → R, X 7→

K∑
i=1

δ2
LD,α(Ai, X), (3.3.3)

where δ2
LD,α is given in (3.2.16). This problem has been studied in [22], and they claimed that the

right mean µr is given by the unique solution to the necessary optimality condition

gradeuc f(X) = 0 ⇐⇒ X−1 =
1

K

K∑
i=1

(
1− α

2
X +

1 + α

2
Ai)
−1, (3.3.4)

where gradeuc f(X) denotes the gradient of f under the Euclidean metric (1.5.7). The existence of

the unique solution to matrix equation (3.3.4) is proved in [22]. The necessary condition (3.3.4) is

also sufficient since the cost function f(X) → ∞ as X → 0 and X → ∞. That is, optimization

problem (3.3.3) has a unique minimizer. [84] analyzed the mean problem (3.3.3) for α = 0, and

they proved that δ2
LD,0 is jointly geodesically convex under the affine-invariant metric gX(ξ, η) =

tr(ξX−1ηX−1) where ξ, η ∈ TX Sn
++. That is, δ2

LD,0 satisfies the following inequality

δ2
LD,0(X1#tX2, Y1#tY2) ≤ (1− t)δ2

LD,0(X1, Y1) + tδ2
LD,0(X2, Y2), (3.3.5)

where A#tB := γ(t) = A1/2(A−1/2BA−1/2)tA1/2 for t ∈ [0, 1] denotes the geodesic between A and

B under the affine-invariant metric with γ(0) = A and γ(1) = B. Here we generalize their proof for

the geodesic convexity to the general LogDet α-divergence (3.2.16). Before proving Theorem 3.3.1,

we recall some useful results. For simplicity of notation, we drop the subscript when t = 1/2, i.e.,

A#B = A#1/2B denotes the Karcher mean of A and B.

Proposition 3.3.1. (Joint-concavity [57]) Let A,B,C,D ∈ Sn
++. Then

(A#B) + (C#D) ≤ (A+ C)#(B +D). (3.3.6)
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Proposition 3.3.2. (Consistency with scalars) Let A,B ∈ Sn
++ and p ∈ R+. Then

p(A#B) = (pA)#(pB). (3.3.7)

Proposition 3.3.3. Let A,B ∈ Sn
++. Then

log det(A#B) =
1

2
(log detA+ log detB). (3.3.8)

Proof. From the determinant identity, we have

det(A#B) = (detAdetB)1/2.

Take the log of both sides, we have

log det(A#B) =
1

2
(log detA+ log detB). (3.3.9)

Theorem 3.3.1. The function δ2
LD,α(X,Y ) is jointly geodesically convex, i.e., for any X1, X2, Y1, Y2

∈ Sn
++ and t ∈ (0, 1), we have

δ2
LD,α(X1#tX2, Y1#tY2) ≤ (1− t)δ2

LD,α(X1, Y1) + tδ2
LD,α(X2, Y2). (3.3.10)

Proof. To prove the theorem, we use the p-version of the LogDet α-divergence given in (3.2.17).

Since δ2
LD,p is continuous, it suffices to show that for any X1, X2, Y1, Y2 ∈ Sn

++,

δ2
LD,p(X1#X2, Y1#Y2) ≤ 1

2
δ2

LD,p(X1, Y1) +
1

2
δ2

LD,p(X2, Y2). (3.3.11)

From Proposition 3.3.2 and Proposition 3.3.1, we have

p(X1#X2) + (1− p)(Y1#Y2) = (pX1)#(pX2) + ((1− p)Y1)#((1− p)Y2) (3.3.12)

≤ (pX1 + (1− p)Y1)#(pX2 + (1− p)Y2). (3.3.13)

Since the log-determinant function is monotonic, then we have

log det(p(X1#X2) + (1− p)(Y1#Y2)) ≤ log det((pX1 + (1− p)Y1)#(pX2 + (1− p)Y2)) (3.3.14)

=
1

2
log det(pX1 + (1− p)Y1) +

1

2
log det(pX2 + (1− p)Y2).

(3.3.15)
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Combining the above inequality with the identity

− log det(X1#X2)p − log det(Y1#Y2)1−p (3.3.16)

= −p log det(X1#X2)− (1− p) log det(Y1#Y2) (3.3.17)

= −p
2

(log detX1 + log detX2)− 1− p
2

(log detY1 + log detY2) (3.3.18)

= −1

2
log detXp

1Y
1−p

1 − 1

2
log detXp

2Y
1−p

2 . (3.3.19)

Then we get

log
det(p(X1#X2) + (1− p)(Y1#Y2))

det(X1#X2)p(Y1#Y2)1−p ≤ 1

2
log

det(pX1 + (1− p)Y1)

det(Xp
1Y

1−p
1 )

+
1

2
log

det(pX2 + (1− p)Y2)

det(Xp
2Y

1−p
2 )

.

(3.3.20)

That is,

δ2
LD,p(X1#X2, Y1#Y2) ≤ 1

2
δ2

LD,p(X1, Y1) +
1

2
δ2

LD,p(X2, Y2). (3.3.21)

From Theorem 3.3.1, the cost function in the right mean problem (3.3.3) is geodesically convex.

Hence a local minimum point is also a global minimum point. However, a closed-form solution for

problem (3.3.3) is unknown in general, except for K = 2. Unlike the Karcher mean computation

that is extensively tackled by Riemannian optimization methods, the LogDet α-divergence based

mean is often computed by fixed point algorithms, see [22, 74]. An Euclidean Newton’s method is

considered in [22] which, however, fails to converge in some of their numerical experiments. [22]

studied the special case of α = 0 and gave a fixed point algorithm to compute the divergence-based

mean with a convergence study. [25, 26, 84, 85] applied this fixed point algorithm to compute the

divergence-based mean. We propose to solve the sided mean problem (3.3.3) using implementa-

tion techniques developed in Section 2.3 and Riemannian optimization algorithms, including RSD,

LRBFGS, RBFGS, and RNewton. In addition, we could explain the fixed point algorithm in the

literature in Riemannian optimization framework.
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Next, we present the problem-related operations, i.e., function and gradient evaluations, for

problem (3.3.3). The cost function in problem (3.3.3) is given by

f(X) =
4

1− α2

K∑
i=1

log
det(1−α

2 Ai + 1+α
2 X)

det(Ai)
1−α
2 det(X)

1+α
2

(3.3.22)

=
4

1− α2

K∑
i=1

{log det(
1− α

2
Ai +

1 + α

2
X)− 1 + α

2
log detX − 1− α

2
log detAi} (3.3.23)

=
4

1− α2

K∑
i=1

{tr log(
1− α

2
Ai +

1 + α

2
X)− 1 + α

2
tr logX − 1− α

2
tr logAi}. (3.3.24)

From (3.3.23) to (3.3.24), we use identity log detA = tr logA. Our cost function evaluation is based

on formula (3.3.23), which requires only two Cholesky factorizations. Notice that the log detAi term

is a constant, and thus can be ignored. The number of flops required by function evaluation (3.3.23)

is 2Kn3/3 + o(Kn3).

The directional derivative of the cost function (3.3.23) at x in the direction of η is given in [22]

D f(X)[η] =
2

1− α
tr

K∑
i=1

{(1− α
2

Ai +
1 + α

2
X)−1 −X−1}η. (3.3.25)

Thus the Riemannian gradient of the cost function under the affine-invariant metric (2.1.1) is given

by

grad f(X) =
2

1− α

K∑
i=1

{X(
1− α

2
Ai +

1 + α

2
X)−1X −X}. (3.3.26)

The evaluation of (3.3.26) requires the computation of the inverse of (1−α
2 Ai + 1+α

2 X), whose

Cholesky factorization is available from the cost function evaluation. So evaluating the Riemannian

gradient needs extra 3Kn3 + o(Kn3) flops. We compare the computational complexities of the

problem-related operations for the Karcher mean computation and the LogDet α-divergence based

mean computation in Table 3.1. The efficiency of the latter is one of the key reasons for using it

as an alternative to the Karcher mean.

The Riemannian Newton’s method requires the action of Hessian. Under the affine-invariant

metric (2.1.1), the action of Riemannian Hessian of the cost function f is given by

Hess f(X)[η] = D(grad f(X))[η]− 1

2
(ηX−1 grad f(X) + grad f(X)X−1η). (3.3.27)

For simplicity of notation, we let Bi = (1−α
2 Ai + 1+α

2 X)−1. Then we have

D(grad f(X))[η] =
2

1− α

K∑
i=1

{ηBiX +XBiη −XBi(
1 + α

2
)ηBiX − η}. (3.3.28)
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Table 3.1: The complexities of the problem-related operations for the computation of
means based on the Riemannian geodesic distance δR (3.1.1) and the LogDet α-divergence
δ2

LD,α (3.2.16).

cost function Riemannian gradient

mean based on δ2
LD,α 2Kn3/3 3Kn3

mean based on δ2
R 18Kn3 5Kn3

Thus, the action of Hessian is given by

Hess f(X)[η] =
1

1− α

K∑
i=1

{(ηBiX +XBiη)− (1 + α)XBiηBiX}. (3.3.29)

Next, we will show that the fixed point algorithm in [22, 74] coincides with the Riemannian

steepest descent method for a choice of cost function, retraction, and stepsize strategy. The fixed

point algorithm in [22, Algorithm 1] is derived from the necessary optimality condition (3.3.4),

which is given by

Xk+1 = K(
K∑
i=1

(
1− α

2
Ai +

1 + α

2
Xk)

−1)−1. (3.3.30)

With the change of variable Y = X−1, an equivalent expression of (3.3.30) is given as [22, Algorithm

1’]

Yk+1 =
1

K

K∑
i=1

(
1− α

2
Ai +

1 + α

2
Y −1
k )−1. (3.3.31)

It is claimed in [22, Proposition 3.13] that {Yk} monotonically converges to the inverse of the

LogDet α-divergence-based right mean with the initializations of the arithmetic mean and the

harmonic-arithmetic mean. We propose the following cost function g

g(Y ) = δ2
LD,α(Ai, Y

−1) (3.3.32)

=
4

1− α2

K∑
i=1

{log det(
1− α

2
Ai +

1 + α

2
Y −1) +

1 + α

2
log detY − 1− α

2
log detAi}. (3.3.33)

The Riemannian gradient of the cost function g(Y ) under the affine-invariant metric (2.1.1) is given

by

grad g(Y ) =
2

1− α

K∑
i=1

{Y − (
1− α

2
Ai +

1 + α

2
Y −1)−1}. (3.3.34)
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Combining equation (3.3.31) and (3.3.34), we have

Yk+1 =
1

K
{KYk −

1− α
2

grad g(Yk)} (3.3.35)

= Yk −
1− α
2K

grad g(Yk). (3.3.36)

Equation (3.3.36) implies that the fixed point procedure given in (3.3.31) is a Riemannian steepest

descent method using the Euclidean retraction RX(ηX) = X + ηX and a constant stepsize (1 −

α)/2K.

We end this section by a quick glance at the symmetric mean based on the symmetrized LogDet

α-divergence, which is defined as

µ = arg min
X∈Sn++

f(X), with f : Sn
++ → R, X 7→

K∑
i=1

δ2
S1LD,α(Ai, X). (3.3.37)

It is easy to verify that the symmetric mean defined in (3.3.37) is invariant under congruence

transformation and inversion. The cost function in (3.3.37) is given by

f(X) =
2

1− α2

K∑
i=1

{log det(
1− α

2
Ai+

1 + α

2
X)+log det(

1− α
2

X+
1 + α

2
Ai)}−log detX−log detAi}.

(3.3.38)

Since δ2
LD,α is jointly geodesically convex, the cost function f is geodesically convex, and thus a

local minimum is also global. The Riemannian gradient of (3.3.38) is given by

grad f(X) =
2

1− α2

K∑
i=1

{1 + α

2
X(

1− α
2

Ai+
1 + α

2
X)−1X+

1− α
2

X(
1− α

2
X+

1 + α

2
Ai)
−1X−X}.

(3.3.39)

The computation of the cost function (3.3.38) requires Kn3 + O(Kn3) flops, and its Riemannian

gradient (3.3.39) needs 6Kn3 +O(Kn3) flops.

3.3.3 Means based on the LogDet Bregman divergence

Means based on the LogDet Bregman divergence have been thoroughly studied in [72, Lemma

17.4.3], and they turn out to have closed-form expressions.

Lemma 3.3.1. Let {A1, . . . , AK} be a collection of SPD matrices, A(A1, . . . , AK) = 1
K

K∑
i=1

Ai be

their arithmetic mean, H(A1, . . . , AK) = K(
K∑
i=1

A−1
i )−1 be their harmonic mean, and G(A1, . . . , AK)

be their geometric mean.
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1. The right mean based on δ2
LD,B (3.2.24) is given by the arithmetic mean, i.e.,

A(A1, . . . , AK) = arg min
X∈Sn++

K∑
i=1

δ2
LD,B(Ai, X). (3.3.40)

2. The left mean based on δ2
LD,B (3.2.24) is given by the harmonic mean, i.e.,

H(A1, . . . , AK) = arg min
X∈Sn++

K∑
i=1

δ2
LD,B(X,Ai). (3.3.41)

3. The symmetric mean based on δ2
S1LD,B (3.2.25) is given by the geometric mean of the arith-

metic mean and the harmonic mean, i.e.,

G(A(A1, . . . , AK),H(A1, . . . , AK)) = arg min
X∈Sn++

K∑
i=1

δ2
S1LD,B(Ai, X). (3.3.42)

3.3.4 Means based on the von Neumann Bregman divergence

Given a collection of SPD matrices {A1, . . . , AK} ∈ Sn
++, the right mean µr and left mean µl

associated with the von Neumann Bregman divergence are given by, respectively,

µr = arg min
X∈Sn++

δ2
VN,B(Ai, X) = arg min

X∈Sn++

K∑
i=1

tr(Ai logAi −Ai logX −Ai +X) (3.3.43)

and

µl = arg min
X∈Sn++

δ2
VN,B(X,Ai) = arg min

X∈Sn++

K∑
i=1

tr(X logX −X logAi −X +Ai). (3.3.44)

Note that we can omit the constant terms for the cost functions in problem (3.3.43) and (3.3.44).

A difficulty in tackling problem (3.3.43) is due to the fact that an analytic form for the gradient of

trAi logX with respect to X is not known. The Euclidean gradient of tr(X logX −X) is shown

to be logX in [88]. Thus, the Riemannian gradient of the cost function in (3.3.44) is given by

grad f(X) =
K∑
i=1

X(logX − logAi)X. (3.3.45)

The solution, denoted by µl, to problem (3.3.44) must satisfy the optimality condition

grad f(µl) = 0⇔
K∑
i=1

(logµl − logAi) = 0. (3.3.46)
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In other words,

µl = exp(
1

K

K∑
i=1

logAi). (3.3.47)

The left mean based on the von Neumann Bregman divergence coincides with the Log-Euclidean

Frechet mean in [10].

The computation of the symmetric mean based on the von Neumann Bregman divergence

encounters the same difficulty as the right mean, since it also requires the gradient of trAi logX.

3.4 Numerical experiments I: computation of the LogDet
α-divergence-based means

In this section, we compare the performances of the state-of-the-art fixed point algorithm (FP)

proposed in [22, Algorithm 1] with a number of Riemannian optimization algorithms, including

Riemannian steepest descent (RSD), LRBFGS described in Algorithm 7, RBFGS in [51, Algorithm

2], and Riemannian Newton’s method (RNewton) using a truncated conjugate gradient method

in [2].

In our practical implementation, RSD and LRBFGS are combined with the Armijo backtracking

line search with Armijo parameter δ = 10−4 and backtracking reduction factor % = 0.5. RBFGS

and RNewton are combined with the Wolfe line search with parameters c1 = 10−4 and c2 = 0.999.

The initial stepsize for RSD is taken as the classical strategy in [93, (3.44)]

αk+1 = min{1, 1.01 · 2(fk+1 − fk)
gxk+1

(gfk+1,−gfk+1)
}, (3.4.1)

where fk = f(xk) and gfk = grad f(xk). We set the maximum stepsize αmax = 100 and the

minimum stepsize αmin is machine epsilon. The initial stepsize in the first iteration is set to be

1. Unless otherwise specified, our choice of the initial iterate is the harmonic-arithmetic mean of

data matrices. The maximum number of iterations is set to be 500. For LRBFGS, we use the BB2

initial scaling method with ma = 5, and test different memory sizes m as specified in the legends of

figures. Recall that LRBFGS with m = 0 is actually a steepest descent method with a BB stepsize.

We run the algorithms until they reach their highest accuracy.

For simplicity of notation, throughout this section we denote the number, dimension, and

condition number of the matrices by K, n, and κ respectively. For each choice of (K,n) and

the range of conditioning desired, a single experiment comprises generating 50 different sets of K
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random n × n matrices with appropriate condition numbers, and running all the algorithms on

each set with identical parameters. For each dataset, we compute the true solution using LRBFGS

with m = 2 with a high accuracy such that ‖ grad f(Xk)‖/‖ grad f(X0)‖ < 10−12. The result of the

experiment is the distance to the true solution averaged over the 50 sets as a function of iteration

and time. To obtain sufficiently stable timing results, an average time is taken of several runs for

a total runtime of at least 1 minute.

All experiments are carried out using C++, compiled with gcc-4.7.x., and performed on the

Florida State University HPC system using Quad-Core AMD Opteron(tm) Processor 2356 2.3GHz.

Figure 3.3 and 3.4 report the results of tests conducted on data sets with K = 100 and n = 3.

The condition number of the data matrices is between 10 and 106. Figure 3.3 presents a zoom-in

of Figure 3.4. Various values of α are tested as specified at the top of each plot. Note that we use

the same datasets for different values of α. We observe that the value of α has a significant impact

on the performance of FP. For nonnegative α, i.e., α = 0, 0.5 and 0.9, the considered Riemannian

optimization algorithms impressively outperform the FP. The performance of FP becomes better

as the value of α decreases, but is still outperformed by the considered Riemannian optimization

algorithms. For the considered Riemannian optimization algorithms, RNewton requires the least

number of iterations to achieve a desired accuracy, but this advantage is nullified by its high

computational cost per iteration. LRBFGS with m = 2 is clearly the winner in terms of time

efficiency for all the values of α tested except for α = −0.9. When α = −0.9, the Riemannian

optimization algorithms tend to struggle in the early steps, but get better in the later phase.

If a high accuracy is desired, LRBFGS is clearly the choice of method. For some values of α,

RBFGS performs similarly as LRBFGS with m = 2, while its performance depends on the value

of α. However, as the dimension of the manifold increases, RBFGS becomes computationally

demanding. We also note that RBB, i.e., LRBFGS with m = 0, performs better than RSD in

terms of number of iterations and time efficiency. This implies that a suitable choice of the initial

stepsize can accelerate the steepest descent method. In our opinion, the acceleration of RBB is due

to the fact that the BB stepsize injects some second order information into the stepsizes, while the

classical stepsize (3.4.1) only uses the first order information. We will explore more about the BB

methods in the next section.
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3.5 Numerical experiments II: the BB stepsizes and Hessian
eigenvalues

In this section, we investigate the relationship between the BB stepsizes, including BB1, BB2,

and ABBmin, and the eigenvalues of the Riemannian Hessian of the cost function. It is seen from

Section 3.4 that the appropriate choice of the initial stepsize could accelerate the convergence speed

of the steepest descent methods. The BB stepsizes make use of the second order information of the

cost function, while the classical NW’s stepsize given in (3.4.1) only uses the first order information.

For readers’ convenience, we summarize the formulas for different stepsizes:

• NW’s: αk+1 = min{1, 1.01 · 2(fk+1 − fk)/g(gfk+1,−gfk+1)},

• BB1: αk+1 = g(sk, sk)/g(sk, yk),

• BB2: αk+1 = g(sk, yk)/g(yk, yk),

• ABBmin: αk+1 = min{αBB2
j : j = max(1, k − ma), . . . , k} if αBB2

k+1/α
BB1
k+1 < τ ; otherwise

αk+1 = αBB1
k+1 .

In order to illustrate the practical behavior of the BB stepsizes, we analyze the numerical results

obtained by solving the LogDet α-divergence-based right mean problem (3.3.3). The objective

function is

f(X) =
4

1− α2

K∑
i=1

{log det(
1− α

2
Ai +

1 + α

2
X)− 1 + α

2
log detX}. (3.5.1)

The intrinsic representation of the Riemannian Hessian of f at x is given by

H =
1

1− α

K∑
i=1

OT {(LTBiL)⊗ In + In ⊗ (LTBiL)− (1 + α)(LTBiL)⊗ (LTBiL)}O, (3.5.2)

where Bi = (1−α
2 Ai + 1+α

2 X)−1, X = LLT , and O is the orthonormal basis under the Euclidean

metric (1.5.7), i.e., O = {vec(eie
T
i ) : i = 1, . . . , n}

⋃
{vec( 1√

2
(eie

T
j + eje

T
i )), i < j, i = 1, . . . , n, j =

1, . . . , n} ∈ Rn2×d with {e1, . . . , en} being the standard basis of Rn. Note that the dimension of the

Hessian matrix H is d× d, where d = n(n+ 1)/2. We compute all the eigenvalues of H using the

eig function in MATLAB.

In Figure 3.5-3.10, we compare the practical behavior of BB1, BB2, ABBmin, and LRBFGS.

The aim of the comparison is two fold: (1) to analyze the relationship between the stepsizes αk

generated by different BB methods and the eigenvalues of the current Riemannian Hessian; (2) to
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compare the convergence speed and time efficiency of different methods. In each figure, plots in the

first row display the values of the reciprocal of three BB stepsizes as specified in the title and the

eigenvalues of the Riemannian Hessian of f as a function of iteration. In the plots, the green mark

‘x’ indicates the reciprocal of the initial stepsize generated by each BB method, the blue mark ’o’

indicates the the reciprocal of the final stepsize that satisfies the Armijo condition, the pink dot

depicts the eigenvalues of current Riemannian Hessian and the dotted lines are obtained by linear

interpolation. The plots in the second row of each figure show, respectively, the eigenvalues of the

Riemannian Hessian of each iteration obtained by LRBFGS, and evolution of distance between

current iterate and the exact solution with respect to iterations and time. For LRBFGS, we use the

BB2 initial scaling method with memory size m = 2. Since the initial stepsize for LRBFGS is always

1, we only display the values of eigenvalues of the Riemannian Hessian for each iteration. All the

results shown in Figure 3.5-3.10 are obtained from the same dataset with varying values of α, which

are representatives of multiple experiments. Note that α without subscript is the parameter in the

LogDet α-divergence. The dataset consists 200 SPD matrices of size 6 × 6 and condition number

1 ≤ κ ≤ 107. For each value of α, we test two different iterates: the arithmetic-harmonic mean and

a random initial iterate that is far away from the true solution. For ABBmin, the parameters are

chosen on the basis of the literature [31]. We set ma = 5 and τ = 0.7.

We first observe that LRBFGS wins over RBB in all cases in terms of convergence speed and

computation time. The sequences {1/αk} generated by three BB stepsizes appear to follow the

distribution of the eigenvalues of the Riemannian Hessian of the objective function. BB2 method

performs better than BB1 in general, especially when α ≥ 0 and the random initial iterate is far

away from the true solution. When the arithmetic-harmonic mean is used as the initial iterate,

which is a good initial start-point, we see from Figure 3.5, 3.7 and 3.9 that the eigenvalues of

the Riemannian Hessian of f converge to those at the minimizer quickly. When the random initial

iterate is used, from Figure 3.6, 3.8 and 3.10, we see that the eigenvalues of the Riemannian Hessian

associated with the BB1 method converge more quickly than those associated with the BB2 method.

We also observe that the sequences 1/αk generated by ABBmin formula tend to take groups of large

values, interleaved with some smaller values. This implies that the ABBmin method tend to take

groups of small stepsizes, interleaved with some large stepsizes.
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3.6 Summary and comparison

We have discussed various dissimilarity measures on Sn
++ and related means for a set of SPD

matrices. Table 3.2 lists the desired invariance properties of a measure for SPD matrices. Table 3.3

and Table 3.4 summarize the definitions and properties of various distances/divergences mentioned

in the chapter. Table 3.5 summarizes the literatures dealing with the divergence-based matrix

means and algorithms used to compute the means.

Table 3.2: A summary of desired invariance properties.

Properties Formulas

Scaling invariance δ(sX, sY ) = δ(X,Y ), ∀s ∈ R+

Rotation invariance δ(OXOT , OY OT ) = δ(X,Y ), ∀O ∈ SO(n)

Congruence invariance δ(SXST , SY ST ) = δ(X,Y ), ∀S ∈ GL(n)

Inversion invariance δ(X,Y ) = δ(X−1, Y −1)

Remark 3.6.1.

• The Stein divergence is also known as Jensen-Bregman LogDet divergence, and it belongs to

the LogDet α-divergence with α = 0, i.e., δS = δLD,0.

• The LogDet Bregman divergence is also referred to as the Kullback-Leibler divergence [72],

and can be obtained from the LogDet α-divergence by letting α→ 1, i.e., δLD,B = δLD,1.

• The Jeffrey divergence is obtained from the LogDet Bregman divergence by symmetrization,

i.e.,

δ2
J(X,Y ) =

1

2
(δLD,B(X,Y ) + δLD,B(Y,X)). (3.6.1)

• The triangle inequality of the square root of the Stein divergence, i.e., δS is shown in [84].

3.7 Conclusions

In this chapter, we provide a review of commonly used divergences on Sn
++ and divergence-

based means for a set of SPD matrices. We focus on the computation of the log-determinant

α-divergence-based mean. We show that the log-determinant α-divergence is jointly geodesically
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Table 3.3: Notation and definitions of the distances/divergences on Sn
++.

Distance &
√

Divergence Notation Formula Symmetric
Triangle

inequality

Euclidean distance δE ‖X − Y ‖F Yes Yes

Cholesky-Frobenius [32] δCL ‖Chol(X)− Chol(Y )‖F Yes Yes

Affine-invariant
distance [78]

δR ‖ log(X−1/2Y X−1/2)‖F Yes Yes

Log-Euclidean distance [10] δLE ‖ log(X)− log(Y )‖F Yes Yes

LogDet α-divergence [22] δLD,α

√
4

1− α2
log

det( 1−α
2
Ai + 1+α

2
X)

det(Ai)
1−α
2 det(X)

1+α
2

No No

Stein divergence [22,84] δS 2
√

log det(X+Y
2

)− 1
2

log det(XY ) Yes Yes

LogDet Bregman
divergence [22,60]

δLD,B

√
tr(XY −1)− log det(XY −1)− n No No

Jeffrey divergence [91] δJ

√
1
2

tr(XY −1 + Y X−1)− n Yes No

von Neumann α-divergence δVN,α see (3.2.27) No No

von Neumann Bregman
divergence [74]

δVN,B

√
tr(X(logX − log Y )−X + Y ) No No

convex. We apply our Riemannian optimization techniques to handle this computational task,

which outperforms the state-of-the-art method. In addition, we cast the state-of-the-art method

into Riemannian optimization framework. Moreover, we provide a numerical illustration of the

relationship between the Barzilai-Borwein stepsizes and the eigenvalues of the Riemannian Hessian

of the cost function.
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Table 3.4: Distances/divergences on Sn
++ and their invariance properties.

Distance & Divergence
Scaling

invariance
Rotation
invariance

Congruence
invariance

Inversion
invariance

Euclidean distance No Yes No No

Cholesky-Frobenius No No No No

Affine-invariant distance Yes Yes Yes Yes

Log-Euclidean distance Yes Yes No Yes

LogDet α-divergence Yes Yes Yes No

Stein divergence Yes Yes Yes Yes

LogDet Bregman divergence Yes Yes Yes No

Jeffrey divergence Yes Yes Yes Yes

von Neumann α-divergence No Yes No No

von Neumann Bregman divergence No Yes No No
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Figure 3.3: Comparison of different algorithms with K = 100, n = 3, and 10 ≤ κ(Ai) ≤ 106.
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Figure 3.4: Comparison of different algorithms with K = 100, n = 3, and 10 ≤ κ(Ai) ≤ 106.
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Figure 3.5: α = −0.5. The initial iterate is the arithmetic-harmonic mean.
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Figure 3.6: α = −0.5. The initial iterate is randomly generated.
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Figure 3.7: α = 0. The initial iterate is the arithmetic-harmonic mean.
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Figure 3.8: α = 0. The initial iterate is randomly generated.
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Figure 3.9: α = 0.5. The initial iterate is the arithmetic-harmonic mean.
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Figure 3.10: α = 0.5. The initial iterate is randomly generated.
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Table 3.5: A summary of the literatures dealing with the divergence-based matrix means
and algorithms used to compute the means.

Distance & Divergence Reference Closed-form expression/Algorithms

Euclidean distance — • arithmetic mean

Cholesky-Frobenius — —

Affine-invariant
distance

[71,72]

• fixed point iteration

• Riemannian optimization: RSD, RCG, LRBFGS,

RBFGS, RNewton

Log-Euclidean distance [10] • log-Euclidean mean: exp(
∑K

i=1 log(Ai)/K)

LogDet α-divergence [22,74]

• fixed point iteration (which is the same as the

concave-convex procedure [97])

• Euclidean Newton’s method

Stein divergence
[22,25,26,

84,85]
• fixed point iteration

LogDet Bregman
divergence

[71,72]
• right mean: arithmetic mean

• left mean: harmonic mean

Jeffrey divergence [71,72] • arithmetic-harmonic mean

von Neumann
α-divergence

— —

von Neumann Bregman
divergence

—
• right mean: —

• left mean: log-Euclidean mean
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CHAPTER 4

L1 RIEMANNIAN MEDIAN COMPUTATION ON

Sn++

4.1 Introduction

In the Euclidean space, it is known that the median is preferred to the mean in the presence of

outliers due to the robustness of the former and the sensitivity of the latter. This is illustrated in

Figure 4.1, where the mean is dragged towards the outliers lying at the top right corner, while the

median appears to be a better estimator of centrality. It is shown in [65] that half of the points

needs to be corrupted in order to corrupt the median.
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Figure 4.1: The geometric mean and median in R2 space.

Given a set of points {a1, . . . , aK} ∈ Rn, with the usual Euclidean distance ‖ · ‖, the geometric

median is defined as the point m ∈ Rn minimizing the sum of distance f(x) =
∑K

i=1 ‖x− ai‖. The

geometric median can be computed by an iterative algorithm introduced by Weiszfeld [92], which

is essentially an Euclidean steepest descent. The gradient of f exists when x ∈ Rn not equal to any

ai and is given by

∇f(x) =

K∑
i=1

1

‖x− ai‖
(x− ai). (4.1.1)
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Later Ostresh [77] improved Weiszfeld’s algorithm and proposed an update iteration as

xk+1 = xk − αGk, Gk =

K∑
i=1

ai
‖xk − ai‖

(

K∑
i=1

1

‖xk − ai‖
)−1, (4.1.2)

where α > 0 is a stepsize. Notice if current iterate coincides with one of the data points, i.e.,

xk = aj , then Gk = aj . It was proven in [77] that the iteration (4.1.2) converges to the unique

median for α ≤ 2 and when the data points are not all colinear. Figure 4.2 illustrates the median

and mean of 3 points in R2. In the third plot, the median coincides with one of the data points.
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Figure 4.2: The geometric median and mean for 3 points in R2 space.

This notion of geometric median can be extended to the Sn
++ manifold. Given a set of SPD

matrices {A1, . . . , AK}, their Riemannian median is defined as the minimizer to the sum of distances

µmd = arg min
X∈Sn++

K∑
i=1

δ(Ai, X), (4.1.3)

where δ(·, ·) is the geodesic distance. It was proven in [37] that the Riemannian median defined

by (4.1.3) exists and is unique in the case of a non-positively curved manifold such as Sn
++. The

divergence-based median can be defined in a similar way when δ is the square root of divergence.

The cost function in (4.1.3) is not differentiable at the data matrices, i.e., X = Ai for i = 1, . . . ,K.

The computation of medians on Sn
++ has not received as much attention as the mean [21,

37, 84, 89]. Fletcher et al. [37] generalized the Weiszfeld-Ostresh’s algorithm to the Riemannian

median computation on an arbitrary manifold, and proved that the algorithm converges to the

unique solution when it exists. Charfi et al. [21] considered the computation of medians based on

the geodesic distance, Log-Euclidean distance and the Stein divergence. An Euclidean steepest

descent method and a fixed point algorithm are proposed. However, the Euclidean steepest descent

method is not appropriate since each iterate is not guaranteed to stay on Sn
++. Moreover, they did
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not specify a stepsize selection rule for the steepest descent method. The Stein divergence median

is also studied in [84], and they provided a convergence proof of the fixed point iteration in [21]. A

median based on the total Kullback-Leibler divergence is proposed in [89], which has a closed form

expression. We present a brief summary of previous work in Table 4.1.

Table 4.1: A summary of previous work for matrix medians using different distances/divergences.

Distance & Divergence Reference Closed-form expression/Algorithms

Affine-invariant
distance

[21,36,37]
• Euclidean steepest descent

• Riemannian Weiszfeld and Ostresh’s algorithm

Log-Euclidean distance. [21]
• Euclidean steepest descent

• fixed point iteration

Stein divergence [21,84]
• Euclidean steepest descent

• fixed point iteration

total Kullback-Leibler
divergence

[89] • closed-form expression

In this chapter, we apply the Riemannian optimization techniques on Sn
++ developed in Chap-

ter 2 to handle the SPD median computation problem. Since the median cost function (4.1.3)

is nonsmooth at the data matrices, we exploit recent developments in Riemannian optimization

for nonsmooth functions to compute the median, including the modified Riemannian BFGS for

nonsmooth functions in [46, Section 7] and a Riemannian version of nonsmooth BFGS in [45]. In

addition, we modified and adapted LRBFGS for SPD median computation.

The main contributions of this dissertation for the SPD median computation are:

• The exploitation of smooth and nonsmooth versions of Riemannian quasi-Newton algorithms

for SPD median computation.

• The systematic empirical investigation of the performance of proposed algorithms, and com-

pare with the Riemannian version of Weiszfeld’s method in [37].

• The investigation of the sided medians based on the log-determinant α-divergence.
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4.2 Description of the L1 Riemannian median computation
methods

In this section, we present the algorithms for SPD median computation, including the Rieman-

nian version of Weiszfeld’s algorithm [37], a modified Riemannian BFGS for nonsmooth functions

in [46, Section 7], a Riemannian version of nonsmooth BFGS in [45], and two adapted versions of

limited-memory RBFGS for nonsmooth functions.

4.2.1 The Riemannian version of Weiszfeld’s algorithm

In the Euclidean space, the geometric median of a set of points can be computed by an iterative

algorithm introduced by Weiszfeld [92] and later improved by Ostresh [77]. Fletcher et al. [37]

generalized the Weiszfeld procedure to arbitrary manifold, which is summarized in Algorithm 8. It

was proven in [37] that Algorithm 8 converges to the Riemannian median if the stepsize α satisfies

0 < α ≤ 2.

Algorithm 8 Riemannian Weiszfeld’s Algorithm for the SPD Riemannian median computation

Input: Ai = LAiL
T
Ai

; tolerance for stopping criteria ε; initial iterate x0 ∈ Sn
++;

1: k = 0, α = 1;

2: repeat

3: for i = 1, . . . ,K do

4: Evaluate δR(xk, Ai);

5: end for

6: if xk 6= A1, . . . , AK then

7: ηk = −
K∑
i=1

1

δ(xk, Ai)
Exp−1

xk
(Ai) · (

K∑
i=1

1

δ(xk, Ai)
)−1;

8: else if xk = Aj then

9: ηk = −Exp−1
xk

(Aj);

10: end if

11: Compute xk+1 = Expxk(αηk);

12: k = k + 1;

13: end(repeat)

We extend the Riemannian Weiszfeld’s procedure to compute the median based on the LogDet

α-divergence, which is described in Algorithm 9. However, the algorithm fails to converge in some

numerical experiments if we use stepsize 1.
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Algorithm 9 Riemannian Weiszfeld’s algorithm for the SPD α-divergence median computation

Input: Ai; tolerance for stopping criteria ε; initial iterate x0 ∈ Sn
++;

1: k = 0, t = 1;

2: repeat

3: for i = 1, . . . ,K do

4: Evaluate δLD,α(xk, Ai);

5: end for

6: if xk 6= A1, . . . , AK then

7: ηk = − 1

1− α

K∑
i=1

1

δLD,α(xk, Ai)
{X(

1− α
2

Ai+
1 + α

2
X)−1X−X} · (

K∑
i=1

1

δLD,α(xk, Ai)
)−1;

8: else if xk = Aj then

9: ηk = − 2

1− α
{X(

1− α
2

Aj +
1 + α

2
X)−1X −X};

10: end if

11: Compute xk+1 = Expxk(tηk);

12: k = k + 1;

13: end(repeat)

4.2.2 A modified Riemannian BFGS method

For partly smooth functions, a stationary point can not be specified by the norm of the gradient.

Clarke generalized the notion of gradient for partly smooth functions [28]. Recall that if G : Rn → R

is a locally Lipschitz function, the Clarke generalized directional derivative of G at the point x ∈ Rn

in the direction v, denoted by G◦(x; v), is defined by

G◦(x; v) = lim sup
y→x,t↓0

G(y + tv)−G(y)

t
.

The generalized subdifferential of G at x, denoted by ∂G(x), is defined as the set

∂G(x) := {ξ ∈ X : 〈ξ, v〉 ≤ G◦(x; v) for all v ∈ Rn}.

Clarke defines the generalized stationary point to be x? where G◦(x?; v) ≥ 0 for all v ∈ Rn.

Let f :M→ R be a locally Lipschitz function on a Riemannian manifold M. For x ∈ M, let

f̂x = f ◦ Rx denote the restriction of the pullback f̂ = f ◦ R to TxM. The Clarke generalized

directional derivative of f at x in the direction p ∈ TxM, denoted by f◦(x; p), is defined by

f◦(x; p) = f̂◦x(0x; p), where f̂◦x(0x; p) denotes the Clarke generalized directional derivative of f̂x :

TxM→ R at 0x in the direction p ∈ TxM. Therefore, the generalized subdifferential of f at x is
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defined by ∂f(x) = ∂f̂x(0x). A point is a stationary point of f if 0 ∈ ∂f(x). A necessary condition

that f achieves a local minimum at x is that x is a stationary point of f .

A Riemannian BFGS has been modified for nonsmooth functions on a manifold in [46, Section

7.3]. The two most important modifications are related to the line search algorithm and the stopping

criterion. A nonsmooth Armijo condition is used to ensure a sufficient decrease in the objective

function and a nonsmooth curvature condition is used to rule out unacceptably small stepsize.

Definition 4.2.1 (Armijo condition). Let f :M→ R be a locally Lipschitz function on a Rieman-

nian manifold M with a retraction R, x ∈ M and p ∈ TxM. The stepsize α satisfies the Armijo

condition if the following inequality holds for constant c1 ∈ (0, 1)

f(Rx(αp))− f(x) ≤ c1αf
◦(x; p). (4.2.1)

Definition 4.2.2 (Curvature condition). The stepsize α satisfies the curvature condition if the

following inequality holds for constant c2 ∈ (c1, 1),

sup
ξ∈∂f(Rx(αp))

〈ξ, 1

βαp
Tx→Rx(αp)(p)〉 ≥ c2f

◦(x; p), (4.2.2)

where c1 is the Armijo constant, βαp = ‖αp‖/‖TRαp(αp)‖.

Lemma 4.2.1. Let f :M→ R be a locally Lipschitz function on a Riemannian manifold M and

the function W defined by

W (α) := f(Rx(αp))− f(x)− c2αf
◦(x; p), (4.2.3)

where c2 ∈ (c1, 1), x ∈ M and p ∈ TxM, be increasing on a neighborhood of some α0, then α0

satisfies the curvature condition.

Definition 4.2.3 (Wolfe condition). Let f :M→ R be a locally Lipschitz function and p ∈ TxM.

We say α satisfies the Wolfe condition if it satisfies the Armijo and curvature conditions.

A line search algorithm satisfying the Wolfe condition for partly smooth functions is proposed

in [45] and is summarized in Algorithm 10. A modified RBFGS based on the line search 10 is given

in Algorithm 12.

The modified RBFGS makes an assumption that the cost function is differentiable at all the

iterates and thus the search direction is the same as the RBFGS for smooth cost functions. However,
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for partly smooth functions, we cannot expect the norm of gradients go to zero. A modification to

the stopping criterion is as follows.

Let J be a positive integer which is larger than the dimension of the manifold. Define j0 = 1,

G0 = {grad f0} and, for k = 1, 2, . . . define

• jk = 1, Gk = {grad fk} if ‖Rx−1
k−1

(xk)‖ > ε,

• jk = jk+1 +1, Gk = {grad f
(k)
k−jk+1, . . . , grad f

(k)
k−1, grad f

(k)
k } if ‖Rx−1

k−1
(xk)‖ ≤ ε, and jk−1 < J ,

• jk = J , Gk = {grad f
(k)
k−J+1, . . . , grad f

(k)
k−1, grad f

(k)
k } if ‖Rx−1

k−1
(xk)‖ ≤ ε, and jk−1 < J ,

where grad f
(j)
i = TR−1

xi
(xj)

grad f(xi). Gk is a set of gradients evaluated at points near xk. The

modified RBFGS stops if the shortest length vector in the convex hull of Gk, i.e., dk = arg min{‖d‖ :

d ∈ convGk}, is sufficiently small.

Algorithm 10 A line search algorithm for partly smooth function; α = Line(x, p, g, P, c1, c2)

Input: x ∈M, a descent direction p ∈ TxM with p = −Pg, where g ∈ ∂εf(x) and P is a positive

definite matrix and c1 ∈ (0, 1), c2 ∈ (0, 1), a, b ∈ R.

1: Set α0 = 0, αmax < l(M), α1 = 1, i = 1;

2: repeat

3: Evaluate A(αi) = f(Rx(αip))− f(x)− c1αi〈p, g〉;
4: if A(αi) > 0 then

5: α must be obtained by Zoom(x, p, g, P, αi−1, αi, c1, c2);

6: Stop;

7: end if

8: Compute ξ ∈ ∂f(Rx(αip));

9: if 〈ξ, 1
βαip
Tx→Rx(αip)(p)〉 ≥ c2〈p, g〉 then

10: α = αi;

11: Stop;

12: else

13: αi+1 = min(2αi, αmax);

14: end if

15: i = i+ 1;

16: end(repeat)
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Algorithm 11 α = Zoom(x, p, g, P, a, b, c1, c2)

Input: x ∈M, a descent direction p ∈ TxM with p = −Pg, where g ∈ ∂εf(x) and P is a positive

definite matrix and c1 ∈ (0, 1), c2 ∈ (0, 1), a, b ∈ R.

1: i = 1, a1 = a, b1 = b;

2: repeat

3: αi = ai+bi
2 ;

4: Evaluate A(αi) = f(Rx(αip))− f(x)− c1αi〈p, g〉;
5: if A(αi) > 0 then

6: ai+1 = ai, bi+1 = αi;

7: else

8: Compute ξ ∈ ∂f(Rx(αip));

9: if 〈ξ, 1
βαip
Tx→Rx(αip)(p)〉 ≥ c2〈p, g〉 then

10: α = αi;

11: Stop;

12: else

13: ai+1 = αi, bi+1 = bi;

14: end if

15: end if

16: i = i+ 1;

17: end(repeat)

4.2.3 A modified limited-memory Riemannian BFGS method

To adapt LRBFGS for partly smooth functions, we make similar modifications to smooth

LRBFGS as RBFGS in Section 4.2.2. A modified LRBFGS is given in Algorithm 13.

4.2.4 A nonsmooth Riemannian BFGS method

Recently, a version of nonsmooth Riemannian BFGS method is proposed in [45, Algorithm 8].

The main difference between the modified RBFGS in Algorithm 12 and the nonsmooth RBFGS is

the search direction, see [45] for details. We present the nonsmooth RBFGS in Algorithm 15.

4.2.5 A nonsmooth limited-memory Riemannian BFGS method

We also consider a nonsmooth version of limited-memory RBFGS, which is given in Algo-

rithm 16. As we know, LRBFGS is appropriate for large-size problems. However, the nonsmooth

0If the locking condition is imposed, then y
(k+1)
k = grad f(xk+1)/βk − Tαkηk grad f(xk), where βk =

‖αkηk‖/‖TRαkηkαkηk‖.
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Algorithm 12 A modified RBFGS algorithm [46, Section 7.3]

Input: A starting point x1 ∈M, P1 = I, Wolfe condition constants c1 ∈ (0, 1), c2 ∈ (c1, 1);

1: k = 1;

2: Compute gk ∈ ∂f(xk);

3: repeat

4: pk = −Pkgk;
5: Set xk+1 = Rxk(αkpk) where αk > 0 is computed from the line search procedure to satisfy

the Wolfe conditions using Algorithm 10

αk = Line(xk, pk, gk, Pk, c1, c2);

6: Set xk+1 = Rxk(αkpk);

7: Compute gk+1 ∈ ∂f(xk+1);

8: Define sk := TSαkpk (αkpk), yk := 1
βαkpk

gk+1 − TSαkpk (gk), sk := sk + max(0, 1
Λ −

s[kyk
y[kyk

);

9: Define the linear operator Pk+1 : Txk+1
M→ Txk+!

M by

Pk+1 = V[kP̃kVk + ρksks
[
k, (4.2.4)

where ρk = 1/g(yk, sk), Vk = id−ρkyks[k and P̃k = TSαkpk ◦ Pk ◦ T
−1
Sαkpk

;

10: k = k + 1;

11: end(repeat)

LRBFGS loses some of its appeal, since it requires solving a convex hull problem.

4.3 Numerical experiments

In this section, we compare the performances of different algorithms on various data sets, includ-

ing the Riemannian Endre Weiszfeld’s algorithm (EW) in Algorithm 8, the smooth RBFGS com-

bined with the Wolfe line search (RBFGS-Wolfe), the smooth LRBFGS combined with the Wolfe

line search (LRBFGS-Wolfe), the modified RBFGS for partly smooth functions (RBFGS-WolfeLP)

in Algorithm 12, the modified LRBFGS for partly smooth functions (LRBFGS-WolfeLP) in Algo-

rithm 13, the nonsmooth RBFGS in Algorithm 15 (NS-RBFGS), and the nonsmooth LRBFGS in

Algorithm 16 (NS-LRBFGS).

For simplicity of notation, throughout this section we denote the number, dimension, and

condition number of the matrices by K, n, and κ respectively. Regarding the parameter setting,

we set Wolfe parameter c1 = 10−4 and c2 = 0.999. For the modified RBFGS and LRBFGS, ε and
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J are set to be 10−6 and 2d, where d = n(n+1)/2 is the dimension of Sn
++. The parameters for the

nonsmooth RBFGS and LRBFGS are set as follows: ε1 = 10−2, δ1 = 10−4, θε = 10−2, θδ = 10−2,

λ = 10−2, Λ = 102. For three versions of LRBFGS, we take m = 2. Unless otherwise specified,

our choice of the initial iterate is the arithmetic-harmonic mean of data matrices. We run the

algorithms until they reach their highest accuracy. This allows the algorithms to reach the noise

floor after enough iterations.

All experiments are performed on the Florida State University HPC system with 24 Intel(R)

Xeon(R) CPU E5-2680 v3 processor 2.5GHz. All the experiments are carried out using C++,

compiled with gcc-4.7.x.

4.3.1 Comparison of performances between different algorithms for SPD
Riemannian median computation

As a first test, we investigate the performance of all 7 algorithms for Riemannian median com-

putation on datasets with different distributions. We will observe that the performance algorithms

is influenced by the distributions of datasets. For each setting of parameters, 50 random runs with

the same seeds are used. The test datasets {A1, . . . , AK} are constructed as follows.

I. Generate 100 data matrices that belong to a small ball B(I, r) of radius r centered at the

identity matrix I. More specifically, A′is are generated as follows:

a. Generate symmetric matrices ηi ∈ TI(Sn
++);

b. Normalize ηi = ηi/‖ηi‖;

c. Ai = ExpO(tηi), t ∈ (0, 1).

II. Generate 100 data matrices that belong to a small ball B(O, r), where O is a random ill-

conditioned matrix with condition number around 105.

III. Generate 95 well-conditioned random matrices with condition number less than 10, and add

5 ill-conditioned random matrices with condition number around 105 as outliers.

IV. Generate 95 ill-conditioned random matrices with condition number around 105, and add 5

well-conditioned random matrices with condition number around 1 as outliers.

V. Generate 100 random matrices that are separated into 4 clusters, and each cluster contains

25 matrices. More specifically, A′is are generated as follows:

a. Generate 4 random matrices Oc that are away from each other, and the between-cluster

distance is between 5 and 100.
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b. For each Oc, generate 25 random matrices that belong to B(Oc, r), and the within-cluster

distance is between 10−2 and 10−3.

Figure 4.3-4.5 display the performance results of different algorithms running on small dimension

matrices with K = 100 and n = 3. Figure 4.3 reports the results tested on data matrices that

belong to a ball B(O, r) with radius r = 0.1. That is, δ(Ai, O) ≤ 0.1 for i = 1, . . . ,K. The center

O is the identity matrix for the two plots on the top row and O is an ill-conditioned matrix with

κ = 105 for the two plots on the bottom row. We observe that the smooth RBFGS and modified

RBFGS perform similarly, as well as LRBFGS. Even though the nonsmooth RBFGS requires similar

number of iterations as RBFGS and modified RBFGS, it requires much more time. One major time

consuming factor is the requirement of solving a convex hull problem. The nonsmooth LRBFGS

performs poorly in terms of both number of iterations and computation time. The performance

the Riemannian Weiszfeld’s algorithm is outperformed by the smooth and modified quasi-Newton

algorithms, but better than the nonsmooth versions.
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Figure 4.3: Evolution of averaged distance between current iterate and the exact Rieman-
nian median with respect to time and iterations for K = 100 and n = 3. Top row: Ai’s
belong to a small ball B(I, r) centered at the identity matrix; Bottom row: Ai’s belong
to a small ball centered at an ill-conditioned matrix.

Figure 4.4 reports the results tested on datasets in presence of outliers. For the two plots on the

top row, the dataset contains 95 well-conditioned matrices with 1 ≤ κ(Ai) ≤ 2 and 5 ill-conditioned
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outliers with 104 ≤ κ ≤ 106. For the two plots on the bottom row, the dataset contains 95 ill-

conditioned matrices with 104 ≤ κ(Ai) ≤ 106 and 5 well-conditioned outliers with 1 ≤ κ(Ai) ≤ 2.

In both cases, the nonsmooth RBFGS and LRBFGS are outperformed by the other 5 algorithms

in terms of computation time. It is also observed that in the presence of outliers, the smooth

LRBFGS and modified LRBFGS are preferred than RBFGS in terms of both number of iterations

and computation time. Even though the size of matrices is small (n = 3), it turns out that going

for limited-memory version offers a computational advantage.

Figure 4.5 reports the results tested on dataset in which matrices are clustered into 4 groups.

Each cluster contains 25 matrices. It is observed that the Riemannian Weiszfeld’s algorithm requires

a significantly large number of iterations to converge. The modified LRBFGS is clearly the winner

in terms of number of iterations and computation time.
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Figure 4.4: Evolution of averaged distance between current iterate and the exact Rieman-
nian median with respect to time and iterations for K = 100 and n = 3. Top row: well
conditioned Ai’s with 5% ill-conditioned outliers; Bottom row: ill conditioned Ai’s with
5% well-conditioned outliers.

Figure 4.6-4.8 display the performance of results of different algorithms running on large size

matrices, i.e., taking (K = 100, n = 100). We did not compare two nonsmooth quasi-Newton

algorithms, since solving a convex hull problem in high dimension space is very memory consuming
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Figure 4.5: Evolution of averaged distance between current iterate and the exact Rie-
mannian median with respect to time and iterations for K = 100 and n = 3. Ai’s are
separated into 4 clusters.

and time consuming. Note that when n = 100, the dimension of Sn
++ is d = n(n + 1)/2 = 5050.

We also test the algorithms on 5 different distributed datasets as the case of n = 3.

When all the data matrices belong to a ball, it is observed from Figure 4.6 that the initial

iterate is very close to the true solution. 4 Riemannian optimization algorithms reach their noise

floors in just a few steps, while the Riemannian Weiszfeld’s algorithm requires much larger number

of iterations. In terms of computation time, the RBFGS and its modified version requires much

more time than that of limited-memory versions. Among two versions of LRBFGS, the smooth one

requires the least computation time.

Figure 4.7 displays the results from datasets containing outliers. The convergence behavior of

the algorithms is very similar as that displayed in Figure 4.4 where n = 3. However, the computation

time of the smooth RBFGS and modified RBFGS increases dramatically. In Figure 4.8, the data

matrices are clustered into 4 groups. It is observed that the Riemannian Weiszfeld’s algorithm

requires a large number of iterations to converge. Even though RBFGS requires similar number of

iterations as LRBFGS, RBFGS takes much more time. It is shown empirically that LRBFGS is

appropriate for large-size problems.

4.3.2 Comparison of performances between different algorithms for SPD
LogDet α-divergence median computation

As a second test, we investigate the performance of all 7 algorithms for SPD LogDet α-divergence

median computation. Different values of α are considered. The experiments are designed in the

same way as Section 4.3.1. We use the same datasets as in Section 4.3.1.
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Figure 4.6: Evolution of averaged distance between current iterate and the exact Rieman-
nian median with respect to time and iterations for K = 100 and n = 100. Top row: Ai’s
belong to a small ball B(I, r) centered at the identity matrix; Bottom row: Ai’s belong
to a small ball centered at an ill-conditioned matrix.
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Figure 4.7: Evolution of averaged distance between current iterate and the exact Rieman-
nian median with respect to time and iterations for K = 100 and n = 100. Top row: well
conditioned Ai’s with 5% ill-conditioned outliers; Bottom row: ill conditioned Ai’s with
5% well-conditioned outliers.
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Figure 4.8: Evolution of averaged distance between current iterate and the exact Rie-
mannian median with respect to time and iterations for K = 100 and n = 100. Ai’s are
separated into 4 clusters.

Figure 4.9-4.11 report the results of tests conducted on datasets with K = 100, n = 3 and α = 0.

For Riemannian quasi-Newton algorithms, the numerical results are similar with what we observed

in the computation of Riemannian median in previous section. However, it is observed that the

Riemannian Weiszfeld’s procedure fails to converge in a large number of numerical experiments.

When the data matrices belong to a ball as shown in Figure 4.9, we observe that the smooth

RBFGS and modified RBFGS perform similarly, which is also the case for LRBFGS. Even though

the nonsmooth RBFGS requires similar number of iterations as RBFGS and modified RBFGS, it

requires much more time. The nonsmooth LRBFGS performs poorly in terms of both number of

iterations and computation time. When the data matrices are centered at the identity matrix, those

4 algorithms are competitive. When the data matrices are centered at an ill-conditioned matrix, we

observe a slight advantage for the smooth RBFGS and the modified RBFGS as they reach a higher

accuracy than LRBFGS. In the presence of outliers as shown in Figure 4.10, the smooth LRBFGS

and the modified LRBFGS win over RBFGS in terms of number of iterations and computation

time. When the data matrices are clustered into 4 clusters, the smooth LRBFGS and the modified

LRBFGS are still the winner.

More experiment results for α = −0.5 and α = 0.5 are given in Figure 4.12 and Figure 4.12.

4.3.3 Comparison between Riemannian means and medians

As the last experiment, we use tensor data, i.e., 3× 3 SPD matrices to illustrate the robustness

of the Riemannian median. A tensor can be visualized as an ellipsoid, whose axes point along the

eigenvectors and the lengths of the axes are given by the corresponding eigenvalues. For tensor
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Figure 4.9: Evolution of averaged distance between current iterate and the exact LogDet
α-divergence median with respect to time and iterations for K = 100 and n = 3. Top
row: Ai’s belong to a small ball B(I, r) centered at the identity matrix; Bottom row: Ai’s
belong to a small ball centered at an ill-conditioned matrix.
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Figure 4.10: Evolution of averaged distance between current iterate and the exact LogDet
α-divergence median with respect to time and iterations for K = 100 and n = 3. Top
row: well conditioned Ai’s with 5% ill-conditioned outliers; Bottom row: ill conditioned
Ai’s with 5% well-conditioned outliers.
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Figure 4.11: Evolution of averaged distance between current iterate and the exact LogDet
α-divergence median with respect to time and iterations for K = 100 and n = 3. Ai’s are
separated into 4 clusters.

visualization, we resort to the fanDTasia ToolBox1 developed by [14]. The tensors are colored based

on the direction of the major eigenvector, i.e., eigenvector associated with the largest eigenvalue.

The color brightness is a measure of tensor anisotropy. That is, more brightness implies more

anisotropy.

For each test, we generate 50 random 3× 3 SPD matrices as following:

• Generate random orthonormal matrix O, whose columns are eigenvectors for Ai. Note that

we use the same eigenvectors O for each Ai.

• Generate eigenvalues for each Ai with Di = (λ1, λ2, λ3) ∼ N (λ̄, σ2I).

• Compute Ai = ODiO
T .

• Add Gaussian noise to the Cholesky factor of Ai = LiL
T
i , i.e., L̃i = Li + Ei

• Compute Ai = L̃iL̃
T
i .

Numerical experiments I. For the original data tensors, we take mean λ̄ = (4, 1, 1) and

standard deviation σ = 0.2. We generate outliers whose eigenvalues follow the same distribution

as the original data but the major eigenvector is perpendicular to that of the original tensors. The

original dataset contains 50 tensors. We compute the Riemannian medians and means of the tensor

dataset with 0, 1, 5, 10, 25, and 50 outliers. (When 50 outliers are added to the dataset, they are

not outliers anymore.) The results are displayed in Table 4.2. Shown in the top row of Table 4.2

are 5 samples of the original dataset (green) and 5 samples of the outliers (red). The resulting

means and medians are colored in yellow.

1https://www.mathworks.com/matlabcentral/fileexchange/26997-fandtasia-toolbox
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We can observe that the median is very robust to outliers. It preserves the shape of original

tensors. As we are adding more and more outliers, such as 25, the shape of the median still preserves

the shape of the major tensor group. The shape of the mean has been influenced.

Table 4.2: Comparison of the Riemannian medians and means for 3 × 3 SPD matrices
based on the geodisic distance δR and the log-determinant α-divergence δLD,α with α = 0
and α = 0.5. Shown in the top row are 5 samples of the original dataset (green) and
5 samples of the outliers (red). The major eigenvectors of the original tensors and the
outliers are perpendicular to each other. The resulting means and medians are colored in
yellow.

outliers 0 1 5 10 25 50

δR

Median

Mean

δLD,0

Median

Mean

δLD,0.5

Median

Mean

Numerical experiments II. In the second experiment, we generate tensors in a similar

way. We generate 50 well-conditioned tensors with mean λ̄ = (5, 4, 4) and standard deviation
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σ = 0.2. Then we generate ill-conditioned outliers with mean λ̄ = (20, 1, 105) and the same

standard deviation. The results are displayed in Table 4.3. Notice that the color of the outliers

in Table 4.3 become very dark since they are ill-conditioned. As we are adding more and more

ill-conditioned outliers, the median stays well conditioned.

Table 4.3: Comparison of the Riemannian medians and means for 3 × 3 SPD matrices
based on the geodisic distance δR, and the log-determinant α-divergence δLD,α with α = 0
and α = 0.5. Shown in the top row are 5 samples of the original dataset (green) and
5 samples of the outliers (red). The original tensors are well-conditioned with condition
number ≤ 2, while the outliers are ill-conditioned with condition number ≈ 105. The
resulting means and medians are colored in yellow.

outliers 0 1 5 10 25 50

δR

Median

Mean

δld,0

Median

Mean

δld,0.5

Median

Mean
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4.4 Conclusions

In this chapter, we consider computing the median of a collection of SPD matrices based on

the Riemannian geodesic distance and the log-determinant α-divergence. We exploit 3 versions

of Riemannian quasi-Newton algorithms to handle this computational task, including the smooth

version, the modified version and the nonsmooth version. We empirically and systematically in-

vestigate the performance of proposed Riemannian optimization algorithms and compare with the

state-of-the-art Riemannian Weiszfelds method. We examine the performance results of compared

algorithms on various datasets with different distributions and various choices of (K,n, κ). For the

SPD Riemannian median computation, the smooth version of LRBFGS appears to be the method

of choice in all cases. For the SPD LogDet α-divergence-based median computation, the modified

LRBFGS performs the best.
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Algorithm 13 A modified LRBFGS algorithm

Input: A starting point x1 ∈ M, P1 = I, Wolfe condition constants c1 ∈ (0, 1), c2 ∈ (c1, 1), an

integer m > 0;

1: k = 0, γ0 = 1, l = 0;

2: Compute gk ∈ ∂f(xk);

3: repeat

4: H0
k = γk id. Obtain pk ∈ TxkM by the following algorithm, Step 5 to Step 13:

5: q ← gk;

6: for i = k − 1, k − 2, . . . , k − l do

7: ξi ← ρig(s
(k)
i , q); q ← q − ξiy(k)

i ;

8: end for

9: r ← H0
kq;

10: for i = k − l, k − l + 1, . . . , k − 1 do

11: ω ← ρig(y
(k)
i , r);

12: r ← r + s
(k)
i (ξi − ω);

13: end for

14: Set pk = −r;
15: Set xk+1 = Rxk(αkpk) where αk > 0 is computed from the line search procedure to satisfy

the Wolfe conditions using Algorithm 10

αk = Line(xk, pk, gk, Pk, c1, c2);

16: Set xk+1 = Rxk(αkpk);

17: Compute gk+1 ∈ ∂f(xk+1);

18: Define s
(k+1)
k = Tαkηkαkηk, y

(k+1)
k = 1

βαkpk
gk+1 − Tαkηkgk, sk := sk + max(0, 1

Λ −
s[kyk
y[kyk

);

19: Compute a = g(y
(k+1)
k , s

(k+1)
k ) and b = ‖s(k+1)

k ‖2;

20: if a
b ≥ λ then

21: Compute c = ‖y(k+1)
k ‖2 and define ρk = 1/a and γk+1 = a/c;

22: Add s
(k+1)
k , y

(k+1)
k and ρk into storage and if l ≥ m, then discard vector pair

{s(k)
k−l, y

(k)
k−l} and scalar ρk−l from storage, else l ← l + 1; Transport s

(k)
k−l+1, s

(k)
k−l+2, . . . , s

(k)
k−1

and y
(k)
k−l+1, y

(k)
k−l+2, . . . , y

(k)
k−1 from TxkM to Txk+1

M by T , then get s
(k+1)
k−l+1, s

(k+1)
k−l+2, . . . , s

(k+1)
k−1

and y
(k+1)
k−l+1, y

(k+1)
k−l+2, . . . , y

(k+1)
k−1 ;

23: else

24: Set γk+1 ← γk, {ρk, . . . , ρk−l+1} ← {ρk−1, . . . , ρk−l}, {s
(k+1)
k , . . . , s

(k+1)
k−l+1} ←

{Tαkηks
(k)
k−1, . . . , Tαkηks

(k)
k−l} and {y(k+1)

k , . . . , y
(k+1)
k−l+1} ← {Tαkηky

(k)
k−1, . . . , Tαkηky

(k)
k−l};

25: end if

26: k = k + 1;

27: end(repeat)
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Algorithm 14 A descent direction algorithm [45]; (gk, pk) = Descent(x, δ, c, ε, P ).

Input: x ∈M, δ > 0, c ∈ (0, 1), 0 < ε < l(M) and a positive definite matrix P .

1: Select arbitrary v ∈ ∂εf(x);

2: Set W1 = {v}, k = 1;

3: Step 1: (Compute a descent direction)

4: Solve the following minimization problem

gk = arg min
v∈convWk

〈Pv, v〉;

5: if ‖gk‖2 ≤ δ then Stop;

6: else

7: Let pk = −Pgk;
8: end if

9: Step 2: (Stopping condition)

10: if f(Rx(
εpk
‖pk‖

))− f(x) ≤ −cε〈Pgk, gk〉
‖pk‖

then Stop;

11: end if

12: Step 3: (Find a vector vk+1 ∈ ∂εf(x), which can be added to Wk)

13: t← b
‖pk‖ , ε←

ε
‖pk‖ , a← 0;

14: while 〈v, 1
βtpk
Tx→Rx(tpk)(pk)〉+ c〈Pgk, gk〉 ≥ 0 do

15: select v ∈ ∂f(Rx(tpk));

16: if 〈v, 1
βtpk
Tx→Rx(tpk)(pk)〉+ c〈Pgk, gk〉 < 0 then

17: t = a+b
2 ;

18: Evaluate h(t) = f(Rx(tpk))−f(x)+ ct〈Pgk, gk〉, h(b) = f(Rx(bpk))−f(x)+ cb〈Pgk, gk〉;
19: if h(b) > h(t) then

20: a = t

21: else

22: b = t

23: end if

24: end if

25: end while

26: vk+1 = β−1
tpk
Tx←Rx(tpk)(v), Wk+1 = Wk ∪ {vk+1}, k = k + 1. Go to Step 1.
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Algorithm 15 A nonsmooth Riemannian BFGS algorithm [45]

Input: A starting point x1 ∈ M, c1 ∈ (0, 1), c2 ∈ (c1, 1), θε, θδ ∈ (0, 1), δ1 > 0, ε1 ∈ (0, l(M)),

k = 1, P1 = I, a bound 1/Λ > 0 on
y[ksk
y[kyk

and λ on
s[kyk
s[ksk

1: Step 1: (Set new parameters) s = 1, xsk = xk and P sk = Pk;

2: Step 2: (Descent direction) (gsk, p
s
k) = Descent(xsk, δk, c1, εk, P

s
k )

3: if ‖gsk‖ = 0 then Stop;

4: end if

5: if ‖gsk‖2 ≤ δk then

6: set εk+1 = εkδε, δk+1 = δkθδ, xk+1 = xsk, Pk+1 = P sk , k = k + 1. Go to Step 1;

7: else

8:

α = Line(xsk, p
s
k, g

s
k, P

s
k , c1, c2)

and construct the next iterate xs+1
k = Rxsk(αpsk), ξk ∈ ∂f(xs+1

k ) and define sk :=

Txsk→Rxsk (αpsk)(αp
s
k), yk := 1

βαps
k

ξk − Txsk→Rxsk (αpsk)(gk), sk := sk + max(0, 1
Λ −

s[kyk
y[kyk

);

9: if
s[kyk
s[ksk
≥ λ then Update

P s+1
k = V[kP̃ skVk + ρksks

[
k, (4.2.5)

where ρk = 1/g(yk, sk) and Vk = id−ρkyks[k;
10: else

11: P s+1
k = I;

12: end if

13: Set s = s+ 1 and go to Step 2;

14: end if
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Algorithm 16 A nonsmooth limited-memory Riemannian BFGS algorithm

Input: A starting point x1 ∈ M, c1 ∈ (0, 1), c2 ∈ (c1, 1), θε, θδ ∈ (0, 1), δ1 > 0, ε1 ∈ (0, l(M)),

k = 1, P1 = I, a bound 1/Λ > 0 on
y[ksk
y[kyk

and λ on
s[kyk
s[ksk

1: Step 1: (Set new parameters) s = 1, xsk = xk and P sk = Pk;

2: Step 2: (Descent direction) (gsk, p
s
k) = Descent(xsk, δk, c1, εk, P

s
k )

3: if ‖gsk‖ = 0 then Stop;

4: end if

5: if ‖gsk‖2 ≤ δk then

6: set εk+1 = εkδε, δk+1 = δkθδ, xk+1 = xsk, Pk+1 = P sk , k = k + 1. Go to Step 1;

7: else

8:

α = Line(xsk, p
s
k, g

s
k, P

s
k , c1, c2)

and construct the next iterate xs+1
k = Rxsk(αpsk), ξk ∈ ∂f(xs+1

k ) and define sk :=

Txsk→Rxsk (αpsk)(αp
s
k), yk := 1

βαps
k

ξk − Txsk→Rxsk (αpsk)(gk), sk := sk + max(0, 1
Λ −

s[kyk
y[kyk

);

9: if
s[kyk
s[ksk
≥ λ then Update

P s+1
k = Ṽ[kṼ[k−1 . . . Ṽ[k−mH̃0

k+1Ṽk−m · · · Ṽk−1Ṽk (4.2.6)

+ ρk−mṼ[kṼ[k−1 · · · Ṽ[k−m+1Ṽ[k−1s
(k+1)
k−m s

(k+1)
k−m Ṽk−m+1 · · · Ṽk−1Ṽk (4.2.7)

+ · · ·+ ρks
(k+1)
k s

(k+1)
k , (4.2.8)

where ρk = 1/g(yk, sk), Ṽi = id− ρky
(k+1)
i s

(k+1)[
i , s

(k+1)
i ∈ Txk+1

M is given by transporting si

and likewise for y
(k+1)
i ;

10: else

11: P s+1
k = I;

12: end if

13: Set s = s+ 1 and go to Step 2;

14: end if
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Figure 4.12: Evolution of averaged distance between current iterate and the exact LogDet
α-divergence median with respect to time and iterations for K = 100 and n = 3. Row
1: Ai’s belong to a small ball B(I, r) centered at the identity matrix; Row 2: Ai’s belong
to a small ball centered at an ill-conditioned matrix; Row 3: well conditioned Ai’s with
5% ill-conditioned outliers; Row 4: ill conditioned Ai’s with 5% well-conditioned outliers;
Row 5: Ai’s are separated into 4 clusters.
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Figure 4.13: Evolution of averaged distance between current iterate and the exact LogDet
α-divergence median with respect to time and iterations for K = 100 and n = 3. Row
1: Ai’s belong to a small ball B(I, r) centered at the identity matrix; Row 2: Ai’s belong
to a small ball centered at an ill-conditioned matrix; Row 3: well conditioned Ai’s with
5% ill-conditioned outliers; Row 4: ill conditioned Ai’s with 5% well-conditioned outliers;
Row 5: Ai’s are separated into 4 clusters.
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CHAPTER 5

L∞ RIEMANNIAN CENTER OF MASS

COMPUTATION ON Sn++

5.1 Introduction

Given a set of SPD matrices {A1, . . . , AK}, their L∞ Riemannian center of mass—also termed

minimax center in [9]—is defined as the point minimizing the maximum dissimilarity δ to the point

set

µ∞ = arg min
X∈Sn++

max
1≤i≤K

δ(Ai, X), (5.1.1)

where δ is a distance or a divergence. This problem is also known as the smallest enclosing ball

problem, the minimum enclosing ball problem, 1-center problem or the minimax optimization

problem.

In the Euclidean space, finding the unique smallest enclosing ball of a finite point set {a1, . . . , aK}

is a classical problem of computational geometry and a fast and simple iterative procedure has been

proposed in [9]. The procedure is extended to arbitrary Riemannian manifold in [9] with a study of

the convergence rate. The existence and uniqueness of the minimax center defined in (5.1.1) have

been studied in [3, 4, 9]. Most recently, the SPD minimax center is used to denoise tensor images

in [7].

In this chapter, we utilize the modified Riemannian quasi-Newton methods and the nonsmooth

Riemannian quasi-Newton method discussed in previous chapter to compute the SPD minimax

center based on the geodesic distance and the LogDet α-divergence.

The main contributions of this dissertation for the SPD minimax center computation are:

• Exploit the modified Riemannian quasi-Newton algorithms and the nonsmooth versions of

Riemannian quasi-Newton algorithms for SPD minimax center computation.

• Empirically and systematically investigate the performance of proposed algorithms, and com-

pare with the state-of-the-art procedure in [9].

• Investigate the SPD minimax center based on the log-determinant α-divergence.
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5.2 Description of the SPD minmax center computation methods

In this section, we present algorithms for SPD minimax center computation.

5.2.1 The classical Arnaudon and Nielsen’s algorithm

In [11], Badoiu and Clarkson proposed an efficient and simple procedure to compute the minimax

center of a set of finite points {a1, . . . , aK} in Euclidean space:

- Initialize the minimax center x1 with an arbitrary point of {a1, . . . , aK}

- Iteratively update the center xk+1 = xk + (fk − ck)/(k + 1), where fk is the farthest point of

set {a1, . . . , aK} to ck.

Figure 5.1-5.3 illustrate Badoiu and Clarkson’s procedure in R2. For each figure, because of the

difficulty in seeing details in the leftmost plot near the minimizer, we zoom into the region near the

minimizer. The yellow circle denotes the data point. The green mark ∗ is the initial point and the

red mark ∗ is the final step. The yellow solid points are the intermediate iterates and the numbers

indicate the order. The blue line illustrates the path from one step to the next. It is observed

from Figure 5.1-5.3 that the sequence of iterates generated by Badoiu and Clarkson’s procedure is

bouncing back and forth near the minimizer.
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Figure 5.1: Illustration of Badoiu and Clarkson’s procedure to compute the minimax
center of 3 points in R2. From the left plot to the right plot, we zoom into the region near
the minimizer.

In [9], Arnaudon and Nielsen extended Badoiu and Clarkson’s procedure to arbitrary Rieman-

nian manifolds with a study of convergence rate. In nonpositive sectional curvature manifolds as

Sn
++, the convergence of this algorithm is guaranteed. We summarize Arnaudon and Nielsen’s

algorithm for SPD minimax center computation in Algorithm 17.
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Figure 5.2: Illustration of Badoiu and Clarkson’s procedure to compute the minimax
center of a set of points on a circle in R2. From the left plot to the right plot, we zoom
into the region near the minimizer.
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Figure 5.3: Illustration of Badoiu and Clarkson’s procedure to compute the minimax
center of a set of points separated into a few clusters in R2. From the left plot to the right
plot, we zoom into the region near the minimizer.

Algorithm 17 Arnaudon and Nielsen’s procedure for the SPD minimax center computation

Input: Ai; initial iterate x0 ∈ Sn
++;

1: k = 1;

2: repeat

3: Obtain the farthest matrix to the current iterate

Ā = arg max
1≤i≤K

δR(xk, Ai);

4: Compute ξk = Exp−1
xk

(Ā);

5: t = 1/(1 + k);

6: xk+1 = Expxk(tξk);

7: k = k + 1;

8: end(repeat)
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We extend Arnaudon and Nielsen’s procedure to compute the minimax center based on the

LogDet α-divergence, which is described in Algorithm 18.

Algorithm 18 Arnaudon and Nielsen’s procedure for the LogDet α-divergence-based minimax

center computation

Input: Ai; initial iterate x0 ∈ Sn
++;

1: k = 1;

2: repeat

3: Obtain the farthest matrix to the current iterate in terms of the LogDet α-divergence

Ā = arg max
Ai,1≤i≤K

δLD,α(xk, Ai);

4: Compute ξk = Exp−1
xk

(Ā);

5: t = 1/(1 + k);

6: xk+1 = Expxk(tξk);

7: k = k + 1;

8: end(repeat)

5.2.2 Riemannian optimization methods

We exploit the modified and nonsmooth quasi-Newton algorithms discussed in Section 4.2 to

compute the SPD minimax center. The detailed description of those algorithms are given in Sec-

tion 4.2. Here we provide the problem-related objects.

For the SPD Riemannian minimax center problem

µ∞ = arg min
X∈Sn++

f(X), with f : Sn
++ → R : X 7→ max

1≤i≤K
δR(Ai, X). (5.2.1)

The cost function f is not differentiable if there is a tie or X = Ai, i = 1, . . . ,K. Otherwise, f is

differentiable and its Riemannian gradient under the Riemannian metric is

grad f(X) = − 1

δ(Ai? , X)
Exp−1

X (Ai?), (5.2.2)

where Ai? = arg max1≤i≤K δ(Ai, X).

If we replace the Riemannian geodesic distance δR with the LogDet α-divergence δLD,α in

problem (5.2.1), we obtain the divergence-based minimax center. Note that instead of using δLD,α,

we use δ2
LD,α, since we have shown in Section 3.3.2 that δ2

LD,α is jointly geodesically convex.
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µα,∞ = arg min
X∈Sn++

fα(X), with fα : Sn
++ → R : X 7→ max

1≤i≤K
δ2

LD,α(Ai, X). (5.2.3)

The cost function fα is not differentiable if there is a tie. Otherwise, fα is differentiable and its

Riemannian gradient under the Riemannian metric is

grad fα(X) =
2

1− α
{X(

1− α
2

Ai? +
1 + α

2
X)−1X −X}, (5.2.4)

where Ai? = arg max1≤i≤K δLD,α(Ai, X).

5.3 Numerical experiments

In this section, we compare the performances of different algorithms on various data sets, in-

cluding the Arnaudon and Nielsen’s procedure (AN) in Algorithm 17, the modified RBFGS for

partly smooth functions (RBFGS-WolfeLP) in Algorithm 12, the modified LRBFGS for partly

smooth functions (LRBFGS-WolfeLP) in Algorithm 13, the nonsmooth RBFGS in Algorithm 15

(NS-RBFGS), the nonsmooth LRBFGS in Algorithm 16 (NS-LRBFGS), and the Riemannian gra-

dient sampling algorithm (RGS) in [46, section 7.2].

For simplicity of notation, throughout this section we denote the number, dimension, and

condition number of the matrices by K, n, and κ respectively. Regarding the parameter setting,

we set Wolfe parameter c1 = 10−4 and c2 = 0.999. For the modified RBFGS and LRBFGS, ε and

J are set to be 10−6 and 2d, where d = n(n+1)/2 is the dimension of Sn
++. The parameters for the

nonsmooth RBFGS and LRBFGS are set as follows: ε1 = 10−2, δ1 = 10−4, θε = 10−2, θδ = 10−2,

λ = 10−2, Λ = 102. For two versions of LRBFGS, we take m = 2. For the RGS, we take l = d+ 1.

Unless otherwise specified, our choice of the initial iterate is an arbitrary point of {A1, . . . , AK}.

We run the algorithms until they reach their highest accuracy. This allows the algorithms to reach

the noise floor after enough iterations.

All experiments are performed on the Florida State University HPC system with 24 Intel(R)

Xeon(R) CPU E5-2680 v3 processor 2.5GHz. All the experiments are carried out using C++,

compiled with gcc-4.7.x.
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5.3.1 Comparison of performances between different algorithms for SPD
Riemannian minimax center computation

As a first test, we investigate the performance of all 6 algorithms for SPD Riemannian minimax

center computation on datasets with different distributions as in Section 4.3.1. We observed that

the performance algorithms is influenced by the distributions of datasets. For each setting of

parameters, 50 random runs with the same seeds are used. The test datasets {A1, . . . , AK} are

constructed as follows.

I. Generate 100 data matrices that belong to a small ball B(I, r) of radius r centered at the

identity matrix I. More specifically, A′is are generated as follows:

a. Generate symmetric matrices ηi ∈ TI(Sn
++);

b. Normalize ηi = ηi/‖ηi‖;

c. Ai = ExpO(tηi), t ∈ (0, 1).

II. Generate 100 data matrices that belong to a small ball B(O, r), where O is a random ill-

conditioned matrix with condition number around 105.

III. Generate 95 well-conditioned random matrices with condition number less than 10, and add

5 ill-conditioned random matrices with condition number around 105 as outliers.

IV. Generate 95 ill-conditioned random matrices with condition number around 105, and add 5

well-conditioned random matrices with condition number around 1 as outliers.

V. Generate 100 random matrices that are separated into 4 clusters, and each cluster contains

25 matrices. More specifically, A′is are generated as follows:

a. Generate 4 random matrices Oc that are away from each other, and the between-cluster

distance is between 5 and 100.

b. For each Oc, generate 25 random matrices that belong to B(Oc, r), and the within-cluster

distance is between 10−2 and 10−3.

Figure 5.4-5.6 show the performance results of different algorithms tested on small dimension

matrices with K = 100 and n = 3. In Figure 5.4, the data matrices belong to a ball B(O, r) with

radius r = 0.1. That is, δ(Ai, O) ≤ 0.1 for i = 1, . . . ,K. The center O is the identity matrix for

the two plots on the top row and O is an ill-conditioned matrix with κ = 105 for the two plots

on the bottom row. When the data matrices are centered at the identity matrix, the condition
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number of matrices is between 1 and 103. We observe that the state-of-the-art AN procedure

is outperformed by the considered Riemannian optimization algorithms in terms of number of

iterations and computation time. We can also observe that the AN procedure converge very fast

in the early steps, but slows down after a number of steps. It is also observed that even though

RGS requires the least number of iterations per unit of accuracy required, it requires much more

computation time than the other Riemannian optimizations due to its cost in solving the quadratic

programming problem and a number of gradient evaluations in each iteration. In this case, the

modified LRBFGS is the winner in terms of computation time. When the data matrices are centered

at an ill-conditioned matrix, the condition number of data matrices is between 104 and 106. It is

observed that the modified LRBFGS failed to achieve a high accuracy, and the modified RBFGS

performs the best.
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Figure 5.4: Evolution of averaged distance between current iterate and the exact Rie-
mannian minimax center with respect to time and iterations for K = 100, n = 3. Top
row: Ai’s belong to a small ball B(I, r) centered at the identity matrix; Bottom row: Ai’s
belong to a small ball centered at an ill-conditioned matrix.

Figure 5.5 reports the results tested on datasets in presence of outliers. For the two plots on the

top row, the dataset contains 95 well-conditioned matrices with 1 ≤ κ(Ai) ≤ 2 and 5 ill-conditioned
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outliers with 104 ≤ κ ≤ 106. We observe that the modified RBFGS requires the least number of

iterations and computation time per unit of accuracy required. For the two plots on the bottom

row, the dataset contains 95 ill-conditioned matrices with 104 ≤ κ(Ai) ≤ 106 and 5 well-conditioned

outliers with 1 ≤ κ(Ai) ≤ 2. It is shown that the AN procedure converges very fast in the early

steps, but is outperformed by the modified RBFGS later. In both cases, the modified LRBFGS

cannot achieve a high accuracy.

Figure 5.6 reports the results tested on dataset in which matrices are clustered into 4 groups.

Each cluster contains 25 matrices. The modified RBFGS is clearly the winner in terms of number

of iterations and computation time.
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Figure 5.5: Evolution of averaged distance between current iterate and the exact Rieman-
nian minimax center with respect to time and iterations for K = 100 and n = 3. Top
row: well conditioned Ai’s with 5% ill-conditioned outliers; Bottom row: ill conditioned
Ai’s with 5% well-conditioned outliers.
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Figure 5.6: Evolution of averaged distance between current iterate and the exact Rieman-
nian minimax center with respect to time and iterations for K = 100 and n = 3. Ai’s are
separated into 4 clusters.

5.3.2 Comparison of performances between different algorithms for SPD
LogDet α-divergence minimax center computation

As a second test, we investigate the performance of 5 algorithms for SPD LogDet α-divergence

median computation. Different values of α are considered. We use the same datasets as in Sec-

tion 5.3.1.

Figure 5.7-5.9 report the results of tests conducted on datasets with K = 100, n = 3 and α = 0.

It is shown that the AN procedure fails to converge in a large number of numerical experiments for

α = 0. The performance of considered Riemannian optimization algorithms is very similar as what

we observed in the computation of Riemannian minimax center in previous section. The modified

RBFGS is still the winner, while its limited-memory version fails to converge.

More experiment results for α = −0.5 and α = 0.5 are given in Figure 5.10 and Figure 5.10.

5.3.3 Comparison between SPD Riemannian means, medians and minimax
centers

In this experiment, we use tensor data, i.e., 3 × 3 SPD matrices, to investigate the impact of

outliers on different Riemannian centers, including the mean, median, and minimax center. We can

observe that the outliers have the minimum impact on the median. However, the minimax center

is almost determined by the outliers.

A tensor can be visualized as an ellipsoid, whose axes point along the eigenvectors and the

lengths of the axes are given by the corresponding eigenvalues. For tensor visualization, we resort
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Figure 5.7: Evolution of averaged distance between current iterate and the exact LogDet
α-divergence minimax center with respect to time and iterations for K = 100 and n = 3.
Row 1: Ai’s belong to a small ball B(I, r) centered at the identity matrix; Row 2: Ai’s
belong to a small ball centered at an ill-conditioned matrix.
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Figure 5.8: Evolution of averaged distance between current iterate and the exact LogDet α-
divergence minimax center with respect to time and iterations for K = 100 and n = 3. Top
row: well conditioned Ai’s with 5% ill-conditioned outliers; Bottom row: ill conditioned
Ai’s with 5% well-conditioned outliers.
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Figure 5.9: Evolution of averaged distance between current iterate and the exact LogDet
α-divergence minimax center with respect to time and iterations for K = 100 and n = 3.
Ai’s are separated into 4 clusters.

to the fanDTasia ToolBox1 developed by [14]. The tensors are colored based on the direction of the

major eigenvector, i.e., eigenvector associated with the largest eigenvalue. The color brightness is

a measure of tensor anisotropy. That is, more brightness implies more anisotropy.

For each test, we generate 50 random 3× 3 SPD matrices as following:

• Generate random orthonormal matrix O, whose columns are eigenvectors for Ai. Note that

we use the same eigenvectors O for each Ai.

• Generate eigenvalues for each Ai with Di = (λ1, λ2, λ3) ∼ N (λ̄, σ2I).

• Compute Ai = ODiO
T .

• Add Gaussian noise to the Cholesky factor of Ai = LiL
T
i , i.e., L̃i = Li + Ei

• Compute Ai = L̃iL̃
T
i .

Dataset I. For the original data tensors, we take mean λ̄ = (4, 1, 1) and standard deviation

σ = 0.2. We generate outliers whose eigenvalues follow the same distribution as the original data

but the major eigenvector is perpendicular to that of the original tensors. The original dataset

contains 50 tensors. We compute the Riemannian medians and means of the tensor dataset with

0, 1, 5, 10, 25, and 50 outliers. (When 50 outliers are added to the dataset, they are not outliers

anymore.) The results are displayed in Table 5.1. Shown in the top row of Table 5.1 are 5 samples

of the original dataset (green) and 5 samples of the outliers (red). The resulting means and medians

are colored in yellow.

1https://www.mathworks.com/matlabcentral/fileexchange/26997-fandtasia-toolbox
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Table 5.1: Comparison of the Riemannian mean, median and minimax center for 3 × 3
SPD matrices based on the geodisic distance δR. Shown in the top row are 5 samples of
the original dataset (green) and 5 samples of the outliers (red). The major eigenvectors of
the original tensors and the outliers are perpendicular to each other. The resulting means
and medians are colored in yellow.

outliers 0 1 5 10 25 50

δR

Mean

Median

Circumcenter

Dataset II. In the second test, we generate tensors in a similar way. We generate 50 well-

conditioned tensors with mean λ̄ = (5, 4, 4) and standard deviation σ = 0.2. Then we generate

ill-conditioned outliers with mean λ̄ = (20, 1, 105) and the same standard deviation. The results

are displayed in Table 5.2. Notice that the color of the outliers in Table 5.2 become very dark since

they are ill-conditioned.

5.4 Conclusions

In this chapter, we consider computing the minimax center of a collection of SPD matrices

based on the Riemannian geodesic distance and the log-determinant α-divergence. We exploit the

modified version and the nonsmooth version of Riemannian quasi-Newton algorithms to handle

this computational task. We empirically and systematically investigate the performance of pro-

posed Riemannian quasi-Newton algorithms and compare with the state-of-the-art Arnaudon and

Nielsen’s procedure and Riemannian gradient sampling. We examine the performance results of
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Table 5.2: Comparison of the Riemannian mean, median and minimax center for 3 × 3
SPD matrices based on the geodisic distance δR. Shown in the top row are 5 samples
of the original dataset (green) and 5 samples of the outliers (red). The original tensors
are well-conditioned with condition number 2, while the outliers are ill-conditioned with
condition number 105. The resulting means and medians are colored in yellow.

outliers 0 1 5 10 25 50

δR

Mean

Median

Circumcenter

compared algorithms on various datasets with different distributions. Our numerical experiments

provide empirical guidelines to choose between various methods.
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Figure 5.10: Evolution of averaged distance between current iterate and the exact LogDet
α-divergence minimax center with respect to time and iterations for K = 100 and n = 3.
Row 1: Ai’s belong to a small ball B(I, r) centered at the identity matrix; Row 2: Ai’s
belong to a small ball centered at an ill-conditioned matrix; Row 3: well conditioned Ai’s
with 5% ill-conditioned outliers; Row 4: ill conditioned Ai’s with 5% well-conditioned
outliers; Row 5: Ai’s are separated into 4 clusters.
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Figure 5.11: Evolution of averaged distance between current iterate and the exact LogDet
α-divergence minimax center with respect to time and iterations for K = 100 and n = 3.
Row 1: Ai’s belong to a small ball B(I, r) centered at the identity matrix; Row 2: Ai’s
belong to a small ball centered at an ill-conditioned matrix; Row 3: well conditioned Ai’s
with 5% ill-conditioned outliers; Row 4: ill conditioned Ai’s with 5% well-conditioned
outliers; Row 5: Ai’s are separated into 4 clusters.
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CHAPTER 6

APPLICATIONS

In this chapter, we present two applications that require averaging SPD matrices, and compare the

performance of different averaging techniques studied in Chapter 2-4. In Section 6.2, we revisit

the Electroencephalography (EEG) classification problem using the Minimum Distance to Mean

classifier in [12,55,67], which is a supervised classification problem. In Section 6.3, we focus on the

problem of unsupervised clustering. We evaluated the performance of different variants of K-means

clustering on real-life data.

Main contributions.

• We provide an assessment of different averaging techniques in denoising, supervised classi-

fication and unsupervised clustering applications. We evaluate performance in two aspects:

accuracy and computation time.

• We consider the problem of structure tensor image denoising.

• For the EEG classification problem studied in [55,67], we provide more efficient algorithms to

compute the Karcher mean and α-divergence-based mean while achieving the same accuracy

as in the literature. (We have shown in Chapter 2 and 3 the superior performance of our

proposed algorithms compared with the state-of-the-art method in the literature. For the

dissertation, we focus on comparing the classification accuracy with literature [55, 67]. In

future work, we will implement their algorithms in C++ and compare the clustering time.)

• We propose to equip the minimum distance to mean classifier with Riemannian medians,

which yields slightly higher accuracy than the means without sacrificing computation time

for EEG classification. Another surprisingly good result is the performance of the Jeffrey

divergence and its related mean (i.e., the arithmetic-harmonic mean). This pair achieves a

satisfactory accuracy at a very low computational cost.

• We test different variants of K-means clustering on the KRH-TIPS2 dataset [66] and Virus

dataset [61], and provide an illustration of trade-off between clustering accuracy and compu-

tation time.
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• We contribute a C++ toolbox to estimate different means and medians of a set of SPD

matrices, and provide users with options to select the best suited one based on their use

cases.

6.1 Application I: structure tensor image denoising

In this section, we consider an application of different averaging techniques studied in Chapter 2-

5 in structure tensor image denoising. This problem has been studied in [7, 21]. We revisit this

problem as more averaging techniques and better algorithms are available.

6.1.1 Structure tensor image denoising

In image processing, structure tensor [38] has been widely used to represent the local orientation

and edge information of the image, e.g., see [33, 41, 58, 70, 79]. Given a 2D scalar-valued I : Ω ⊂

Z2 → R, its associated structure tensor is defined as

f(i, j) = Gσ ·
[
I2
i IiIj

IiIj I2
j

]
, (6.1.1)

where Ii = ∂I(i,j)
∂i , Iy = ∂I(i,j)

∂j , and Gσ is a Gaussian function with standard deviation σ. A

structure tensor image is a spatial structured matrix field

f : Ω→ Sn
++ . (6.1.2)

That is, at each pixel is an SPD matrix. Figure 6.1 gives an example of structure tensor image

of a 2D image. Each pixel (i, j) is a 2 × 2 SPD matrix, which is visualized as an ellipse. In

this dissertation, we focus on 2D images. In particular, we resort to the diffc Toolbox https://

www.mathworks.com/matlabcentral/fileexchange/5103-toolbox-diffc for the structure ten-

sor image computation and visualization.

6.1.2 Experiment results

In this section, we evaluate the performance of different averaging techniques for structure tensor

denoising. The experiments are designed in a similar way as in [7]. Given a structure tensor image

f(i, j) : Ω→ S2
++, we generate a noisy tensor image f̃ by replacing the pixel elements by an outlier

tensor with a given probability Pr. Denoising is done by averaging matrices in the neighborhood

of each pixel as shown in Figure 6.2. That is,

Avg(f̃)(i, j) = Average(f̃(u, v) : (u, v) ∈ N (i, j)) (6.1.3)

116

https://www.mathworks.com/matlabcentral/fileexchange/5103-toolbox-diffc
https://www.mathworks.com/matlabcentral/fileexchange/5103-toolbox-diffc


Figure 6.1: Example of structure tensor image. Left: original image; Right: corresponding
structure tensor image.

where N (i, j) is the neighborhood pixels of (i, j). In our experiment, we take N (i, j) as a 3 × 3

square neighborhood centered at (i, j).
Noisy tensor image

Figure 6.2: Denoising is done by averaging matrices in the neighborhood of each pixel.

Table 6.2 summarizes the notations, averaging techniques considered and the algorithms used

in our experiments. In order to quantitatively evaluate the denoising effect of different averaging

techniques, we use the Mean Riemannian Error (MRE) proposed in [7] as a measure of error,

defined as

MRE =
1

|Ω|
∑

(i,j)∈Ω

δR(f(i, j), Avg(f̃)(i, j)), (6.1.4)

where δR denotes the Riemannian distance. The MRE measures the average Riemannian distance

between the original tensor image and the denoised tensor image.

Figure 6.3 displays the denoising performance for different averaging techniques. Figure 6.4-

6.6 show some denoised images. We observe that when Pr = 0.02 and Pr = 0.1, the Riemannian

median yields the lowest MRE among all the averaging techniques. The LogDet α-divergence-based

median yields better performance than the LogDet α-divergence-based mean. When Pr = 0.5, it is

shown that the Riemannian minimax center yields better performance than the Riemannian mean
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Table 6.1: A summary of notations, averaging techniques considered and the algorithms
used in the structure tensor denoising. One can refer to Table 3.3 for formulas of dis-
tances/divergences.

Notation Averaging technique Algorithm

E. δE-mean Closed form

LE. δLE-mean Closed form

J-Div. δJ-mean Closed form

R. δR-mean Algorithm 7

R.-Med. δR-median Algorithm 13

R.-MM. δR-minimax center Algorithm 12

α-Div. δLD,α-mean Algorithm 7

α-Med. δLD,α-median Algorithm 13

α-MM. δLD,α-minimax center Algorithm 12

and median. The LogDet α-divergence gives the lowest MRE. The value of α is set to 0.1 through

cross validation. Figure 6.7 displays the MRE for different values of α.

6.2 Application II: EEG classification based on the minimum
distance to mean classifier

6.2.1 EEG classification

Electroencephalography (EEG) system is widely used to record brain signals in Brain-Computer

Interface (BCI) devices. For EEG signal processing, approaches based on covariance matrices have

demonstrated good performance [94,95], where EEG signals are represented by covariance matrices.

In this section, we consider an EEG classification problem discussed in [12,55,67]. In a steady-state

visual evoked potential (SSVEP) experiment, blinking LEDs with different frequencies are placed

at different locations in the visual of a subject. The subject is either asked to focus on one specific

blinking LED or to focus on a location without LED. The blinking stimulus induced oscillations in

the brain, which are recorded by EEG. The task is to decide which LED the subject is staring at

based on the recorded EEG signals. In [55, 67], the Minimum Distance to Mean (MDM) classifier

has been considered to handle this classification task. The MDM classifier requires the computation

of cluster centers and a measure of distance, which is summarized in Algorithm 19. We revisit this

problem since we have better algorithms to average SPD matrices and have more choices of cluster

centers and dissimilarity measure.
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Figure 6.3: Average Mean Riemannian Error (MRE) over 10 experiments for the structure
tensor image denoising.

Our experiment is conducted on the same datasets as in [12,55], where the data was obtained in

a SSVEP experiment. EEG signals are recorded from 12 subjects. Each subject is presented with

three LEDs blinking respectively at 13Hz, 17Hz and 21Hz. This is thus a 4-classes classification

problem including 3 frequencies and one resting class. In a session, 32 trials are recorded and each

class contains 8 trails. For each subject, the number of sessions recorded varies from 2 to 5. As
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Algorithm 19 Minimum Distance to Mean Classifier [55]

Input: training set {(Xi, yi)}Ni=1, where Xi ∈ Sn
++ and yi ∈ {1, 2, . . . , C} is the class label, an

unlabelled data point X ∈ Sn
++.

1: for k = 1, . . . , C do

2: Compute the center of each class: Σ̄(k) = µ({Xi|yi == k});
3: end for

4: Compute the class label of X: k? = arg min δ(Σ̄(k), X);

5: Return k?.

in [12, 55], a test set contains 32 trials and the remaining trials are used for training. The EEG

signals are already available in covariance matrix representations. We refer the reader to [55] for

more details regarding the data information and experimental protocol.

Table 6.2 summarizes all the distances/divergences and cluster centers considered in our exper-

iments. When the closed form expression of the center is not available, LRBFGS in Algorithm 7

with m = 2 is applied to compute the center, and the arithmetic-harmonic mean is used as the

initial iterate. We note that it is not necessary to compute the cluster center at a high accuracy.

So the stopping criterion for LRBFGS is ‖ grad f(X)‖/‖ grad f(X0)‖ < 10−3. All experiments

are performed on the Florida State University HPC system using Intel(R) Xeon(R) CPU E5-2670

2.60GHz. To obtain sufficiently stable timing results, an average time is taken of several runs for

a total runtime of at least 1 minute for each classification task.

Table 6.2: A summary of cluster centers and distances/divergences considered in the
experiments. One can refer to Table 3.3 for formulas of distances/divergences.

Notation Distance/Divergence Center Closed form

Euc. Euclidean distance δE-mean Yes

LogEuc. Log-Euclidean distance δLE-mean Yes

Ind. Riemannian distance inductive mean Yes

J-Div. Jeffrey divergence δJ-mean Yes

Rie. Riemannian distance δR-mean No

α-Div. LogDet α-divergence δLD,α-mean, α = 0.6 No

S-α-Div. Symmetric LogDet α-divergence δS1LD,α-mean, α = 0.9 No

α-Med. LogDet α-divergence δLD,α-median, α = 0.5 No

S-α-Med. Symmetric LogDet α-divergence δS1LD,α-median, α = 0.7 No

120



6.2.2 Experiment results

Table 6.3 reports the classification accuracy on the test set and computation time for each

subject using different pairs of distances and centers. The computation time is the average time

required to compute the cluster center of each cluster in the training set. Each row of the table

corresponds to one subject, and the last row corresponds to the average results over 12 subjects.

Figure 6.8 illustrates Table 6.3 graphically. Figure 6.9 displays the average results over 12 subjects.

We observe that for the same distance/divergence, the median yields higher accuracy than

the mean. The median based on the LogDet α-divergence with α = 0.5 yields the best accuracy

(82.30%), whose computation time is also very competitive. The value of α is obtained by testing

different values of α from 0 to 0.9, and α = 0.5 gives the best results. Figure 6.10 and Table 6.4 dis-

play the average accuracy and computation time for different values of α. A surprisingly good result

is the performance of the mean based on the Jeffrey divergence, which is actually the arithmetic-

harmonic mean, see Lemma 3.3.1. That is, the arithmetic-harmonic mean is taken as the center for

each cluster, and the Jeffrey divergence is used as the distance measure. It has a satisfactory accu-

racy of 81.17%, and can be computed very efficiently. In addition, we notice that it is important

to match up the distance/divergence and related mean. Table 6.5 summarizes the classification

accuracy of the arithmetic-harmonic mean combined with different distance/divergences, and the

Jeffrey divergence yields the best result.

6.3 Application II: K-means clustering

In this section, we evaluate the performance of different averaging techniques studied in Chap-

ter 2-4 on unsupervised clustering task. More specifically, we test the K-means clustering on

KTH-TIPS2 dataset [66] using different cluster centers and distances/divergences.

6.3.1 K-means clustering algorithm

K-means clustering (or Lloyd’s algorithm [64]) is a method commonly used to partition a data

set into a few groups. Given a set of K observations and the number of clusters C, K-means

clustering aims to partition n observations into C clusters. The algorithm proceeds by alternating

between two steps:

• Assignment step: Assign each observation to the cluster which has the closest center.
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• Update step: Compute the new centers of the observations in each cluster.

The procedure is terminated until the cluster assignments no longer change or until the maximum

number of iterations has been reached. We summarize K-means clustering on Sn
++ in Algorithm 20.

Algorithm 20 K-Means Clustering on Sn
++

Input: a set of SPD matrices X = {Xi}Ki=1; number of desired clusters C.

1: Initialization: arbitrarily choose C data matrices {µ1, . . . , µC} from X as centers;

2: repeat

3: for i = 1, . . . ,K do

4: for j = 1, . . . , C do

5: Compute the distance between Xi and cluster center µj : δ(Xi, µj);

6: end for

7: Assign Xi to the cluster with the nearest center yi = arg min
1≤j≤C

δ(Xi, µj);

8: end for

9: for j = 1, . . . , C do

10: Compute the new center of each cluster: µj = µ({Xi|yi == j});
11: end for

12: end(repeat) convergence

13: Return a partitioning of X .

6.3.2 Performance metrics

There exist several standard metrics to assess the performance of clustering algorithms. In

particular, [90] presents an overview of various metrics for comparing clusterings along with their

pros and cons. Of these various performance metrics, the F1-score and cluster purity are frequently

used in literature, e.g., see [24, 86]. We also chose those two metrics as our performance metrics,

and describe them in the next two sections.

F1-score. Suppose the ground truth clustering assignments are known, an intuitive way to

assess the performance of a clustering method is counting pairs of observations that are clustered

in the same way as the ground truth. Given a set of observations X = {X1, . . . , XK} and pairs of

observations (Xi, Xj) ∈ X , we can define the true positive (TP), false positive (FP), true negative

(TN), and false negative (FN) as given in Table 6.6. The precision and recall of clustering are

defined, respectively, as

P =
TP

TP + FP
and R =

TP

TP + FN
. (6.3.1)

122



The F1-score is the harmonic mean of precision and recall:

F1 = 2× P ×R
P +R

, (6.3.2)

which reaches its best value at 1 and worst 0.

Performance metric based on Normalized Mutual Information. The concept of mu-

tual information originates from information theory and is based on the notion of entropy [29]. [69]

applied the concept of entropy to clustering analysis. Assume that Π = {π1, . . . , πl} and Π′ =

{π′1, . . . , π′m} are two clusterings of X = {X1, . . . , XK}. The entropy associated with clustering Π

is defined in [69], as

H(Π) = −
l∑

i=1

P (i) log2 P (i), (6.3.3)

where P (i) = |πi|/K is the probability that an observation randomly taken from X belongs to

cluster πi in partition Π. The mutual information between two clusterings Π and Π′ is defined as

I(Π,Π′) =
l∑

i=1

m∑
j=1

P (i, j) log2

P (i, j)

P (i)P (j)
, (6.3.4)

where P (i, j) = |πi ∩ π′j |/K is the probability that an observation belongs to cluster πi in Π and

to cluster π′j in Π′. The mutual information I provides a measure to compare two clusterings.

However, it is difficult to interpret since it is not bounded by a constant. A normalized version of

mutual information between clusterings is introduced in [87], which is defined as

NMI(Π,Π′) =
I(Π,Π′)√
H(Π)H(Π′)

. (6.3.5)

The value of NMI is between 0 and 1. When Π = Π′, we have NMI(Π,Π′) = 1.

6.3.3 Experiments on real data

We evaluate the K-means clustering based on different cluster centers and distance/divergences

on the KTH-TIPS2 (Textures under varying Illumination, Pose and Scale) dataset [66] and the

Virus dataset [61]. The KTH-TIPS2 is a popular dataset for material recognition, which contains

4752 samples belonging to 11 different categories of materials. Each categories contains 432 samples.

Figure 6.7 displays a few samples from this dataset. In our experiments, we use Region Covariance

Matrices (RCMs) [43] of size 23 × 23 as image descriptors in the same way as [86]. The Virus
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dataset contains 1500 images belonging to 15 different virus types. A few samples samples from

the virus dataset are displayed in Figure 6.8. For virus images, we use RCMs of size 29 × 29 as

descriptors.

All experiments are performed on the Florida State University HPC system using Intel(R)

Xeon(R) CPU E5-2670 2.60GHz. In order to reduce the effect of initializations, we average our

results over 10 runs for each clustering task. When the closed form expression of the center is

not available, LRBFGS in Algorithm 7 with m = 2 is applied to compute the center, and the

arithmetic-harmonic mean is used as the initial iterate. The stopping criterion for LRBFGS is

‖ grad f(X)‖/‖ grad f(X0)‖ < 10−5.

Table 6.9 summarizes the table notation used when reporting the results. Table 6.10 sum-

marizes experiment results obtained on the KTH-TIPS2 dataset for each cluster center and dis-

tance/divergence, and Figure 6.11 illustrates Table 6.10 graphically. We observe that the Euclidean

distance and mean (i.e., arithmetic mean) lead to efficient but poor clustering. The pair of the

Log-Euclidean mean and distance is outperformed by the pair of Jeffrey divergence and its mean

(i.e., the arithmetic-harmonic mean) in terms of clustering quality and time efficiency. The pair

of Karcher mean and the Riemannian distance significantly improves the clustering quality which,

however, requires the most computation time. The inductive mean proposed in [68] and the Rie-

mannian distance yields similar F1-score and NMI as the Karcher mean, but approximately halves

the computation time. Note that the dominant computation time (94%) for this pair is on the

distance evaluation. The LogDet α-divergence and its related mean lead to the highest NMI value

(57.21%) when α = 0.9 and requires the least computation time (except for the Euclidean mean).

The best F1-score (45.75%) is obtained when using the LogDet α-divergence with α = 0.9 and

its related median. In order to find the best α, we vary the values of α from -0.9 to 0.9 with

the increment by 0.1. Figure 6.12 displays the results at different values of α for the LogDet α-

divergence and its symmetrized version. We observe that the K-means clustering using the LogDet

α-divergence and its related mean/median requires less time than that of its symmetrized version

for different values of α. Moreover, the LogDet α-divergence with a well chosen value of α can lead

to the best clustering quality.

Table 6.11 summarizes experiment results obtained on the virus dataset, and Figure 6.13 il-

lustrates Table 6.11 graphically. We notice that the performance of k-means clustering on the
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virus dataset is worse than that on the KTH-TIPS2 dataset. This may be caused by the fact that

we loose some image information when using the Region Covariance Matrices to describe images.

Among different variants of K-means clustering, the pair of LogDet α-divergence and its related

mean leads to the highest F1-score and NMI, which is the same as the KTH-TIPS2 dataset.
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Figure 6.4: Comparison of different averaging techniques for structure tensor image denos-
ing. First row: simulated noisy image with Pr = 0.02; Second-fourth row: denoised images
by different averaging techniques as specified in the titles.
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Figure 6.5: Comparison of different averaging techniques for structure tensor image denos-
ing. First row: simulated noisy image with Pr = 0.1; Second-fourth row: denoised images
by different averaging techniques as specified in the titles.
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Figure 6.6: Comparison of different averaging techniques for structure tensor image denos-
ing. First row: simulated noisy image with Pr = 0.5; Second-fourth row: denoised images
by different averaging techniques as specified in the titles.
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Figure 6.8: Performance results obtained for the EEG classification using different cluster
centers and distances/divergences for each subject. The top plot displays the classification
accuracy on the test set and the bottom plot shows the computation time required to
compute the cluster center of each cluster in the training set.
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Figure 6.10: Average results over 12 subjects for the EEG classification using the LogDet
α-divergence-based median and its symmetrized version with α = 0, 0.1, . . . , 0.9.
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Table 6.4: Average classification accuracy over 12 subjects for the EEG classification using
the LogDet α-divergence-based median and its symmetrized version with different values
of α.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α-median (%) 80.40 80.53 80.71 80.79 81.47 82.30 82.10 81.54 81.84 81.71

S-α-median (%) 80.40 80.47 80.79 80.53 80.75 81.27 81.40 82.07 81.55 81.90

Table 6.5: Average classification accuracy over 12 subjects for the EEG classification using
the arithmetic-harmonic mean combined with different distances/divergences. The Jeffrey
divergence achieves the best result.

Distance/divergence Euc. LogEuc. J-Div. Rie. α-Div. S-α-Div.

Accuracy 57.78% 78.04% 81.17% 79.59% 80.95% 80.80%

Table 6.6: contingency table

True result
Xi and Xj belong to

the same cluster
Xi and Xj belong to

different clusters

Predicted result
Xi and Xj belong to

the same cluster
True Positive (TP) False Positive (FP)

Xi and Xj belong to
different clusters

False Negative (FN) True Negative (TN)

Table 6.7: Samples of the KTH-TIPS2 dataset for classes of wood, cotton and lettuce.
Plots in the same row belong to the same class.

Wood

Cotton

Lettuce
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Table 6.8: Samples of the virus dataset for 3 different classes. Plots in the same row
belong to the same class.

Class 1

Class 2

Class 3

Table 6.9: Notation for reporting experiment results

F1 F1-score

NMI normalized mutual information

t time required for K-means clustering (seconds)

iter number of iterations required for K-means clustering to converge

t/iter time for each iteration

tmean time required to compute the cluster centers (seconds)

tδ time required to compute the distance/divergence (seconds)
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Figure 6.11: Comparison of K-means clustering using different cluster centers and dis-
tance/divergence functions on the KTH-TIPS dataset.
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Figure 6.12: Clustering quality and computation time obtained for the LogDet α-
divergence and its symmetrized version with varying values of α.
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Figure 6.13: Comparison of K-means clustering using different cluster centers and dis-
tance/divergence functions on the VIRUS dataset.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

This dissertation investigates different averaging techniques and similarity measures for SPD ma-

trices. We propose to use recent developments in Riemannian optimization to develop efficient and

robust algorithms to compute different central representatives of a collection of SPD matrices.

The major contributions of this dissertation are:

1. Investigated different averaging techniques for symmetric positive definite matri-

ces, including the computation of means, medians, and minimax centers;

Different definitions of means, medians and minimax centers for a collection of symmetric

positive definite matrices are discussed. Different distances and divergences are considered.

Various Riemannian optimization algorithms are exploited to tackle the computation of the

mean, median, and minimax center.

2. Exploited recent developments in Riemannian optimization to develop efficient

and robust algorithms on the manifold of symmetric positive definite matrices;

Methods to produce efficient numerical representations of geometric objects that are required

for Riemannian optimization methods on the manifold of symmetric positive definite ma-

trices are provided. For the mean computation, a LRBFGS is exploited to reduce storage

requirements and computation time. The modified and nonsmooth Riemannian quasi-Newton

algorithms are exploited to handle nonsmooth functions in the median computation and min-

imax center computation problems. Theoretical and empirical suggestions on how to choose

between various methods and parameters are provided. For the mean computation, this dis-

sertation also proposes an explanation of the good performance of steepest descent methods

observed in the literature; the explanation crucially relies on an upper bound on the condition

number of the Riemannian Hessian of the objective function that depends on the logarithm

of the condition number of the data matrices.

3. Provided empirical assessments and comparisons of the performance of considered

Riemannian optimization algorithms and existing stat-of-the-art algorithms;

Systematic numerical experiments to compare and evaluate the performance of various algo-

rithms are conducted, taking into account the impact of data distributions, manifold dimen-

sion, initial iterate, the choice of parameters in the algorithms, etc. For different computa-

tional tasks, the preferred method is identified.
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4. Contributed a C++ toolbox to estimate means, medians, and minimax centers

for a collection of SPD matrices, using different distance and divergence functions

presented in this dissertation;

To the best of our knowledge, there is no other publicly available and comprehensive C++

toolbox for averaging SPD matrices. The Matrix Means Toolbox1 developed by Bini et al.

in [16] is written in MATLAB, and only computes the mean. As an interpreted language,

MATLAB’s execution efficiency is lower than compiled languages, such as C++. We resort

to C++ for efficiency, and also provide empirical illustrations of the speedup using C++

implementation instead of MATLAB.

5. Evaluated the performance of different averaging techniques in applications, in-

cluding denoising, supervised classification and unsupervised clustering.

– Structure tensor image denoising

– Electroencephalography (EEG) classification problem based on the Minimum Distance

to Mean (MDM) classifier

– K-means clustering on real-life data: KTH-TIPS2 dataset [66], Virus dataset [61]

There are several opportunities for future research. In the SPD median computation, it is

observed in Section 5.3.1 that the nonsmooth quasi-Newton algorithms do not perform well. Mod-

ifications can be made to the nonsmooth versions such that they behave the same as the smooth

versions when the cost function is smooth. That is, we consider to propose a hybrid algorithm

that can handle smooth and nonsmooth scenarios. Additionally, it is observed in Figure 4.4 and

Figure 4.7 that in the presence of outliers in the dataset, the limited-memory version of RBFGS

outperforms the full version in terms of convergence rate and computation time. The presence of

outliers tends to slow down the convergence of RBFGS, but has a smaller impact on the limited-

memory version. Further study is needed to understand this phenomenon.

In addition, current averaging techniques work well on moderate-size and full-rank SPD ma-

trices. Most implementations involve basic matrix operations, such as Cholesky factorization,

eigenvalue decomposition, solving linear systems, etc. The complexity of those matrix operations

grows cubically with the size of matrix, i.e., O(n3). This limits the use of averaging techniques in

large-scale problems where the cubic complexity is not realistic. Using low-rank approximations of

SPD matrices is a common way to reduce computational complexity. Another challenge concerns

the conditioning of the data matrices. The data matrices may become so ill-conditioned that their
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numerical rank is reduced. These motivate the need of extending averaging techniques from positive

definite matrices to positive semidefinite matrices of fixed rank. Bonnabel et al. [19] took the first

step in defining the geometric mean of two positive semidefinite matrices of fixed rank. Later [18]

generalized this geometric mean to a general number of matrices. A potentially interesting avenue

for future research is to explore other averaging techniques for positive semidefinite matrices of

fixed rank.
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