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ABSTRACT

This dissertation uses Riemannian optimization theory to increase our understanding of the role

extraction problem and algorithms. Recent ideas of using the low-rank projection of the neigh-

borhood pattern similarity measure and our theoretical analysis of the relationship between the

rank of the similarity measure and the number of roles in the graph motivates our proposal to use

Riemannian optimization to compute a low-rank approximation of the similarity measure.

We propose two indirect approaches to use to solve the role extraction problem. The first uses

the standard two-phase process. For the first phase, we propose using Riemannian optimization to

compute a low-rank approximation of the similarity of the graph, and for the second phase using

k-means clustering on the low-rank factor of the similarity matrix to extract the role partition of

the graph. This approach is designed to be efficient in time and space complexity while still being

able to extract good quality role partitions. We use basic experiments and applications to illustrate

the time, robustness, and quality of our two-phase indirect role extraction approach.

The second indirect approach we propose combines the two phases of our first approach into

a one-phase approach that iteratively approximates the low-rank similarity matrix, extracts the

role partition of the graph, and updates the rank of the similarity matrix. We show that the use

of Riemannian rank-adaptive techniques when computing the low-rank similarity matrix improves

robustness of the clustering algorithm.

xii



CHAPTER 1

INTRODUCTION

This dissertation investigates solving the role extraction problem for graphs. There are two basic

classes of methods to extract roles from a graph: direct and indirect. The properties and differences

of the two classes are discussed in detail in Chapter 2 and this dissertation concentrates on indirect

methods. A typical indirect method is a two-phase process, where the first phase is to compute

the similarity of the network and the second phase is to extract the role structure of the network

from the similarity matrix by grouping highly similar nodes together. For our two-phase indirect

method, the first phase uses Riemannian optimization to compute a low-rank approximation of a

neighborhood pattern similarity measure to determine a similarity score for each pair of nodes in

the graph. In the second phase, we use k-means clustering on the low-rank factor of the similarity

matrix. This approach is designed to be efficient in time and space complexity for large networks.

Several different similarity measures have been discussed in the literature and the choice of the

measure for the role extraction problem is crucial. Given the choice of similarity metric, a drawback

of indirect methods is the inability to adjust the choice of parameters based on the results of both

phases. If a good similarity metric for the network or appropriate parameter values are not used,

then the clustering algorithm in the second phase struggles to extract the role structure. Thus, our

second indirect approach combines the two phases of the indirect method into a single, low-rank

iterative process that allows for effective adaptation of the parameters associated with the similarity

metric and the clustering algorithm. This approach exploits current methods of determining the

low-rank approximation of a matrix to develop a Riemannian optimization algorithm that computes

the numerical rank of the neighborhood pattern similarity measure and the optimal number of

roles using k-means clustering and the silhouette statistic. The list of assumed roles to test for the

silhouette statistic is determined by the rank and an assumed number of roles, which is adjusted

until convergence.

The organization of this dissertation is as follows. In Chapter 1, we define the role extraction

problem. In addition, we review basic concepts and definitions in both graph theory and Rieman-

1



nian optimization used throughout this dissertation. The chapter ends with an overview of our

research and dissertation statement. Chapter 2 is an overview of the direct and indirect approaches

to solving the role extraction problem. For the indirect approaches, we review four pairwise node

self-similarity measures. Also, we summarize three community detection (or clustering) algorithms

that can be used for both direct and indirect approaches. Chapter 3 analyzes the relationship

between the number of roles and the rank of the similarity matrix for the neighborhood pattern

similarity measure, which is the similarity metric we use in this dissertation.

Chapter 4 describes our two-phase approach. In this chapter, we derive: the Riemannian geome-

try for the symmetric positive semidefinite fixed-rank manifold; a cost function for the Riemannian

optimization approach to approximating the low-rank neighborhood pattern similarity measure;

and the Riemannian gradient and action of the Riemannian Hessian. Finally, in this chapter, we

describe the motivation behind using k-means clustering for the second phase of our role extraction

approach. In Chapter 5, we rework Browet and Van Dooren’s iterative algorithms for computing

the neighborhood pattern similarity measure in the Euclidean optimization framework based on

our cost function. Chapter 6 empirically evaluates the strengths and weaknesses of Browet and

Van Dooren’s two-phase role extraction approach and our proposed two-phase approach. In Chap-

ter 7, we describe our one-phase role extraction method, and provide evidence about its robustness

compared to our two-phase approach.

In Chapter 8, we observe the effectiveness of our indirect approach on signed networks. Then,

in Chapter 9, we compare role structures with overlapping community structures and show a

relationship between the two. Lastly, in Chapter 10, we summarize our research and describe some

interesting open questions for efficient and effective role extraction.

1.1 Motivation and Problem

Many complex systems can be represented as network structures, e.g., human interactions, food

webs, and gene interactions. Recent work has focused on the extraction of clusters to analyze large

networks and obtain relevant statistical properties. Various measures and algorithms to identify

community structures, i.e., subgroups of densely connected nodes [POM09,For10,Tra14]. However,

this structural distribution of nodes in a graph is not always representative. For example, bipartite

and cyclic graphs do not contain communities, even though they are structured. Less attention

2



has been paid to discovering more general structure by role extraction or as it is sometimes called

block modeling [WF94,DBF05,Rei09,Cas12].

The role extraction problem determines a representation of a network by a smaller structured

graph, called the reduced graph, role graph, or image graph, where nodes are grouped together in

roles based upon their interactions with nodes in either the same role or different roles. This problem

is a generalization of the community detection problem where each node in a community mainly

interacts with other nodes within the same community. Many other role interactions can be defined,

such as a bipartite graph for human protein-protein interaction networks [PSR10] or a block cycle

model for food webs [GSSP+10]. There are many real world applications to which role extraction

can be applied and from which characterizations of interactions that define roles can be taken.

These include studying trade networks between countries [RW07]; evaluating the resilience of peer-

to-peer networks [HKYH02]; ranking web pages in search engines [PBMW99]; studying human

interaction by email correspondence [AMC10]; modeling protein-protein interactions [KKKR02];

and analyzing food webs [GSSP+10].

The role extraction problem takes an adjacency matrix A of a weighted and directed graph

that represents the network to be analyzed. A representative role structure is determined and is

specified by a permutation matrix P , such that the edges of the relabeled graph, the adjacency

matrix PAP T , are primarily concentrated in particular blocks (see Figure 1.1).

P?
=⇒ PAPT =A =

Figure 1.1: Block modeling example: find permutation matrix P such that the adjacency matrix
A is permuted to have a block structure.

The role extraction problem is based on the assumption that nodes can be grouped according

to a suitable measure of equivalence. Lorrain and White [LW71] introduced the first relation

of equivalence between nodes. Two nodes are structurally equivalent if they have exactly the
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same neighbors. As a result, all blocks in the permuted adjacency matrix must either be null or

complete [DBF05]. Null blocks occur when there are no edges connecting a node in one role to a

node in the other role, i.e., 0 0 0 0
0 0 0 0
0 0 0 0

 ,
and complete blocks when each node in a role is connected to all nodes of the other role, i.e.,1 1 1 1

1 1 1 1
1 1 1 1

 .
When applied to real graphs, structural equivalence tends to extract many small roles and so

structural equivalence was relaxed to regular equivalence defined in [WR83,EB94,EB96]. Two nodes

are considered to be regularly equivalent if they are connected to the same equivalence classes while

the number of connections is unimportant. That is, the nodes are regularly equivalent if, while

they do not necessarily share the same neighbors, they have the neighbors who are themselves

structurally or regularly equivalent. Therefore, the blocks in the permuted adjacency matrix must

contain at least one element per row and column (called a regular block) [DBF05], e.g.,1 0 1 1
0 1 1 0
1 0 1 1

 .
Two other types of regular blocks are row-regular blocks (where there is at least one 1 in each row)

and column-regular blocks (where there is at least one 1 in each column). Note that a regular block

is also row-regular and column-regular, but a row-regular (column-regular) block is not necessarily

regular.

Structural equivalence implies regular equivalence, but regular equivalence does not imply struc-

tural equivalence. So, every group of regularly equivalent nodes is represented by a single node

in the role graph where nodes in the role graph are linked (or not linked) if connections between

nodes in the respective classes exist (or are absent) in the original graph. Reichardt and White

assumed no two nodes in the role graph may be structurally equivalent to avoid redundancy in the

role graph [RW07,Rei09].

Earlier research involved creating a quality function to optimize over both the role structure

and role assignment of nodes in the graph based on a choice of equivalence relation [WF94,DBF05,
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RW07,Rei09]. That is, if B is the adjacency matrix of the reduced graph (called the image matrix)

and σ is the assignment of each node to a role, then the problem can be stated as

(B∗, σ∗) = arg max
B,σ

QA(B, σ), (1.1)

where QA depends on the graph topology and chosen equivalence criterion. Note that (1.1) is

a combinatorial optimization problem with respect to two variables and is generally harder than

the community detection problem, which is in general NP-hard [BDG+06, BDG+08]. The quality

function QA(B, σ) can either be constructed indirectly, based on a (dis)similarity measure between

pairs of nodes, or directly, based on a measuring of the fit of clusters compared to an ideal clustering

with perfect relations within and between clusters. In Chapter 2, we describe how the quality

function is constructed for each approach.

1.2 Review of Basic Concepts of Graph Theory

Throughout this dissertation, we consider graph theory and its application to the role extraction

problem. Therefore, we define some graph notation and review some basic definitions to characterize

graph properties. In addition, we describe some graph structures. Further background information

on graph theory can be found in [GY05,BM08,New10].

1.2.1 Basic Definitions

A graph, denoted G(V,E), is a mathematical structure with two finite sets V and E where

the elements of the set V = {1, . . . , n} are called nodes (or vertices) and the elements of the set

E = {(i, j) | i, j ∈ V } are called edges (or links) [GY05]. A pair (i, j) belongs to E if nodes i and j

are connected. An edge joins vertices i and j, which means that i is a neighbor of j. The cardinality

of the set E (or the number of edges in the graph) is denoted by |E| = m [GY05,BM08].

A self-loop (or self-edge) is an edge that connects a node i to itself, i.e., (i, i) ∈ E. A multi-edge

is two or more edges between nodes i and j. A simple graph has neither self-loops or multi-edges,

while a multi-graph has multi-edges, but does not have self-loops. A (general) unweighted graph

may have self-loops and/ or multi-edges [GY05, New10]. In this dissertation, we do not consider

multi-edges for unweighted graphs.
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An unweighted simple graph can be represented by an n × n {0, 1}-matrix A, called the (un-

weighted) adjacency matrix [New10], where

Ai,j =

{
1, if (i, j) ∈ E,
0, otherwise.

A graph associated with the adjacency matrix is denoted GA(V,E). The adjacency matrix is

important throughout this dissertation because it allows us to analyze graphs using matrix theory

and linear algebra.

Graphs with negative edges are called signed graphs [Zas82,DBF05,TKVD13]. A signed graph

is denoted GA(V,E−, E+), where E− ⊆ V ×V are the negative edges, E+ ⊆ V ×V are the positive

edges, and no edge can be both positive and negative (i.e., E− ∩E+ = ∅) [DBF05]. Then, a signed

adjacency matrix is defined as

Ai,j =


−1, if (i, j) ∈ E−,
1, if (i, j) ∈ E+,

0, otherwise.

A graph is called undirected if each edge (i, j) ∈ E is unordered and (i, j) = (j, i). Thus, the

adjacency matrix of an undirected graph is symmetric, i.e., A = AT [BM08]. Also, self-loops are

represented by a 2 in the adjacency matrix because every self-loop (i, i) has two ends which are

both connected to node i [New10].

A directed graph (or digraph) is a graph where each edge (i, j) has a direction, called directed

edges (or arcs), such that node i is the source and node j is the destination [BM08,New10]. Also,

for directed graphs, a neighbor j of a node i is called a child when (i, j) ∈ E and a parent when

(j, i) ∈ E. Note that the adjacency matrix of a directed graph is not symmetric. Also, self-loops

are represented by a 1 in the adjacency matrix [New10]. For the role extraction problem, unless

stated otherwise, we only consider directed graphs, and if the graph is undirected, then we assume

that the graph is bidirectional, i.e., an undirected edge between nodes i and j is replaced by two

directed edges in opposite directions between the same nodes [New10].

The degree of a vertex i is the number of neighbors the vertex has and is denoted by ki [New10].

For directed graphs, there is a distinction between the in-degree kini neighbors and the out-degree

kouti neighbors [New10]. These are referred to as the number of parents and the number of children,

respectively. The vectors of the number of in-degree and out-degree neighbors can be computed as

kout = A1 , kin = AT1,
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where 1 is a vector of all 1’s of length n and A is an n× n adjacency matrix [New10].

In practice, the edges in a graph may be weighted representing the intensity of the interaction

between the nodes. That is, for a pair (i, j) ∈ E, there is an associated real number wi,j called the

weight [New10]. The graph G(V,E) together with weights on its edges is called a weighted graph and

is denoted GW (V,E), where the subscript W denotes the weighted adjacency matrix. The weighted

adjacency matrix is an n× n real matrix such that Wi,j 6= 0 if and only if Ai,j = 1 [New10]. Note

that for an undirected graph, the weighted adjacency matrix is not necessarily symmetric. Also,

as with the degree of a node, for weighted graphs, the strength si of node i is defined as the sum

of the weights of its neighbors. For a weighted, directed graph, the in-strength and out-strength

is the sum of weights of incoming and outgoing edges, respectively, and are represented by the,

respective, vectors

sout = W1 , sin = W T1.

The density of a graph is the ratio between the number of edges in a graph and the maximal

number of possible edges, i.e., m/n2 [New10]. A graph is considered sparse if the density of the

graph is low [New10]. Since the maximal number of edges in a graph is the number of nodes in the

graph squared, then for sparse graphs, the number of edges in the graph should grow linearly with

the number of nodes, i.e., m = O(n), or the average degree, which is defined as

k̄ =
1

n

n∑
i=1

ki,

should be smaller than the number of nodes k̄ � n [New10].

1.2.2 Graph Structures

We next define some special families of graphs. A directed graph is complete if every pair of

nodes is joined by an edge in both directions (possibly excluding self-loops). A complete directed

graph over n nodes is denoted Kn and has n(n−1) edges (or n2 edges if there are self-loops) [Bro14].

For example, Figure 1.2a is a complete graph over 6 nodes.

A directed path is a set of undirected edges connecting node i to node j where the destination

of each edge in the sequence (except for the last edge) is the source of the following edge. Note

that there might exist multiple paths between nodes i and j. A simple directed path is when

each edge in the path is used at most once. A cycle is a simple path where the origin and the
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1
(a) Complete Graph K6 1

(b) Cycle Graph C6

Figure 1.2: Example of a complete graph and a cycle graph

destination are the same node (see Figure 1.2b). The length of a path or cycle is the number of

edges it contains [BM08,New10].

A walk is a simple directed path where all of the nodes are distinct. A semiwalk is a sequence

of vertices where the direction of the edge is ignored [BM08].

A subgraph H(VH , EH) of a graph G(V,E) is a graph whose nodes are a subset of the nodes of

G (i.e., VH ⊂ V ) and whose edges are a subset of the edges of G such that EH ⊂ {(i, j) | i, j ∈
VH , (i, j) ∈ E} [BM08]. If the edge set EH contains edges that have both ends in VH , then the

subgraph is called induced. A spanning graph is a subgraph of G where its node set is the same as

G (i.e., VH = V ) [BM08].

An undirected graph is connected if there exists a path between any pair of nodes [BM08]. If

a graph is disconnected, then the graph can be divided into multiple induced subgraphs such that

every subgraph is connected and there does not exist any edges between any induced subgraph. The

induced subgraphs Hi’s are called the connected components of G [BM08]. If the graph is directed,

then there are two types of connected components. The first type of connected components is

a strongly connected component (SCC), which is a maximal set of nodes such that there exists a

directed path between every pair of nodes, where the term maximal means that no node can be

added to the set while maintaining the property [New10]. The second type of connected components

is a weakly connected component (WCC). A weakly connected component is a maximal set of nodes

such that there exists a path between every pair of nodes and direction is not considered [New10].
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Lastly, a clique is a subset of nodes in an undirected graph such that its induced subgraph is

complete. A clique is called maximal if it cannot be extended by adding nodes to it [New10].

1.3 Review of Basic Concepts of Riemannian Optimization

This section reviews basic definitions and concepts of Riemannian manifolds necessary for Rie-

mannian optimization. Additionally, this section characterizes Riemannian optimization algorithms

of interest that are used in this dissertation. More details of these concepts and algorithms can be

found in [CE75], [O’N83], [Lee97], [AMS08], [Bak08], [Qi11], [Hua13], and [Zho15].

1.3.1 Optimization on a Manifold

Optimization on Riemannian manifolds (also known as Riemannian Optimization) finds an

(global or local) optimum of a real-valued function f defined over a Riemannian manifold, i.e.,

min f(x), subject to x ∈M, (1.2)

where M is a Riemannian manifold [Hua13].

Typically, Riemannian optimization is considered as unconstrained optimization on a con-

strained space and ideas from unconstrained optimization algorithms on a Euclidean space have

been adapted to optimization on manifolds. However, to use these ideas, we must reconsider many

basic definitions, constructs and algorithmic techniques, since extending them from the Euclidean

space to the manifold is not trivial. For example, the addition and subtraction of two points in the

Euclidean space is well-defined but does not extend, in general, to two points on a manifold.

Roughly speaking, a manifold is a set covered with a collection of coordinate patches that

overlap smoothly, i.e., manifold is a set of points that is locally Euclidean. Specifically, each point

of a d-dimensional manifold has a neighborhood that is homeomorphic to the Euclidean space of

dimension d. In Riemannian geometry, a smooth manifold of dimension d is defined as a setM that

locally looks like a d-dimensional Euclidean space but can be different globally. Since optimization

usually requires computing derivates and gradients of a function, we require thatM have a smooth

structure. A Riemannian manifold is a smooth set with a smoothly-varying inner product on the

tangent spaces [AMS08].
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1.3.2 Tangent Vector and Tangent Space

To apply optimization algorithms based on line-search methods, we must define the concept of

direction on a manifold. Consider a smooth mapping γ : R →M : t 7→ γ(t) where γ(t) is a curve

on M and satisfies γ(0) = x. Given a smooth function f on M, the function f ◦ γ : t 7→ f(γ(t))

is a smooth function from R to R with a well-defined classical derivative [AMS08]. This approach,

combining curves and smooth functions on differentiable manifolds, allows us to define a tangent

vector. If Fx(M) denotes the set of smooth functions defined on a neighborhood of x, then a

tangent vector can be defined as follows.

Definition 1.3.1 (Tangent Vector) [AMS08] A tangent vector ξx to a manifold M at a point x is

a mapping from Fx(M) to R such that there exist a curve γ on M with γ(0) = x, satisfying

ξxf = γ̇(0)f :=
d(f(γ(t)))

dt

∣∣∣∣
t=0

for all f ∈ Fx(M). Such a curve γ is said to realize the tangent vector ξx. The point x is called

the foot of the tangent vector ξx.

The set of all tangent vectors to M at x is called the tangent space to M at x, denoted

TxM [AMS08]. This is a linear space, i.e., closed under linear combinations, with the same dimen-

sion as the manifold. The tangent bundle, denoted TM is the union of all tangent spaces at all

elements of M [AMS08], i.e.,

TM :=
⋃
x∈M

TxM.

The property that a tangent space is a vector space is important because it provides a vector space

definition of local motion on the manifold with which we work rather than motion directly on the

manifold. However, such local motion must be mapped back to the manifold. A map from the

tangent space to the manifold is called a retraction and is discussed later.

A vector field is a smooth mapping ξ :M→ TM that assigns to each point x ∈ M a tangent

vector ξx ∈ TxM and the set of all smooth vector fields onM is denoted by χ(M) and is endowed

with the operations of addition of two vector fields and multiplication of a vector field by a function

f ∈ Fx(M) [AMS08], i.e., for all x ∈M,

(fξ)x = f(x)ξx,

(ξ + ζ)x = ξx + ζx.
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1.3.3 Riemannian Metric

A Riemannian metric computes angles and lengths of directions (tangent vectors) in any tangent

space of M. In other words, a Riemannian metric g is defined on each tangent space of x as an

inner product gx : TxM× TxM→ R that varies smoothly with x and is denoted as

gx(ξx, ζx) = 〈ξx, ζx〉x

where ξx, ζx ∈ TxM [AMS08]. The notation, flat [, relates tangent vectors to the metric and

ξ[x denotes a function from TxM to R where ξ[xζx = gx(ξx, ζx) for all ξx, ζx ∈ TxM [Hua13]. A

Riemannian manifold is the combination of (M, g) [AMS08].

1.3.4 Affine Connection

Many optimization algorithms require second-order information about the cost function. In

general, this second-order information is obtained by taking the derivative of one vector field with

respect to another. In the Euclidean space, taking the derivative of one vector field along another

is called the directional derivative and is defined as

Dη(x)[ξx] = lim
t→0

η(x+ tξx)− η(x)

t
. (1.3)

This always returns a vector field. However, on a Riemannian manifold, for any two vector fields ξ

and η on M, (1.3) need not be a vector field on M even if all of the operations in (1.3) are well-

defined [AMS08]. Thus, on Riemannian manifolds, the concept of taking the directional derivative

of a vector field is generalized to the affine connection.

Definition 1.3.2 (Affine Connection) [AMS08] Let Fx(M) be the set of all smooth functions in

x ∈ M and χ(M) be the set of all smooth vector fields on M. Then the affine connection is a

smooth mapping, denoted by

∇ : χ(M)× χ(M)→ χ(M) : (ξ, η) 7→ ∇ξη

that satisfies the following properties: for all f, g ∈ Fx(M), a, b ∈ R, and η, ξ, ζ ∈ χ(M),

(i) Fx(M)-linearity in the first argument η: ∇fηgζξ = f∇ηξ + g∇ζξ;

(ii) R-linearity in the second argument ξ: ∇η(aξ + bζ) = a∇ηξ + b∇ηζ;
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(iii) Product rule/ Leibniz’s law: ∇η(fξ) = (ηf)ξ + f∇ηξ.

Note that given a vector field η on M and a (smooth) real-valued function f ∈ Fx(M), ηf

denotes the real-valued function on M defined by

(ηf)(x) := ηxf

for all x ∈ M [AMS08]. For any smooth manifold M, there are an infinite number of affine

connections. For a Riemannian manifold (M, g), there exists a unique affine connection that also

satisfies the Levi-Civita conditions [AMS08].

Theorem 1.3.3 (Levi-Civita) [AMS08] On a Riemannian manifold (M, g) there exists a unique

affine connection ∇ that satisfies, for all η, ξ, ζ ∈ χ(M)

(i) symmetry: ∇ηξ −∇ξη = [η, ξ];

(ii) compatibility with the Riemannian metric: ζ 〈η, ξ〉x = 〈∇ζη, ξ〉x + 〈η,∇ζξ〉x

This affine connection ∇, called the Levi-Civita connection (or the Riemannian connection) of M,

is characterized by the Koszul formula

2 〈∇ζη, ξ〉x = ζ 〈η, ξ〉x + η 〈ξ, ζ〉x − ξ 〈ζ, η〉x − 〈ζ, [η, ξ]〉x + 〈η, [ξ, ζ]〉x + 〈ξ, [ζ, η]〉x . (1.4)

1.3.5 Riemannian Gradient and Riemannian Hessian

In the Euclidean space, the gradient of a scalar-valued function is the direction of steepest

ascent of the objective function and is very useful in optimization. Since the gradient is a direction

on the manifold, it should be a tangent vector. Definition 1.3.4 defines the Riemannian gradient

on a Riemannian manifold (M, g).

Definition 1.3.4 (Riemannian Gradient) [AMS08] Let f be a function defined on a Riemannian

manifold (M, g). The Riemannian gradient of f at x, denoted as grad f(x), is the unique tangent

vector in TxM satisfying

〈grad f(x), ξx〉x = Df(x)[ξx], ∀ξx ∈ TxM, (1.5)

where the directional derivative is denoted Df and the definition of a tangent vector identifies

Df(x)[ξx] = ξxf .
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Newton’s method requires second-order information of the Hessian. For a Euclidean function,

the Hessian is the second derivative of the objective function and contains the information of

differentiating the gradient along some direction. This notion can be used to defined the Riemannian

Hessian.

Definition 1.3.5 (Riemannian Hessian) [AMS08] Given a function f on a Riemannian manifold

(M, g), the Riemannian Hessian of f at a point x is the linear mapping of Hess f(x) from TxM
to TxM defined by

Hess f(x)[ηx] = ∇ηx grad f(x), (1.6)

for all ηx ∈ TxM, where ∇ is the Riemannian connection on M.

From the symmetric property of the Riemannian connection, we know that the Hessian is a

symmetric operator with respect to the Riemannian metric [AMS08], i.e.,

〈Hess f(x)[ηx], ξx〉x = 〈ηx,Hess f(x)[ξx]〉x ,

for all ηx, ξx ∈ TxM.

1.3.6 Retraction and Vector Transport

In general, most optimization algorithms work in the tangent space of the current iterate to

find a tangent vector to define the next iterate on the manifold. So, we need a way to map the

chosen tangent vector to the next iterate, which is called a retraction [AMS08].

In addition to mapping a tangent vector from the tangent space to the manifold, a retraction

can also transform cost functions defined in a neighborhood of x ∈ M into cost functions defined

on the vector space TxM. In other words, given a function f on a manifold M equipped with a

retraction R, we let f̂ = f ◦R denote the pullback of f through R [AMS08], i.e., for x ∈M,

f̂x : TxM→ R : ηx 7→ f(Rx(ηx)). (1.7)

Some algorithms need to combine information at different iterates to determine the next search

direction. A vector transport is a way to map a tangent vector from one tangent space to another

and it is built upon the retraction [AMS08].

13



A vector transport is called isometric if it also satisfies [Hua13]

gR(ηx)(Tηx(ξx), Tηx(ζx)) = gx(ξx, ζx). (1.8)

Vector transport by differentiated retraction is a vector transport given by

Tηx(ξx) := DRx(ηx)[ξx] =
d

dt
Rx(ηx + tξx)

∣∣∣∣
t=0

, (1.9)

where R is a retraction [AMS08].

Vector transport can also be defined by parallelization [Hua13, HAG15]. In Riemannian op-

timization, the d-dimensional matrix manifolds have tangent spaces that can be represented by

d-dimensional linear subspaces of the w-dimensional Euclidean space, where w > d. In practice,

w-dimensional tangent vectors are more commonly used; however, they may not be efficient, es-

pecially for large problems. Thus, it may be preferable to represent the tangent vectors by their

intrinsic representation, i.e., a tangent vector ηx ∈ TXM can be represented by a d-dimensional

vector, denoted v, of coordinates in a given basis BX of TXM [Hua13, Section 9.5]. If the columns

of BX forms an orthonormal basis of TXM, then many operations are inexpensive to compute

(e.g., vector transport, metric, etc.) [Hua13, Section 9.5]. Thus, vector transport by parallelization

is defined by

T = BYB
[
X (1.10)

where BY and BX are bases of TYM and TXM, respectively. Observe that if BY and BX are

orthonormal bases of TYM and TXM, respectively, i.e., B[
XBX = I for all X where I is the identity

matrix, then the vector transport by parallelization is the identity [HAG15]. Parallelization is an

isometric vector transport.

1.3.7 Tangent Cone

In recent years, rank constrained optimization has become a popular approach when solving

applications where the data set is large. The idea is to assume that the data set has a rank smaller

than the size of the problem and try to find the rank. That is, given a smooth function f where

f : Rm×n → R : X 7→ f(X), find X such that the rank(X) ≤ k where k � min(m,n), i.e.,

min f(X) subject to X ∈M≤k, (1.11)
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where M≤k := {X ∈ Rm×n| rank(X) ≤ k}, i.e., the set of matrices of rank at most k. In general,

(1.11) is NP-hard due to the combinatorial nature of the rank function [VB96]. Also, the setM≤k
usually does not have a manifold structure for any X ∈ M≤k with rank less than k since the set

may not have a tangent space at these points [Zho15, Section 4.3]. However, for all X ∈ M≤k, a

tangent cone, which is an extension of the tangent space, exists. The tangent cone to M≤k at a

point X ∈M≤k is the set

TXM≤k :=
{
γ̇(0) | γ ∈ C1, γ(0) = X, ∃δ > 0 : ∀t ∈ (0, δ) : γ(t) ∈M≤r

}
,

where γ̇(0) denotes the derivate of the curve γ at 0 [OW04, Zho15, ZHG+16]. Note that that the

tangent cone is not necessarily closed under addition. Thus, the points of M≤k where the tangent

space does not exist are matrices with rank r < k and are elements of the fixed-rank manifold

Mr = {X ∈ Rm×n| rank(X) = r} where the tangent space Mr is a subset of the tangent cone

TXM≤k [Zho15, ZHG+16]. Observe that the set M≤k is equivalent to the union k of fixed-rank

manifolds, i.e.,

M≤k =
k⋃
r=1

Mr.

1.3.8 Riemannian Optimization Algorithms

In the early 1970s, Luenberger in [Lue72,Lue73] explored the idea of optimization on manifolds.

In his work, he views equality constraints as defining a surface in Rn and describes a line-search

method along geodesics on the surface. However, in general, this approach is not computationally

feasible. In most optimization algorithms on manifolds, it has been shown that an approximation

of the geodesic is enough to guarantee the desired convergence properties. Furthermore, many

classical mathematical definitions in Riemannian geometry (e.g., geodesic, Levi-Civita connection,

parallel vector transport, etc.) can be replaced by approximations.

The idea of efficient computations of Riemannian objects necessary for manifold optimization

has been investigated by many researchers. In 1982, Gabay in [Gab82] proposed a Newton method

on an embedded submanifold of Rn by using projective methods to compute the gradient vector

tangent to the submanifold. Then, he computed a minimum in Rn along this direction and projected

the minimum back onto the submanifold. In 1993, the dissertation of Smith analyzed optimization

on differentiable functions on general Riemannian manifolds, generalized three algorithms (steepest
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descent, Newton’s method, and conjugate-gradient method) onto Riemannian manifolds and proved

their convergence [Smi93]. Many other authors have attempted to improve the efficiency of manifold

optimization methods (see [EAS98,OW00,MM02,Man02,DPM03,HT04,OHM06]).

Current research has focused on making optimization on manifolds more practical and flexible.

Absil et al. [AMS08] provides an introduction to manifold optimization with an emphasis on certain

concepts in differential geometry necessary for algorithmic development. In 2008, Baker [Bak08]

developed a complete theory for the Riemannian trust-region Newton family of methods. Rieman-

nian trust-region methods construct a quadratic model of the objective function around the current

iterate and produces a candidate for the new iterate by (approximately) minimizing the model with

a region where it is “trusted”. Baker’s approach follows the “lift-solve-retract” procedure where

he first uses a retraction R on the Riemannian manifold M to “lift” the cost function f on M to

a cost function f̂x = f ◦ Rx defined on the tangent space TxM for any point x ∈ M. Since the

tangent space is a Euclidean space, a quadratic model is defined on TxM and a point that suffi-

ciently reduces the cost function is computed by the “inverse free” truncated conjugate-gradient

method [Ste83]. This point is retracted from TxM to M using the retraction and is a candidate

for the new iterate depending on the quality of the agreement between the lifted cost function f̂

and the original cost function f . This approach requires the exact second-order term (i.e., the

Hessian of f), or the action of the Hessian on a tangent vector which may not be acceptable in

terms of computational cost. However, the quadratic model only needs an “approximate Hessian”

Hx that satisfies the approximation condition [AMS08, Equation (7.36)]. Thus, one can choose

Hx := Hess(f ◦ R̃x)(0x), where R̃x is any retraction and, assuming sufficient smoothness of f , and

expand the quadratic model around f̂x = f ◦ R̃x such that it is second-order. In particular, if

R̃x = Expx, then Hx := ∇ grad f(x) (= Hess f(x)), where ∇ denotes the Riemannian connection.

IfM is a Riemannian submanifold or a Riemannian quotient of a Euclidean space, then ∇ grad f(x)

has a simple formula [AMS08, Section 5.3].

Recent research has concentrated on generalizing Euclidean line-search based algorithms that

achieve superlinear and quadratic convergence to a Riemannian setting in a systematic manner.

For example, quasi-Newton methods are frequently used in Euclidean optimization because they

achieve superlinear convergence without computing the Hessian or a good approximation of the
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linear system defined by the Hessian. A popular quasi-Newton method is the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method and the associated restricted Broyden family of methods.

In 2011, Qi proposed and analyzed an approach to generalize the BFGS method on Riemannian

manifolds and developed a convergence analysis [Qi11]. This generalization combines the retraction-

based ideas described above with vector transport. Given a smooth cost function on a Riemannian

manifoldM with a Riemannian metric g, the Riemannian BFGS (RBFGS) defines a search direction

pk ∈ TxkM at iteration k as the solution to the equation Bkpk = − grad f(xk), where Bk is a linear

operator that approximates the action of the Hessian in the appropriate direction and is updated

for each iteration. Similar to the Euclidean BFGS, a version that propagates the inverse of Bk was

also developed. Then, the new iteration xk+1 is generated by a line-search method with stepsize

αk, i.e., xk+1 = Rxk(αkpk) [Qi11, Section 2].

To update Bk, Qi proposed the following update formula based on the vector transport T with

associated retraction R to define the linear operator Bk+1 : Txk+1
M→ Txk+1

M,

Bk+1 = B̃k −
B̃ksk(B̃∗ksk)[

(B̃∗ksk)[sk
+
yky

[
k

y[ksk
,

where ξ[ denotes the flat of ξ, A∗ denotes the adjoint operator of A, sk = Tαkpk(αkpk), yk =

grad f(xk+1)− Tαkpk(grad f(xk)), and B̃k = Tαkpk ◦ Bk ◦ T −1
αkpk

. The update formula for Hk = B−1

is given by

Hk+1 = H̃k −
(H̃∗kyk)[sk
y[ksk

+
s[k(H̃∗kyk)
s[kyk

+
sky

[
k(H̃∗kyk)s[k
(y[ksk)

2
+
s[ksk

s[kyk
,

where H̃k = Tαkpk ◦ Hk ◦ T −1
αkpk

. The advantage of this approach was that it made it unnecessary

to solve the a system of equations. Qi included a generalization of the Dennis and Moré condition

to the Riemannian setting [Qi11, Section 2.3]. However, Qi’s convergence analysis for RBFGS

restricted the approach on a Riemannian manifold based on exponential mapping and parallel

transport, which may be computationally expensive [Qi11, Section 2.4].

In 2012, Ring and Wirth extended Qi’s BFGS approach by considering infinite dimensional

Riemannian manifolds [RW12]. Their convergence analysis is for both finite and infinite dimensional

Riemannian manifolds with the latter requiring some specific assumptions [RW12, Corollary 13]. In

addition, their method does not require exponential mapping and parallel transport, but requires

differentiated retraction which may be computationally expensive.
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In his 2013 dissertation, Huang expanded the understanding and design of Riemannian quasi-

Newton methods and computational efficiency for both line-search based and trust-region based

algorithms [Hua13]. Huang proposed a systematic generalization of three well-known unconstrained

optimization approaches from the Euclidean space to Riemannian manifolds: the Broyden family of

methods [Hua13, Section 4], the symmetric rank-one trust-region method [Hua13, Section 3], and

the gradient sampling method for both continuous and partly smooth cost functions [Hua13, Section

7]. His dissertation included a complete convergence analysis, a comprehensive implementation

strategy for library design, and strategies for large scale problems for an appropriate subset of the

methods [Hua13].

Similar to the Euclidean case, the Riemannian Broyden family is defined by taking a linear com-

bination of the Riemannian Davidon-Fletcher-Powell (DFP) and the Riemannian BFGS methods

based on a parameter φk. Huang defined the update formula as

Bk+1 = B̃k −
B̃ksk(B̃∗ksk)[

(B̃∗ksk)[sk
+
yky

[
k

y[ksk
+ φkg(sk, B̃sk)vkv[k,

where vk = yk
g(yk,sk)−

B̃sk
g(sk,B̃sk)

, B̃k = TSαkpk ◦Bk◦T
−1
Sαkpk

, and TS is an isometric vector transport (i.e.,

TS satisfies (1.8)) [Hua13, Section 4]. When φk = 0, the Riemannian Broyden family of methods

reduces to RBFGS methods. The restricted Riemannian Broyden family is defined by the convex

combination and the update preserves the positive definiteness of the Hessian approximation when

suitable restrictions are placed on the stepsize and vector transport. When the combination is

nonconvex, then the family becomes the entire Riemannian Broyden family. In the non-restricted

case, convergence behavior and the choice of the parameter φk is more involved as in the Euclidean

case. Huang analyzed the well-posedness of the Broyden family (restricted and non-restricted) and

the convergence rate as a function of φk [Hua13, Section 6].

Huang further developed Qi’s Riemannian Dennis Moré conditions so that they characterize

the required correspondence between the action of Bk and the true Hessian to ensure superlinear

convergence for optimization problems and related (more general) problems of finding zeros of

Riemannian vector fields [Hua13, Section 5].

The theory also introduced the locking condition, which allows superlinear convergence to the

restricted Riemannian Broyden family while avoiding the unacceptably large computational com-

plexity of the differentiated retraction required by Ring and Wirth. The locking condition specifies
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the relationship between the vector transport used and the differentiated associated retraction.

The locking condition and the Riemannian Wolfe conditions are key to guarantee both superlinear

convergence and well-posedness of the Riemannian Broyden family. In general, the theory relaxes

the requirements on the retraction and vector transport, hence it subsumes the earlier RBFGS

work of Qi [Qi11] and Ring and Wirth [RW12], and extends the understanding of Riemannian

quasi-Newton methods.

In the Euclidean space, the symmetric rank-one (SR1) method is a member of the Broyden

family defined by a nonconvex combination. The updated in SR1 does not preserve the positive

definiteness and was considered to be an ineffective method for a long time. However, the SR1

updates are different from the Broyden family updates in that they provide a better approximation

of the action of the Hessian on the entire space and not just in a single search direction. Huang

generalized the SR1 to the Riemannian setting and proposed combining Riemannian SR1 with a

Riemannian trust-region method that uses all of the direction information of the Hessian approxi-

mation [Hua13, Section 3]. The Riemannian symmetric rank-one trust-region method (RTR-SR1) is

an efficient way to solve problems. The convergence analysis of RTR-SR1 in the Riemannian setting

when restricted to the Euclidean setting extends the Euclidean results in the literature [Hua13, Sec-

tion 3.3]. It does not require satisfying the locking condition since it is not a line-search approach.

In the case of large scale problems, an efficient way to store information is necessary. Huang

developed, analyzed, and empirically evaluated limited-memory versions of RTR-SR1 and RBFGS

that only store a few vectors to implicitly represent the rank-one update Bk [Hua13, Sections 3.4

and 4.5].

To solve optimization of partly smooth functions, Huang generalized the gradient sampling

methods from the Euclidean space to Riemannian manifolds. Since we do not have a partly smooth

function, we refer the reader to [Hua13, Section 7] for further details of this method.

1.4 Overview and Dissertation Statement

We propose to use Riemannian optimization theory and the associated efficient algorithms to

increase our understanding of the role extraction problem and algorithms for its solution; to develop

a significantly more efficient and robust approach applicable to various types of role structures and
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a wide range of problem sizes; and to develop and evaluate robust implementations of the associated

algorithms.

This dissertation asserts that the proposal above can be achieved by the following:

1. an analysis of the rank of the neighborhood pattern similarity measure with respect to the

rank of the adjacency matrix of a graph and its number of roles (Chapter 3);

2. the development of a cost function and the use of Riemannian optimization to approximate the

neighborhood pattern similarity measure on the symmetric positive semidefinite fixed-rank

manifold for the first phase of the role extraction problem (Chapter 4);

3. the development of new Riemannian objects for the symmetric positive semidefinite fixed-rank

manifold to improve the performance of state-of-the-art Riemannian algorithms (Chapter 4);

4. the use of k-means clustering and the silhouette statistic on the low-rank factor of the similar-

ity measure to extract the role partition for the second phase of the role extraction problem

(Chapter 4);

5. the proof that Browet and Van Dooren’s full-rank iterative algorithm is a Euclidean gradient

projection method along a projection arc with a fixed stepsize (Chapter 5);

6. the application of a stepsize and Armijo line-search method to the Euclidean gradient pro-

jection method along a projection arc, and the proof that the choice of the Armijo stepsize is

dependent upon the similarity measure parameter β (Chapter 5);

7. empirical evidence of the two-phase role extraction approach being more efficient in time and

robustness with Browet and Van Dooren’s role extraction approach (Chapter 6);

8. the development and analysis of techniques to form a one-phase indirect approach to the role

extraction problem and empirical evidence of robustness of the approach compared to our

two-phase approach (Chapter 7);

9. empirical evidence that our two-phase indirect approach can partition signed networks such

that the network is balanced (Chapter 8);

10. empirical evidence that there exists a relationship between overlapping community structures

and role structures (Chapter 9).
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CHAPTER 2

OVERVIEW OF CURRENT ROLE EXTRACTION

METHODS

2.1 Introduction

The quality function used to solve the role extraction problem (1.1) is constructed either directly

or indirectly. To directly construct the quality function, one must choose a cost function that is

sensitive to a measure of distance between the blocks of edges in A(σi, σj) connecting roles σi and

σj and the ideal blocks between those roles, which is dependent upon the choice of equivalence

relation. Let K(σi, σj) denote the set of ideal blocks between roles σi and σj , where these ideal

blocks are a combination of a set of blocks defined in [DBF05,Rei09]. The direct approach can be

defined by the optimization problem

σ∗ = arg min
σ

∑
σi,σj

min
B∈K(σi,σj)

d (A(σi, σj), B) ,

where d is an appropriate measure of distance associated with a type of equivalence [DBF05]. For

example, a distance measure associated with structural equivalence is given by

d (A(σi, σj), B) =
∑
x∈σi

∑
y∈σj

|A(x, y)−B(x, y)|,

where A(x, y) is the observed edge in the block and B(x, y) is the corresponding value in the ideal

block [DBF05]. Any community detection (or clustering) algorithm can be used to optimize the

quality function to find the optimal assignment of roles [Rei09].

Another direct quality function based on the reduced graph is by Reichardt and White [RW07,

Rei09]. We summarize this quality function in Section 2.3 since it is an extension of the modularity

cost function for community detection [RW07,Rei09]. A more thorough explanation of other direct

quality functions can be found in applications to social network analysis [DBF05].

A problem with direct methods is that there is no rigorous measure to determine whether or

not a role assignment fits the data. Thus, multiple ideal role assignments may need to be tested
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to determine the best fit for the data [DBF05]. Also, the number of roles needs to be specified in

advance. So, direct methods require theoretical and empirical knowledge of the network in advance.

Therefore, for networks where the number of roles is unknown, the method may need to be applied

multiple times, increasing the number of roles each time [DBF05,Rei09].

The indirect approach to the role extraction problem comprises of two tasks:

(1) construct the quality function based on a (dis)similarity measure;

(2) define clusters as groups of nodes close to each other to extract the roles.

There are two approaches to constructing the quality function for indirect methods. The first is to

embed the graph nodes in Rp based on some structural properties of the nodes (e.g., the degree, the

number of neighbors at distance d, the measure of centrality, etc.) [WF94, DBF05, NG04, Kle10].

Once p measures have been computed for each node i and aggregated into an indicator vector ti,

then the pairwise dissimilarity measure is computed as the distance between the indicator vectors

D(i, j) = d(ti, tj), where d is defined as a vector norm [WF94,DBF05].

The other approach used to construct the quality function for indirect methods is to define

the (dis)similarity measure based on the adjacency matrix. This approach is preferred when one

wants to establish roles based on a specific equivalence criterion [Cas12, Bro14]. Pairwise node

similarity measures based on regular equivalence are most often used [BGH+04, LHN06, CB11,

BDVB13, CAD13, CLVD16]. For these methods, each node from the input graph is compared

with the nodes from the reduced graph by measuring how similar they are in terms of flows or

connectivity patterns. In other words, given an input graph GA(VA, EA) and a reduced graph

GB(VB, EB), the pairwise node similarity measure S(A,B) defines a positive real value for every

pair of nodes (i, j) with i ∈ VA and j ∈ VB. Each node of the input graph can then be associated

with the role, i.e., a node in the reduced graph, to which it is most similar.

In practice, the reduced graph is unknown. Thus, instead of assuming the structure of the

reduced graph, each node of the input graph is compared to all the nodes in the same graph to

define a pairwise node self-similarity measure for the input graph. The role structure is extracted

from the similarity matrix using a community detection (or clustering) algorithm to group highly

similar nodes together.

Several pairwise node similarity measures have been defined in the literature [BGH+04,LHN06,

CB11,BDVB13,CAD13,CLVD16]. However, many of these measure were later deemed unsuitable
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for the role extraction problem due to difficulties encountered when extracting role structures

from certain types of graphs (e.g., regular graphs and normal graphs) [Bro14]. In addition, these

measures suffered from a loss of information (e.g., the origin, the destination, and the intermediate

nodes involved in the transmission of the flow), or were more suited to detect community structures

than role structures [Bro14]. Since the focus of this dissertation is an indirect approach to the role

extraction problem, we summarize a few popular pairwise node similarity measures in Section 2.4.

Browet and Van Dooren solved the role extraction problem by using a similarity measure that

assumes there exists more than one role in a network and identifies groups of nodes that have similar

flow patterns [Bro14,BD14]. To represent these flow patterns, they used the self-similarity measure

by Denayer [Den12] to compare the neighborhood patterns of every node, where the measure

is high for any pair of nodes sharing analogous flow properties. Their two-phase role extraction

method first computes the measure of neighborhood pattern based similarity using a matrix iterative

scheme; and, second, extracts the role partitions using the fast community detection algorithm by

Browet et al. [Bro14, BAD13]. For large networks, a modification of the two-phase algorithm was

developed to reduce time and space requirements. The iterative scheme to compute the matrix

with elements that measured pairwise node similarity was modified to include a projection onto

low-rank matrices to converge to a low-rank approximation of the similarity matrix. So rather

than producing the true n × n similarity matrix S where n in the number of nodes, an n × r

matrix factor is computed such that Ŝ = XXT approximates S. Since X is computed directly,

i.e., Ŝ is not formed, these modifications resulted in a noticeable reduction in computational time

for large networks without loss of robustness in determining the role structure [Bro14, BD14]. We

summarize the neighborhood pattern similarity measure, as well as Browet and Van Dooren’s low-

rank approximation algorithm, in Section 2.4.3. The second phase of their algorithm requires

computing the approximate similarity matrix Ŝ for use in community detection to extract the role

partition. While the community detection algorithm by Browet et al. [BAD13,Bro14] is faster than

other known community detection algorithms, the complexity of formulating the full similarity

matrix at the beginning may be unacceptably costly for large networks in terms of both time and

space.

Also, while any community detection (or clustering) algorithm can be used to find the optimal

role assignment for direct and indirect quality functions, certain algorithms have been shown to de-
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termine the optimal role assignment better than others and are preferred due to either convergence

properties or efficiency [KR05,Rei09,Bro14,Tra14]. In Section 2.5, we summarize three algorithms

used to find community structure; however more community detection and clustering algorithms

can be found in [KR05,Rei09,Bro14,Tra14].

2.2 Quality Functions for Community Detection

Since the role extraction problem is a generalization of the community detection problem, we

first summarize quality functions used to determine community structures in networks.

Girvan and Newman in [GN02] introduced community detection, which is used to cluster to-

gether highly similar nodes in a network when the pairwise node similarity is simply taken to

be the edge weight. Community detection has been of interest in many research areas such as

epidemiology [BCG+09, ST12, TBD+14], the influence and spread of information over social net-

works [LH05,WL08], the analysis of air transportation networks [GMTA05,LT13], and the detection

of roles in metabolic networks [GNA05]. While there is no universally accepted definition of commu-

nities, communities can be, informally, defined as sets of nodes with a high internal density, either

in the number of internal edges or their weight, and a low external density with the rest of the

network. Therefore, to extract community structures, several quality functions have been proposed

based on suitable rewards for edges that are present, or penalties for edges that are absent, within

each community and are optimized over the community assignment for each node. However, in

general, there may exist many local minima due to the flatness of the quality functions. Therefore,

the community detection problem is NP-hard [BDG+06,BDG+08].

Assuming that rewards and penalties are given for the presence of the edges proportional to the

weight of edges, a general cost function proposed by Reichardt and Bornholdt in [RB06] is

HRB(σ) =

N∑
i,j=1

(Wi,j − γRBpi,j)δ(σi, σj), (2.1)

where W is the weighted adjacency matrix of the graph, N is the number of nodes, pi,j is the

expected weight of an edge between nodes i and j known as the random null model, γRB is the

resolution parameter, and σi denotes the community index of node i, where δ(σi, σj) = 1 if σi = σj ,

and 0 otherwise. This cost function is known as the null model, and is often used as the general

framework for other cost functions.
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A popular cost function for community detection is modularity by Newman and Girvan [New04,

NG04,LN08], and is obtained by choosing γRB = 1 and pi,j = (souti sinj )/m in (2.1), i.e.,

HNG(σ) =
1

m

N∑
i,j=1

(
Wi,j −

souti sinj
m

)
δ(σi, σj), (2.2)

where m is the sum of the weights of all the edges in the graph and s
in(out)
i is the incoming (outgoing)

strength of node i. Based on a community partition, the modularity cost function compares the

actual edge density within each community to the expected edge density in a random network using

the configuration null model. However, modularity suffers from a resolution limit, i.e., the size of

the communities detected depends on the size of the network [FB07,SDYB12].

Traag et al. in [TVDN11] defined the Constant Potts Model (CPM) to avoid the resolution

limit. For CPM, the expected weight pi,j = γ produces communities whose sizes are independent of

the scale of the network and for which the optimal partition of the entire graph is also optimal for

any subgraph induced by the set of communities. However, while CPM provides a better partition

of the network, it might also require a procedure to optimize the parameter γ to extract the most

significant partition [LDB08,DYB10,TVDN11,TKVD13].

There are several other cost functions that are used to measure the quality of the graph partitions

and a detailed overview and analysis can be found in [POM09,For10].

2.3 Direct Quality Function for Role Extraction: Reichardt and
White

Reichardt and White in [RW07,Rei09,PSR10] solve the role extraction problem by constructing

a direct quality function that is an extension of the modularity cost function for community detec-

tion for directed graphs [GN02, New04, LN08]. For community detection, the generic modularity

cost function is given by

H(σ) =
∑
i,j∈V

[ai,jAi,jδ(σi, σj) + bi,j(1−Ai,j)(1− δ(σi, σj))] , (2.3)

where ai,j ≥ 0 (respectively bi,j ≥ 0) is the weight of the presence (absence) of an edge from node

i to node j [GN02,New04,LN08,Tra14].

Assuming that the image graph is known to have r roles and can be represented by a q × q
unweighted adjacency matrix B such that B(σi, σj) = 1 if the edges are allowed from role σi to role
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σj and B(σi, σj) = 0 if the edges are forbidden, then the quality function by Reichardt and White

to measure the fit between a partition σ for the graph, represented by its adjacency matrix A, and

the reduced graph is given by

QRW (σ,B) =
1

m

∑
i 6=j

[ai,jAi,jB(σi, σj) + bi,j(1−Ai,j)(1−B(σi, σj))] , (2.4)

where ai,j (respectively bi,j) are weights of the presence (absence) of an edge from node i to node j if

an edge is allowed (forbidden) in the role model between σi and σj [RW07,Rei09]. Therefore, (2.4)

is based on regular equivalence between the nodes inside each role. For structural equivalence,

penalties for the presence of forbidden edges and for the absence of allowed edges are considered.

Equation (2.4) can be rearranged to be

QRW (σ,B) =
1

m

∑
i 6=j

[(ai,j + bi,j)Ai,j − bi,j ]B(σi, σj). (2.5)

Reichardt and White proposed to balance the weights ai,j and bi,j since there are more missing

edges than present edges. Hence, they imposed that ai,j + bi,j = wi,j for all i, j ∈ VA, where wi,j is

the weight of edge (i, j) ∈ EA, and that

∑
i 6=j

ai,jAi,j =
∑
i 6=j

bi,j(1−Ai,j) or
∑
i 6=j

wi,jAi,j =
∑
i 6=j

bi,j .

Therefore, they set ai,j = wi,j − bi,j and bi,j = γpi,j where pi,j is the probability that an edge from

node i to node j exists and is defined as pi,j = kouti kinj /m
2, and parameter γ tunes the presence

(or absence) of edges [Rei09]. If γ = 1, then (2.5) gives equal total weights to edges and missing

edges, while γ < 1 (or γ > 1) gives more total weight to present (absent) edges [Rei09]. If the

image matrix B is diagonal, i.e., the roles have community structure, then (2.5) is the modularity

cost function for community detection [GN02,New04,LN08].

Observe that (2.5) can be written as summation over the role indices rather than summation

over the node indices, i.e.,

QRW (σ,B) =
1

m

q∑
s,t

(es,t − γ 〈es,t〉)B(s, t), (2.6)
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where es,t is the actual number of edges between clusters s and t and 〈es,t〉 is the expected number

of edges such that

es,t =
∑
i 6=j

wi,jAi,jδ(σi, s)δ(σj , t),

〈es,t〉 =
∑
i 6=j

pi,jδ(σi, s)δ(σj , t).

Maximizing (2.6) is equivalent to maximizing every term (es,t − γ 〈es,t〉)B(s, t). Therefore, Re-

ichardt and White define the image matrix as

B(s, t) =

{
1 , if es,t − γ 〈es,t〉 > 0,

0 , otherwise,
(2.7)

and suggest to extract the role structure of the input graph by first maximizing

Q∗RW (σ) =
1

2

q∑
s,t

‖es,t − γ 〈es,t〉‖. (2.8)

They use simulated annealing to maximize the quality function (see Section 2.5.1); however, any

community detection algorithm can be used to optimize QRW [RW07,Rei09].

Reichardt and White proved in [RW07, Rei09] that the maximum value of QRW is obtained

when every edge in the network is allowed and missing edges are not allowed. Thus, the minimal

image graph is one that captures the connectivity of the classes of structural equivalence within

the network, and therefore, the maximum number of roles qmax in the image graph is equal to the

number of structural equivalence classes. Then, QmaxRW is computed by

QmaxRW =
1

m

∑
i 6=j

(
wi,j − γ

kouti kinj
m

)
Ai,j , (2.9)

where Ai,j replaces B(s, t) in (2.5) [RW07,Rei09].

Reichardt and White successfully applied their quality function to extract the role structure for

the commodity trade networks [RW07] and protein-protein interaction networks [PSR10]. However,

their quality function suffers from the fact that there is no guarantee that the optimization of (2.8)

extracts a relevant role structure since the reduced graph is removed from the optimization scheme.

Also, they use simulated annealing to optimize their quality functions since it yields good results,

is very general in applications, and simple to implement. However, simulated annealing is known

to be very slow and is not recommended for very large networks [GSPA04,GMTA05,Bro14].
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2.4 Indirect Quality Function for Role Extraction: Similarity
Measure

The focus of this dissertation is to solve the role extraction problem using an indirect method

where the quality function is constructed by a self-similarity measure from the adjacency ma-

trix. There are several graph similarity measures defined in the literature [BGH+04,LHN06,CB11,

BDVB13,CAD13,CLVD16], and, in this section, we summarize several similarity measures designed

for the extraction of role structures based on regular equivalence.

2.4.1 The Similarity Measure of Blondel et al.

2.4.1.1 Definition of the Similarity Measure of Blondel et al.. The similarity measure

of Blondel et al. is a pairwise similarity measure that considers two nodes i ∈ VA and j ∈ VB in

different graphs GA(VA, EA) and GB(VB, EB) to be similar if the children of i are similar to the

children of j or the parents of i are similar to the parents of j [BGH+04]. That is, the similarity

score between nodes i ∈ VA and j ∈ VB is

Si,j =
∑

s:(s,i)∈EA,t:(t,j)∈EB

Ss,t +
∑

s:(i,s)∈EA,t:(j,t)∈EB

Ss,t.

This similarity score can be written in the compact matrix form

Sk+1 = ASkB
T +ATSkB = ΓA,B[Sk],

where A and B are adjacency matrices of GA and GB with nA and nB nodes, respectively, Sk is

the nA × nB matrix of entries Si,j at iteration k, and ΓA,B[Sk] is a linear map on the matrix Sk.

Since only the relative score of each pair of nodes is of interest and not the value of Si,j , the

pairwise node similarity measure of Blondel et al. SBA,B is a fixed point of the iterative sequence

Sk+1 =
ASkB

T +ATSkB

‖ASkBT +ATSkB‖F
=

ΓA,B[Sk]

‖ΓA,B[Sk]‖F
, (2.10)

where S0 = 11T . Equation (2.10) can be written in vector form as

vec(Sk+1) =

(
B ⊗A+ (B ⊗A)T

)
vec(Sk)

‖(B ⊗A+ (B ⊗A)T ) vec(Sk)‖2
=

Γvec(Sk)

‖Γvec(Sk)‖2
,

where vec(Sk) is the vectorization of the matrix Sk formed by stacking vertically the columns Sk

into a column vector, and the matrix Γ is symmetric and nonnegative.
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It has been shown that the sequence converges to vec(S) = Πvec(S0)
‖Πvec(S0)‖2 , where Π is the orthogonal

projector onto the invariant subspace of Γ associated to the dominant eigenvalue ρ(Γ) [BGH+04].

However, −ρ(Γ) is another possible eigenvalue of Γ. Thus, there exists two converging and alter-

nating sequences based on the even or odd iterates [BGH+04]. The authors suggest to define the

pairwise node similarity matrx by the sequence of even iterates, since the sequence converges to a

unique nonnegative vector with the largest possible 1-norm, i.e., the sum of the magnitudes of all

entries [BGH+04].

For the role extraction problem, if the hypothetical role structure is unknown for the network,

then (2.10) can be computed as a pairwise self-similarity measure SBA,A = SBA and is the fixed point

solution of the sequence

Sk+1 =
ASkA

T +ATSkA

‖ASkAT +ATSkA‖F
. (2.11)

However, (2.11) tends to give higher similarity scores for pairs of nodes involving one high degree

node, which can lead to the situation where pairs of nodes are more similar to other nodes than to

themselves. An effective method to avoid this situation is to diagonally scale the matrix such that

each node is exactly similar to itself, i.e., Si,i = 1, and all other similarity scores are less than or

equal to one, i.e., Si,j ≤ 1, that is

SBA = D−0.5
S SBAD

−0.5
S ,

where DS is the diagonal matrix of the unscaled self-similarity scores [Cas12].

The Blondel et al. similarity measure has been applied to automatically extract synonyms

from a dictionary by assuming that synonyms have many words in common in their definitions

and appear together in the definition of many words [BGH+04]. However, the similarity measure

cannot extract relevant similarity scores when the graph is regular or the adjacency matrix A is

a normal matrix, i.e., a matrix A is normal if it satisfies AAT = ATA, because the rank of the

similarity matrix is 1 [BGH+04]. Thus, after scaling, the role structure cannot be extracted because

SBA = 11T .

2.4.1.2 Low-rank Approximation. The computational complexity of the similarity mea-

sure of Blondel et al. is O(n3). However, two low-rank approximation schemes have been pro-

posed to compute a low-rank approximation of the similarity matrix. The scheme by Cason et al.

in [Cas12,CAD13] is an iterative algorithm, while the method by Zhou in [Zho15] is a Riemannian
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optimization method on the set of matrices with Frobenius norm 1 and rank at most k, i.e.,

S≤k(n, q) =
{
UDV TRn×r | U ∈ St(q, n), V ∈ St(k, q), D diagonal , ‖D‖F = 1

}
,

where q is the number of roles, St(q, n) denotes the Stiefel manifold (the set of all n×q orthonormal

matrices). Note that S≤k(n, q) is not a manifold, rather it is the union of fixed-rank manifolds, i.e.,

S≤k(n, q) =
k⋃
r=1

Sr(n, q), (2.12)

where

Sr(n, q) =
{
UDV TRn×q | U ∈ St(q, n), V ∈ St(k, q), Dr diagonal , ‖Dr‖F = 1

}
,

is a fixed-rank manifold with r nonzero singular values [Zho15].

Both methods find solutions of the optimization problem

Sk+1 := arg max
‖S‖F=1

〈S,ΓA,B[Sk]〉F , (2.13)

where 〈·, ·〉F denotes the Frobenius inner product. This optimization problem can be written as

Sk+1 := arg max
S∈S≤k(n,r)

〈
S,Γ2

A,B[Sk]
〉
F
, (2.14)

where Γ2
A,B[Sk] = ΓA,B[ΓA,B[Sk]] [Cas12,CAD13,Zho15]. See [Cas12,CAD13] for a proof of conver-

gence of Cason et al.’s low-rank iterative algorithm, and see [Zho15] for the convergence of Zhou’s

Riemannian optimization approach.

2.4.2 The Similarity Measure of Cooper and Barahona

The self-similarity similarity measure of Cooper and Barahona is based on the number of paths

originating from or leading to each node [CB11, BDVB13]. The number of paths of length ` from

node i to node j is given by [A`]i,j and the number of paths from j to i is [(AT )`]i,j . Then, the total

number of outgoing and incoming paths of length ` from and to node i is [A`1]i and [(AT )`1]i.

Intuitively, if two nodes have similar connectivity patterns, then they should roughly have the

same number of neighbors at various distances. Based on this intuitive idea, the indicator matrix

X containing the total number of paths of length ` ≤ `max is given by

X =
[
βA1 | · · · | (βA)`max1 | βAT1 | · · · | (βAT )`max1

]
, (2.15)
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where the first `max columns correspond to the outgoing paths and the last `max columns correspond

to the incoming paths. The parameter β = α/ρ(A) guarantees convergence of the sequence where

α ∈ [0, 1] weighs the importance of long paths (global connectivity) with respect to short paths

(local connectivity), and ρ(A) is the dominant eigenvalue of A, i.e., ρ(A) is the spectral radius of

A [CB11,BDVB13].

Since each row of X is an indicator vector of the total flow profile of the associated node, then

the similarity score of Cooper and Barahona SCBA between nodes i and j is

Si,j =
xix

T
j

‖xi‖‖xj‖
, (2.16)

where ‖·‖ is the Euclidean norm, and scaling ensures that Si,i = 1 and Si,j ≤ 1 [CB11, BDVB13].

The similarity matrix can be computed for `max → ∞ as the normalized sum of the two iterative

sequences

Soutk+1 = A

(
11T +

(
α

ρ(A)

)2

Soutk

)
AT (2.17)

Sink+1 = AT

(
11T +

(
α

ρ(A)

)2

Sink

)
A, (2.18)

which converge when α < 1 [CB11,BDVB13].

Note that the similarity measure of Cooper and Barahona is cheaper to compute than the

similarity measure by Blondel et al. when `max is finite. However, information (like the origins

or destinations of the paths) is lost since the measure only considers the total number of paths by

computing the product of powers of A and 1.

2.4.3 Neighborhood Pattern Similarity Measure

2.4.3.1 Definition of Neighborhood Pattern Similarity Measure. The next similarity

measure we describe is the neighborhood pattern similarity measure, first proposed by Denayer

in [Den12] and further analyzed by Browet and Van Dooren in [Bro14, BD14]. Given a directed

graph GA(V,E), the neighborhood pattern similarity measure S ∈ Rn×n is defined as a fixed point

of the operator

S = ΓA[I + β2S] (2.19)
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where I is the identity matrix, β ∈ R, and, given a matrix X ∈ Rn×n, the operator ΓA[·] is defined

as

ΓA : Rn×n → Rn×n : X 7→ ΓA[X] = AXAT +ATXA. (2.20)

To derive (2.19), Browet and Van Dooren defined a neighborhood pattern of length ` as the

number of incoming (I) and outgoing (O) edges starting from a node, which they called the source

node [Bro14]. For example, neighborhood patterns of length 1 are patterns where two nodes are

similar if they have common parents, i.e., Figure 2.1a, or common children, i.e., Figure 2.1b. The

number of common parents between two nodes (i, j) is the number of nonzero row elements shared

by the i-th and j-th columns of A, i.e., [ATA]i,j and the number of common children is the number

of nonzero column elements shared by the i-th and j-th rows of A, i.e., [AAT ]i,j . Therefore, the

number of common reachable nodes, called target nodes, between every pair of source nodes for

neighborhood patterns of length 1 is N1 = AAT +ATA [Bro14].

For neighborhood patterns of length 2, there are four possible neighborhood patterns (see

Figure 2.2) and the number of common target nodes between every pair of source nodes for neigh-

borhood patterns of length 2 is given by

N2 = AAATAT +AATAAT +ATAATA+ATATAA = AN1A
T +ATN1A = Γ2

A[I],

where Γ2
A[·] corresponds to the operator ΓA[·] defined by (2.20) applied two times.

Following this same pattern, there are eight possible neighborhood patterns of length 3 (see

Figure 2.3) and the number of common target nodes can be computed by N3. In general, the

number of possible neighborhood patterns of length ` is 2` and the number of common target

nodes is given by

N` = AN`−1A
T +ATN`−1A = Γ`A[I],

where Γ`A[·] corresponds to applying the operator ΓA[·] defined by (2.20) ` times. Therefore, the

neighborhood pattern pairwise node similarity measure can be defined as the weighted sum of the

number of common target nodes of the neighborhood patterns of any length, i.e.,

S =

∞∑
`=1

β2(`−1)N` =

∞∑
`=1

β2(`−1)Γ`A[I], (2.21)

where β ∈ R is a scaling parameter [Bro14].
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1(a) pattern I: ATA 1(b) pattern O: AAT

Figure 2.1: All possible neighborhood patterns of length 1 for the similarity pattern (2.19) where
the source nodes i and j are the black circles and the target node is the gray square

1(a) pattern I-I: ATATAA 1(b) pattern O-O: AAATAT

1(c) pattern I-O: ATAATA 1(d) pattern O-I: AATAAT

Figure 2.2: All possible neighborhood patterns of length 2 for the similarity pattern (2.19) where
the source nodes i and j are the black circles and the target node is the gray square

Browet and Van Dooren showed in [Bro14, BD14] that (2.21) can be computed as the limit

k →∞ of the iterative sequence (2.19), since for an initial matrix S0,

Sk+1 = ΓA[I] +
(
β2
)2

Γ2
A[I] + · · ·+

(
β2
)k

Γk+1
A [I] +

(
β2
)k+1

Γk+1
A [S0].

They set S0 = 0 to get the enumeration of patterns discussed previously. Therefore, (2.19) can

be written for k ≥ 1 as

Sk+1 = S1 + β2ΓA[Sk], (2.22)

where

S1 = ΓA[I] = AAT +ATA. (2.23)

The similarity matrix S is a symmetric positive semidefinite matrix and the parameter β can be

chosen to increase the weight of long neighborhood paths while guaranteeing convergence of the
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1(a) pattern I-I-I: ATATATAAA 1(b) pattern O-O-O: AAAATATAT

1(c) pattern I-I-O: ATATAATAA
1(d) pattern O-O-I: AAATAATAT

1(e) pattern I-O-O: ATAAATATA 1(f) pattern O-I-I: AATATAAAT

1(g) pattern I-O-I: ATAATAATA 1(h) pattern O-I-O: AATAATAAT

Figure 2.3: All possible neighborhood patterns of length 3 for the similarity pattern (2.19) where
the source nodes i and j are the black circles and the target node is the gray square

sequence Sk in (2.19) [Bro14,BD14]. The fixed point of (2.22) of interest, S∗, is

vec(S∗) =
[
I − β2

(
A⊗A+ (A⊗A)T

)]−1
vec(S1), (2.24)

where vec(S) denotes the vectorization of the matrix S formed by stacking the columns of S into

one column vector.

It was shown in [Bro14,BD14] that

β2 <
1

ρ (A⊗A+ (A⊗A)T )
, (2.25)
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is a necessary and sufficient condition for the sequence to converge to S∗, i.e., to have a well-defined

similarity metric. A sufficient bound that is less computationally expensive to approximate to

ensure that constraint (2.25) is satisfied is given by

β2 ≤ 1

ρ ((A+AT ))2 . (2.26)

Unfortunately, even when S∗ is well-defined, the fixed point may be impractical to compute due

to high computational cost and memory requirements. That is, even if A is sparse, the matrix Sk

usually becomes denser as k increases and the complexity of an iteration is O(mn2) where m is the

number of edges, i.e., nonzero elements, in A [Bro14]. However, Browet and Van Dooren addressed

the issue of computational complexity with a low-rank approximation of the similarity measure.

Also, as with the similarity measure of Blondel et al., S∗ may have pairs of nodes that are

more similar to other nodes than to themselves. Therefore, diagonally scaling the matrix such that

Si,i = 1, and Si,j ≤ 1 avoids this issue, i.e.,

S∗ = D−0.5
S∗

S∗D
−0.5
S∗

, (2.27)

where DS∗ is the diagonal matrix of the unscaled self-similarity scores. Lastly, the rank of S∗ is

equal to the rank of S∗ since D−0.5
S∗

is a nonsingular matrix, which we will use later in Chapter 3.

Observe that the neighborhood pattern similarity measure is a generalization of the similarity

measure of Cooper and Barahona, SCB, which only compares the total number of paths originating

from or leading to a node and does not compare the target nodes nor source nodes of those paths.

Also, SCB is restricted to only direct paths (which are define by patterns I-I-· · · -I and O-O-· · · -O)

and does not consider all possible types of neighborhood patterns. Therefore, the similarity measure

of Cooper and Barahona for an unweighted regular block cycle graph (where each role contains the

same number of nodes and each node is connected to all of the nodes in the next role of the cycle)

is rank 1 because all of the nodes have a constant number of incoming and outgoing neighbors for

any distance. Thus, the role structure cannot be extracted from SCB. The neighborhood pattern

similarity is able to distinguish between the blocks since it considers all possible neighborhood

patterns of length `. We show in Chapter 3 why the role structure can be extracted from the

neighborhood pattern similarity measure.
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2.4.3.2 Low-rank Approximation. Even if the sequence (2.22) for the neighborhood pat-

tern similarity measure is guaranteed to converge, the computational cost to compute the fixed point

may be unacceptably high. Therefore, Browet and Van Dooren defined a low-rank approximation

of the similarity matrix Sk+1 [Bro14, BD14]. For S
(r)
k+1 = Xk+1X

T
k+1, where Xk+1 ∈ Rn×r∗ is a

full-column rank matrix of size n× r, the low-rank similarity approximation scheme is defined as

S
(r)
1 = Π(r)

[
[A | AT ][A | AT ]T

]
= X1X

T
1

S
(r)
k+1 = Π(r)

[
S

(r)
1 + β2Γ

[
S

(r)
k

]]
= Xk+1X

T
k+1 (2.28)

where Π(r)[·] is an orthogonal projector onto the dominant subspace of dimension at most r, which is

computed as a truncated singular value decomposition (SVD) on the Rk-factor, i.e., Rk = UkΣkV
T
k

where Rk ∈ R3r×3r is upper triangular, Uk and Vk are orthogonal 3r × r matrices, and Σk is a

diagonal matrix of the singular values σ1 > · · · > σr ≥ 0, of the QR-factorization of Yk defined as

Yk =
[
X1 | βAXk | βATXk

]
. (2.29)

The updated factor Xk+1 is computed as

Xk+1 = QkUkΣk. (2.30)

The stopping criterion for the low-rank iteration of Browet et al. requires the absolute Frobenius

norm difference betweenXk+1 andXk to be less than a given ε > 0. To avoid numerical cancellation,

this can be computed by

‖R̃k+1

(
Ir 0
0 −Ir

)
R̃Tk+1‖F ≤ ε (2.31)

where R̃k+1 ∈ R2r×2r is the upper triangular matrix from the QR-factorization of [Xk+1 |Xk] [Bro14,

BD14]. Algorithm 1 summarizes Browet and Van Dooren’s low-rank iterative method.

Note that the initial iterate for Algorithm 1 requires the rank r truncated SVD computation

of a n × 2n (ideally sparse) matrix and nr operations of a matrix products yielding a total of

O(nr2) + O(nr) for the initial iterate where the coefficient of the first term depends upon the

method used to compute the truncated SVD [Lar98,BR05]. After the initial iterate, the algorithm

requires 4nmr operations matrix multiplications (line 4), the QR-factorization of a n × 3r matrix

(line 5), the rank r truncated SVD computation of a 3r × 3r upper triangular matrix (line 6),

and 9nr2 operations of matrix multiplication (line 7) yielding a total of O(nmr) +O(nr2) +O(r3)

36



Algorithm 1 Browet and Van Dooren’s Low-Rank Similarity Measure Iteration [Bro14,BD14]

Input: A ∈ Rn×n, β ∈ R, fixed-rank r, and tolerance ε << 1

Output: Xk+1 ∈ Rn×r

1: Compute rank r truncated SVD of
[
A | AT

]
for U1 and Σ1

2: Compute X1 = U1Σ1

3: for k = 1, 2, . . . , do

4: Set Yk =
[
X1 | βAXk | βATXk

]
5: Compute QR-factorization of Yk for Qk and Rk

6: Compute rank r truncated SVD of Rk for Uk, and Σk

7: Compute Xk+1 = QkUkΣk

8: Compute QR-factorization of [Xk+1 | Xk] for R̃k+1

9: if

∥∥∥∥R̃k+1

(
Ir 0
0 −Ir

)
R̃Tk+1

∥∥∥∥
F

≤ ε then

10: Stop

11: end if

12: end for

where the coefficient of the second term depends upon the method used to compute the QR-

factorization [GV13].

The authors proved that the low-rank iterative scheme (2.28) converges locally to a fixed point

S(r) if the spectral gap at the rth singular value of S∗ is sufficiently large [Bro14]. In other words,

for S(r) = XXT = UΣ2UT where X ∈ Rn×r∗ , U ∈ Rn×r is an orthogonal matrix and the dominant

subspace of the low-rank approximation (2.22), and Σ ∈ Rr×r is a diagonal matrix of the dominant

singular values σ1 > · · · > σr ≥ 0, Algorithm 1 converges locally when β satisfies [Bro14]

β2 <
1

‖A⊗A+ (A⊗A)T ‖F
(

8‖Σ‖F
σ2
r−σ2

r+1
+ 1
) . (2.32)

Note this does not necessarily cover the entire range of condition (2.25).

2.4.4 The Similarity Measure of Cheng et al.

2.4.4.1 Definition of the Similarity Measure of Cheng et al.. The last self-similarity

measure we describe considers only the parents and children of two nodes and was proposed by

Cheng et al. in [CLVD16]. This similarity measure considers two nodes to be similar if they have

the same children or parents. This is similar to the neighborhood pattern similarity measure for

neighborhood patterns of length ` = 1.
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To derive the similarity matrix, first take β = 0 in (2.19), i.e.,

S = AAT +ATA. (2.33)

For this measure, only the common number of parents and children are considered. However, (2.33)

may lead to incorrect roles because it may fail to distinguish small roles when implementing a low-

rank projection [CLVD16]. Thus, Cheng et al. computed the percentage of common children and

parents between two nodes for (2.33), where the percentage of common children between nodes i

and j is defined as (
AAT

)
i,j√√√√ n∑

k=1

Ai,k

√√√√ n∑
k=1

Aj,k

(2.34)

and the percentage of common parents is defined as(
ATA

)
i,j√√√√ n∑

k=1

Ak,i

√√√√ n∑
k=1

Ak,j

. (2.35)

Therefore the pairwise node similarity measure between nodes i and j (denoted SCi,j) is defined as

SCi,j =

(
AAT

)
i,j√√√√ n∑

k=1

Ai,k

√√√√ n∑
k=1

Aj,k

+

(
ATA

)
i,j√√√√ n∑

k=1

Ak,i

√√√√ n∑
k=1

Ak,j

. (2.36)

Note that this method is a modification to the Salton (or Cosine) index method, which only

considers the percentage of common parents (2.35) between two nodes [SM83].

Observe that the similarity matrix SC can be rewritten as

SC =
[
C|DT

] [
C|DT

]T
, (2.37)

where C and D are the normalized rows and columns, respectively, of the adjacency matrix, i.e.,

Ci,: =
Ai,:√√√√ n∑
k=1

Ai,k

, and D:,j =
A:,j√√√√ n∑
k=1

Ak,j

. (2.38)
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2.4.4.2 Low-rank Approximation. As in Browet and Van Dooren’s low-rank method

for the neighborhood pattern similarity measure, a low-rank approximation of (2.37) was derived

in [CLVD16] to reduce the total complexity of computing S. The low-rank similarity approximation

scheme is defined as

Π(r)
[
SC
]

= Π(r)
[[
C|DT

] [
C|DT

]T ]
= XXT , (2.39)

where Π(r)[·] is the truncated SVD of dimension at most r on the factor
[
C|DT

]
. That is,

[
C|DT

]
= UΣV T , (2.40)

where Σ is a real r×r matrix of the r singular values, and U ∈ Rn×r, and V ∈ Rn×r are orthogonal

matrices [CLVD16]. Therefore, the low-rank factor X is defined as

X = UΣ. (2.41)

Observe that (2.41) is easier to compute than the low-rank approximation of the neighborhood

pattern similarity measure defined by Browet and Van Dooren since it is not an iterative algorithm.

However, information may be lost when computing (2.41) since it does not consider neighborhoods

of longer lengths (e.g., ` = 2 or ` = 3). For example, in Figure 2.4, we have 3 roles and roles 1 and

3 are almost isomorphic. However, while role 3 has pairwise neighbors in role 1, it also has long

neighborhood paths into role 2. This information about the longer neighborhoods would be lost

with the similarity measure of Cheng et al. and the nodes in roles 1 and 3 would be grouped into

one role. Therefore, only 2 roles would be extracted from the similarity measure.

1 2

3

1

Figure 2.4: Example of role graph with two almost isomorphic roles.

2.5 Clustering Algorithms

In this section, we review some common clustering algorithms that can be used to solve the role

extraction problem for either direct or indirect quality functions. While these algorithms are known
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to find community structures of graphs and datasets, they can be used to find role structures due

to the construction of the quality functions for role detection. However, as with the community

detection problem, the algorithms presented are heuristics and may not find the same role partition.

Despite this, these algorithms have been shown to work reasonably well for community and role

detection.

We summarize three algorithms in this section, but additional community detection and clus-

tering algorithms can be found in [KR05,Bro14,Tra14].

2.5.1 Simulated Annealing

We summarize simulated annealing in this section. Implementation details of the algorithm can

be found in [KGV83,GSPA04,GMTA05,Tra14].

2.5.1.1 Summary of Simulated Annealing. Simulated annealing is a general discrete

optimization technique to obtain a global optimum for a given cost function [KGV83]. The idea is

to explore a large proportion of the feasible set at the beginning, and to narrow the search space

as the algorithms progresses towards an optimum. That is, assume there exists two different states

σ1 and σ2, where the current state is σ1. Also, let ∆H denote the variation of the quality function

when there is a switch from state σ1 to σ2, i.e., ∆H(σ1, σ2) = H(σ2)−H(σ1). Simulated annealing

accepts a switch to state σ2 with probability

Pr (σ1 → σ2) =
1

k
exp (β∆H(σ1, σ2)) ,

where k is a scaling parameter over all possible transitions from σ1 [Jay57], i.e.,

k =
∑

σi∈Θ(σ1)

exp (β∆H(σ1, σi)) , Θ(σ1) = {σ | σ1 → σ}.

The parameter β = 1/T is the inverse temperature. The algorithm starts with a high temperature,

i.e., β small, which allows for every transition to be chosen with almost equal probability. Then, as

the algorithm progresses, the temperature slowly decreases such that the transitions with positive

variation of the quality function are accepted with higher probability. As β →∞, only transitions

with strictly positive variation of the cost function are accepted until no more such transitions exist.

This method will always converge to a stable state that is an arbitrarily good approximation of the

true optimum depending on the choice of the parameters [KGV83].
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2.5.1.2 Implementation of Simulated Annealing by Guimerà et al.. Guimerà et al.

in [GSPA04,GMTA05] applied an alternative form of simulated annealing to community detection.

Their algorithm defined two types of transition, where the probability to accept a transition is

given by

Pr (σi → σj) =

{
1 , if ∆H > 0,
1
k exp (β∆H(σi, σj)) , if ∆H ≤ 0.

The first transition type is a local node switch. That is, a random node is removed form its current

community and assigned to a neighboring community based on the variation of the cost function.

The second type of transition consists of either merging two communities into a new community,

or splitting a community into two distinct communities [GSPA04, GMTA05]. The splitting of

a community can be implemented in various ways, for example, by spectral bi-sectioning or by

constrained simulated annealing of the subgraph induced by the community [Bro14,Tra14].

It has been shown that applying global transitions leads to a better approximation of the op-

timum than only applying local transitions. In practice, one usually considers n2 local transitions

and n global transitions before updating the temperature of the system. However, the total com-

plexity of the algorithm cannot be determined, since it depends upon the initial temperature and

the cooling process. Also, in general, simulated annealing is a very slow algorithm and is not usually

recommended for graphs with more than 104 nodes [GSPA04,GMTA05,Bro14].

2.5.1.3 Implementation of Simulated Annealing by Reichardt and White. For the

role extraction problem, Reichardt and White optimize their direct quality function function using

simulated annealing because it yields high-quality results, is very general, and is simple to imple-

ment [RW07,Rei09]. The authors interpret their quality function QRW (which they maximize with

respect to σ and B) as the negative of the modularity cost function, i.e., H({σ}) = −Q. Then, the

probability to transition from one state to another is given by [Rei09]

Pr (σi → σ) =
exp (−β∆H(σi, σ))∑r
s=1 exp (−β∆H(σi, s))

. (2.42)

Suppose that the image matrix B of the network is given. Then the change in variation of the

quality function is

∆H(σi → σ) =

q∑
s

(Bσi,s −Bσ,s)
(
kouti→s − γ

〈
kouti→s

〉)
+

q∑
t

(Bt,σi −Bt,σ)
(
kint→i − γ

〈
kint→i

〉)
, (2.43)
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where kouti→s =
∑

j wi,jAi,jδσj ,s denotes the weight of outgoing edges from node i to nodes in role

s and
〈
kouti→s

〉
=
∑

j pi,jδσj ,s denotes its respective expected value [Rei09]. Similarly, kint→i =∑
j wj,iAj,iδσj ,t denotes the weight of the incoming edges to node i from nodes in role t and〈
kint→i

〉
=
∑

j pj,iδσj ,t denotes its expected value [Rei09].

For undirected networks, the incoming and outgoing edges are equal; hence, the updating

scheme only needs to assess the ki neighbors of node i and determine which of the q roles is best

for node i, which takes O(q2) operations. Thus, a local update is O(〈k〉+ q2) operations, and can

be implemented efficiently for sparse graphs as long as the number of roles is much smaller than

the number of nodes in the network [Rei09].

When B is unknown, the variation of the cost function is computed as

∆H(σi → σ) =

q∑
s

|ασi,s|+ |ασ,s| − |ασi−i,s| − |ασ+i,s|

+

q∑
t

|αt,σi |+ |αt,σ| − |αt,σi−i| − |αt,σ+i|, (2.44)

where αs,t = es,t − γ 〈es,t〉, and the subscripts σi − i denotes all nodes in role σi except node i

and σ + i denotes all nodes in role σ including node i [Rei09]. These coefficients can be computed

efficiently, and the computational complexity does not change [Rei09].

2.5.2 Browet et al.’s Fast Community Detection Algorithm

In this section, we summarize Browet et al.’s community detection algorithm. Implementation

details of the algorithm can be found in [BAD13,Bro14].

Browet et al.’s fast community detection algorithm [BAD13] is a synchronous version of the

Louvain method developed by Blondel et al. [BGLL08]. The Louvain method is a greedy hierar-

chical clustering algorithm that is divided into two steps. First, each node is initialized as its own

community. Then the correction step is performed where, based on the cost function, individual

nodes are sequentially moved to one of their neighboring communities if the cost function produces

positive gain. The second step (called the aggregation step) is when the graph is collapsed to create

a new network based on the communities from the first phase after no correction with a strictly

positive gain can be found for any node in the network. Thus, the aggregation step is implemented

such that a graphs is collapsed to produce a new network with k nodes represented by the weighted

adjacency matrix W̄ = CWCT , where W ∈ Rn×n is the weighted adjacency matrix of the graph
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and C is known as a k × n community matrix such that Ci,j = 1 if community i contains node j

and 0 otherwise.

In the Louvain method, these two phases are applied repeatedly to collapse the graphs until no

more communities can be found. However, while this method has been seen empirically to produce

good community structures, the time it requires to create a partition for large networks is high due

to the sequential correction steps. Thus, Browet et al. proposed in [BAD13,Bro14] an alternative

way to compute the correction steps, speeding up the algorithm.

Compared to the Louvain method, the major improvement of Browet et al.’s algorithm is that it

initializes the community structure such that each node is assigned to its best neighbor based on the

chosen cost function [BAD13,Bro14]. Then, the algorithm finds the graph’s connected components,

which are determined by two types correction steps that are applied repeatedly until the algorithm

reaches a local optimum. The first type of correction is called the positive correction, which ensures

that every nodes has at least a positive contribution to the cost function [Bro14, Section 3.4.2]. The

second correction step is the maximal correction step, which assigns each node to the community

which provides the largest gain based on the current partition [Bro14, Section 3.4.4].

The positive correction step has linear complexity in the number of edges within the community

and a quadratic complexity in the number of nodes in the strongly connected components (SCC),

O(mc + n2
SCC) or O(nc + n2

SCC) for sparse graphs. Note that the size of each SCC is generally

much smaller than the size of the communities. Therefore, the quadratic term does not significantly

increase the time for the algorithm [Bro14, Section 3.4.2].. The details of the storage of communities

can be found in [Bro14, Section 3.4.3].

The maximal correction step only uses the information from the current community distribution

and the community distribution is updated after all the assignment switches have been updated.

Also, since the set of possible corrections for a node is constrained to its neighboring communities,

then for each node we only need to look for its neighboring communities. Therefore, the complexity

of the maximal correction is linear in the number of edges O(m) [Bro14, Section 3.4.4].

The sequence of positive corrections followed by the maximal correction is repeated until all

nodes are assigned to the community with maximal nonnegative gain in the current distribution.

However, the edge weight distribution may prevent the iterative sequence from converging. For

example, in situations where mutually attractive or repulsive nodes permanently switch their com-
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munity assignments, an infinite sequence of positive and maximal corrections may occur. To avoid

this occurrence, the authors designed the algorithm to accept each individual maximal correction

with a probability less than 1 [BAD13,Bro14].

When no more corrections provide a strictly positive gain, the community graph is collapsed

as in the aggregated step of the Louvain method and the aggregated graph is used as a new input

graph for the procedure to provide a new hierarchical level of clustering. The algorithm is repeated

until there is no community structure in the last collapsed graph, that is, the optimal community

matrix in the aggregated graph is the identity. Unfortunately, the total complexity cannot be

determined because it depends on the number of positive and maximal corrections applied, which

cannot be estimated [Bro14, Section 3.4.4].

For the indirect methods to the role extraction problem, after the similarity matrix of the graph

GA(V,E) has been computed, a community detection algorithm is implemented on the similarity

matrix to extract the role partition by grouping highly similar nodes together. Any community

detection quality function and algorithm can be used to extract the roles (see [Bro14, Tra14] for

details on different community detection quality functions and algorithms).

Browet and Van Dooren determine the role structure of the graph by extracting the roles from

the low-rank approximation of neighborhood pattern similarity measure. That is, the authors find

a permutation matrix P such that S(r) = (PX)(PX)T (where X ∈ Rn×r∗ is the low-rank factor

of the similarity matrix) is a block matrix and PAP T is the relabeled graph where the edges are

primarily concentrated into particular blocks. However, to implement their a community detection

algorithm, the authors require the matrix S(r) = XXT [BAD13, Bro14]. While using community

detection is not dependent upon the numerical rank r of the similarity matrix S, the formulation

of S(r) is O(n2r) in complexity and may be costly if the number of nodes or roles is large.

2.5.3 K-means Clustering

In this section, we summarize k-mean clustering. Implementation details of the algorithm can

be found in [AV07,HTF09].

K-means clustering (or Lloyd’s algorithm [Llo82]) is a well-known iterative, data-partitioning

method of vector classification that finds the clusters and cluster centers in a set of unlabeled data.

Given a number of clusters k, the algorithm assigns n observations into the k clusters defined by

cluster centers (or centroids) by iteratively moving the centers to minimize the sum of distance
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functions of each point in the cluster to the center [HTF09]. The k-means algorithm alternates

between the two steps:

(1) for each center, identify the subset of points that are closer to the center and group them

together as a new cluster;

(2) minimize the sum of squared distances of the observations in each cluster to obtain k new

cluster centers.

These two steps are iterated until the cluster assignments no longer change or until the maximum

number of iterations has been reached.

Let the rows of X be the set of n observations, i.e., {x1, x2, . . . , xn}, the k-means algorithm

assigns each row into one of the k clusters Ci for i = 1, . . . , k to minimize the sum of distance

functions of each point in the cluster to the center, i.e., k-means solves the optimization problem

arg min
{Cj}kj=1

k∑
j=1

∑
i∈Cj

d(xi, µj), (2.45)

where µj is the mean of points in cluster Cj and d(xi, µj) is the distance between observation xi

and mean µj [HTF09].

The complexity of the k-means algorithm is O(Iiterknd), where Iiter is the number of iterations

needed for convergence and d is the dimension of the vectors. Note that the convergence of k-means

is dependent upon the initial choice cluster centers. Typically, the initial centers are either chosen

randomly from the observations or computed using the k-means++ algorithm developed by Arthur

and Vassilvitskii in [AV07]. The steps of the k-means++ algorithm are as follows: assuming k

clusters,

(1) choose one observation uniformly from X and set it as the first center;

(2) for each observation xi ∈ X, compute the distance between xi and the first center;

(3) select each subsequent center with a probability proportional to the distance from itself to the

closest center that has already been chosen;

(4) repeat steps 2 and 3 until k centers have been chosen.

Arthur and Vassilvitskii showed in [AV07] that k-means++ algorithm improves the complexity

of the Lloyd’s algorithm and the quality of the final solution. The complexity of the randomized

greedy strategy is O(nkd) and is O(log(k))-competitive with the optimal clustering.
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A limitation of k-means is that it only considers the distance between the means and the data

points and has no representation of the weight or breadth of each cluster. Also, k-means clustering

has no way of representing the size or shape of each cluster. Lastly, k-means clustering requires the

user to assume the number of clusters beforehand. However, there are various clustering statistics

that we can use to determine the optimal number of clusters. We describe two popular clustering

statistics in the next section.

2.6 Clustering Statistics

Unlike with community detection algorithms, which require the full similarity matrix S(r) =

XXT , k-means clustering may be applied on the low-rank factor X ∈ Rn×r∗ of the similarity matrix.

One way to do this is group the rows of X into k roles using k-means clustering. Determining the

number of roles is an important issue. We show in Chapter 3 that for certain types of reduced

graph structures, the numerical rank of the matrix S corresponds to the number of roles in the

graph GA(V,E). In practice, finding the optimal number of roles is difficult.

Cheng et al. in [CLVD16] suggest using a hierarchical k-means clustering method to extract the

role structure. Their algorithm assumes an upper bound on the number of clusters, k, and finds

clusters such that the rows of X within each cluster are orthogonal to each other. The authors

iterate this step until the centroids of the different clusters satisfy the orthogonality criterion.

Once they have determined the optimal number of clusters, they used k-means clustering to

extract the role assignment. A problem with this approach is that for noisy graphs, the elements

in different roles may not be orthogonal to each other and the algorithm struggles to extract the

role partition. Also, the size of each role is very important. If the sizes of the roles are not almost

homogeneous, i.e., the same size, then the algorithm fails to extract the role partition [CLVD16].

Lastly, their approach requires an overestimation of the number of roles. However, this is a concern

for all indirect role extraction methods that use low-rank approximation methods to construct their

quality function. Therefore, we suggest using popular clustering statistics, such as the silhouette

or gap statistic, to determine the optimal role partition.

2.6.1 Silhouette Statistic

Rousseeuw proposed the silhouette statistic in [Rou87] to assess clusters and to estimate the

optimal number of clusters. The silhouette value for each observation measures how similar the
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observation is to points within its own cluster in comparison with points in different clusters [Rou87,

KR05].

To compute the silhouette value, take an observation i and assign it to a cluster (denoted A).

Then, compute the average distance of i to all other observations in A. Note that this can only be

computed when A contains observations other than i, i.e., A is not a singleton. Next, consider any

other cluster C not equal to cluster A and define the average distance of i to all observations in C

as d(i, C). Compute the average distance d(i, C) for all clusters C 6= A and select the minimum

average distance, i.e., b(i) = minC 6=A d(i, C). The cluster B for which the minimum is attained, i.e.

d(i,B) = b(i), is called the neighbor of observation i [KR05]. The silhouette statistic is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)} . (2.46)

Note that b(i) depends on clusters not equal to A being available. Hence, the silhouette value is

not defined if there is only one cluster [KR05].

The silhouette values are between −1 and 1, where a high silhouette value close to 1 that

observation i is well classified in its current cluster and poorly matched to its neighboring clusters.

In other words, the second best cluster choice B is not as close to the actual cluster A. If the

silhouette value is around 0, then it is unclear whether i should be assigned to cluster A or cluster

B. If s(i) is close to −1, then i is closer to B than A and it is assumed that observation i has been

misclassified [KR05].

If most of the observations have high silhouette values, then the clustering solution is ideal.

However, if many of the points have low (or negative) silhouette values, then the clustering solution

may have either too many (or too few) clusters [Rou87, KR05]. Note that the silhouette statistic

can be used with any distance metric.

Kaufman and Rousseeuw proposed to choose the optimal number of clusters k̂ as the value

maximizing the average s(i) over the data set [KR05]. This value is called the silhouette coefficient

(SC).

For the role extraction problem, we use k-means clustering on the low-rank factor X ∈ Rn×r

and assume that the number of roles for the silhouette statistic are {2, . . . , r + 1} where r is the

rank. We choose the optimal number of roles as the number of roles that maximizes the average

silhouette value over the data set.
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We use the subjective interpretation of the silhouette coefficient proposed by Kaufman and

Rousseeuw in [KR05] to evaluate the quality of the role partition, and if the silhouette coefficient

is between 0.71 and 1, then a strong role structure has been found. If the silhouette coefficient is

between 0.51 and 0.70, then a reasonable role structure has been found. A silhouette coefficient

between 0.26 and 0.50 indicates that the structure is weak and alternative clustering methods

should be tested on the data set. Lastly, a silhouette coefficient less than 0.25 indicates that no

substantial structure has been found for the data set [KR05].

2.6.2 Gap Statistic

An alternative statistic for estimating the number of clusters in a set of data is the gap statistic

proposed by Tibshirani et al. in [TWH01]. In this section, we summarize the gap statistic and

refer the reader to [TWH01] for implementation details.

A common graphical approach to determine the number of clusters is to plot an error mea-

surement versus several proposed number of clusters and locate the “elbow” of the plot, where the

“elbow” occurs at the most dramatic decrease in error measurement [Sug98,SLO99]. For example,

Figure 2.5b displays a typical plot of the within-cluster dispersion error measure Wk (defined below)

versus the number of clusters. The error measure Wk decreases monotonically as the number of

clusters increase, but from k = 3 onwards the decrease flattens. Thus, k = 3 is the “elbow” and

indicates the appropriate number of clusters.

The gap statistic formalizes this heuristic by estimating the location of the “elbow” as the

number of clusters with the largest gap value (e.g., Figure 2.5c). Thus, the optimal number of

clusters occurs at the solution with the largest local, or global, gap value within some tolerance

range [TWH01].

The gap statistic is defined as

Gap(k) = E∗n[log(Wk)]− log(Wk), (2.47)

where n is the sample size, k is the number of clusters being evaluated, E∗n[·] is the expected value,

and Wk is the cluster dispersion measurement given by

Wk =

k∑
l=1

1

2nl
Dl, (2.48)
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Figure 2.5: Results of three-cluster example: (a) data; (b) within sum of squares function Wk; and
(c) gap curve. The red circle highlights the optimal number of clusters for the dataset.

where nl is the number of points in cluster l and Dl is the sum of pairwise distances for all points in

cluster l [TWH01]. The expected value E∗n[log(Wk)] is determined by Monte Carlo sampling from

a reference distribution, and log(Wk) is computed from the sample data.

The reference data can either be generated from a uniform distribution over a box aligned with

the principal components of the data matrix X or generated uniformly over a range of X. Tibshirani

et al. showed empirically that the gap statistic using the uniform reference distribution from the

principal component orientation was able to determine the optimal number of clusters better than

the gap statistic using the uniform reference distribution over a range of each feature [TWH01].

The optimal number of clusters k̂ is the smallest number of clusters satisfying

Gap(k̂) ≥ Gapmax−SE(Gapmax), (2.49)

where Gapmax is the largest gap value and SE(Gapmax) is the standard deviation corresponding

to the largest gap value [TWH01]. Note that the gap statistic can be used with any distance metric

and any clustering algorithm.

Unlike the silhouette statistic, the gap statistic is defined for solutions that contain only one

cluster. However, the gap statistic is more computationally expensive since the clustering algorithm

must be applied to the reference data for each proposed clustering solution [TWH01].

For the role extraction problem, we use k-means clustering on the low-rank factor X ∈ Rn×r

and assume that the number of roles for the gap statistic are {1, . . . , r + 1} where r is the rank.

Then, we choose the optimal number of roles as the smallest number that satisfies (2.49).
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CHAPTER 3

ANALYSIS OF NEIGHBORHOOD PATTERN

SIMILARITY MEASURE

For the role extraction problem, the idea of using a low-rank projection of a similarity measure for

the construction of the indirect quality function was proposed by Browet and Van Dooren in [Bro14,

BD14]. However, Browet and Van Dooren only provided empirical evidence of the relationship

between the rank of the neighborhood pattern similarity measure and the number of roles in the

network. In this chapter, we analyze this relationship and prove that for an adjacency matrix

with complete blocks (additionally rank-1 for a weighted adjacency matrix), that the rank of the

neighborhood pattern similarity measure is equal to the number of roles under certain assumptions

about the structure of the image matrix B and the rank of the adjacency matrix.

Browet and Van Dooren compared their similarity measure with the similarity measure of

Blondel et al. [BGH+04] and the similarity measure of Cooper and Barahona [CB11] and showed

empirically for an unweighted regular block cycle graph (where each role contains the same number

of nodes and each node is connected to all of the nodes in the next role of the cycle) that the

neighborhood pattern based similarity measure computed a similarity measure of rank equal to the

number of roles in the network while the similarity measures by Blondel et al. and Cooper and

Barahona both computed similarity measures of rank 1 [Bro14].

Consider an n× n weighted adjacency matrix W with q blocks where the rank of each block is

1 and W can be written in the form

W = ZBZT , (3.1)

where Z is given by the n× q matrix

Z =


z1 0 · · · 0
0 z2 · · · 0
...

...
. . .

...
0 0 · · · zq

 , (3.2)

zq denotes a real, positive vector of length nq, n = n1 + n2 + · · · + nq, and B is the q × q image

matrix. Observe that ZTZ = Diag(||z1||2, ||z2||2, . . . , ||zq||2) where Diag(·) denotes a diagonal
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matrix with the inner products of the zq’s on the diagonal, and the ranks of Z and ZTZ is q.

From this representation of W , we have the following lemmas on the rank of B and the rank of the

neighborhood pattern similarity matrix.

To prove the lemmas, we use the following rank properties of real matrices [HJ90]: assuming

C ∈ Rm×n,

(i) rank(C) ≤ min(m,n);

(ii) rank(C) = n− dimension of the null space of C, denoted dim(Null(C));

(iii) rank(C) = rank(CT ) = rank(CCT ) = rank(CTC);

(iv) if D ∈ Rn×p is an n× p matrix where n ≤ p and rank(D) = n, then rank(CD) = rank(C);

(v) if E is an l ×m matrix where l ≥ m and rank(E) = m, then rank(EC) = rank(C);

Lemma 3.0.1 Given an n × n nonnegative, weighted adjacency matrix W with q blocks that can

be written as W = ZBZT , where Z is an n × q matrix given by (3.2) and B is the q × q image

matrix. Then,

rank(W ) = rank(B) ≤ q. (3.3)

Proof Let B̃ = BZT . Then by rank property (iv) and that rank(Z) = rank(ZT ) = r, rank(B̃) =

rank(BZT ) = rank(B). Now, let W = ZBZT = ZB̃. Then by rank property (v), rank(W ) =

rank(ZB̃) = rank(B). Since B is a q × q matrix, then rank(W ) = rank(B) ≤ q.

Also, the rank of the neighborhood patterns of length 1, S1, is equal to the rank of B augmented

with BT

Lemma 3.0.2 Given an n × n nonnegative, weighted adjacency matrix W with q blocks that can

be written as W = ZBZT , where Z is an n × q matrix given by (3.2) and B is the q × q image

matrix. Then

rank(S1) = rank([B BT ]). (3.4)

Proof Note that

rank(S1) = rank
(
WW TW TW

)
= rank

(
ZBZTZBTZT + ZBTZTZBZT

)
= rank(BZTZBT +BTZTZB) = rank

([
B BT

]
Diag

(
ZTZ,ZTZ

) [BT

B

])
.
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Then, by properties iii and iv,

rank

([
B BT

]
Diag

(
ZTZ,ZTZ

) [BT

B

])
= rank

([
B BT

]
Diag

(
ZT , ZT

))
= rank

([
BT B

])
.

In addition, the ranks of the neighborhood pattern similarity matrices Sk defined by (2.22)

remain constant for all k ≥ 1 as stated in the following lemma.

Lemma 3.0.3 Given an n × n nonnegative, weighted adjacency matrix W with q blocks that can

be written as W = ZBZT , where Z is an n × q matrix given by (3.2) and B is the q × q image

matrix. Then the ranks for all iterates Sk of the neighborhood pattern similarity measure defined

by (2.22) remains constant for all k ≥ 1.

Proof Let W = ZBZT where Z is an n× q matrix given by (3.2) and B is the q× q image matrix.

Then the rank(Z) = q and rank(W ) = rank(B) = q̂ ≤ q by Lemma 3.0.1. Moreover, we can replace

iteration (2.22) by a reduced iteration of dimension q × q as follows:

Define N2 = ZTZ = Diag(||z1||2, ||z2||2, . . . , ||zq||2). Then

Sk = ZŜkZ
T , ∀k ≥ 1 (3.5)

with

Ŝ1 = ΓB
[
N2
]

Ŝk+1 = Ŝ1 + β2ΓB

[
N2ŜkN

2
]
, (3.6)

where ΓB(X̂) = BX̂BT + BT X̂B. Moreover, the conditions on β for (2.22) to converge are the

same for (3.6) since (3.6) is a rewriting of (2.22), not an approximation.

Note that if conditions (2.25) or (2.26) on β are satisfied, then the matrices Sk (and Ŝk) for all

k ≥ 1 remain bounded and satisfy in the limit

S∗ = S1 + β2ΓW [S∗]

Ŝ∗ = Ŝ1 + β2ΓB

[
N2Ŝ∗N

2
]
.

Since all of the terms are semidefinite, it follows that

rank(Sk) ≥ rank(S1)

rank(Ŝk) ≥ rank(Ŝ1),
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including S∗ and Ŝ∗, i.e., the case k =∞.

Now, we show that all of the ranks of the matrices are constant. Let V be the nullspace of

S1 � 0, i.e., V T (W TW +WW T )V = 0. Then it follows that WV = 0 and W TV = 0 since

V T
[
W T W

] [ W
W T

]
V = 0.

Clearly, ΓW [Sk]V = 0, and hence Sk+1V = 0. Since the rank cannot decrease, it must remain

constant.

Lastly, we prove a relationship between the rank of the neighborhood pattern similarity measure

S∗, the rank of B, and the number of roles in the role graph.

Theorem 3.0.4 Given an n×n nonnegative, weighted adjacency matrix W with q blocks that can

be written as W = ZBZT , where Z is an n × q matrix given by (3.2) and B is the q × q image

matrix. Then,
rank(S∗)

2
≤ rank(B) ≤ rank(S∗) ≤ q. (3.7)

Proof By Lemmas 3.0.2 and 3.0.3, we have that rank(S1) = rank([B BT ]) = rank(S∗). Thus,

rank(B) ≤ rank([B BT ]) ≤ 2 rank(B)

by the column space of B. Therefore,

rank(B)

2
≤ rank(S∗)

2
≤ rank(B) ≤ rank(S∗) ≤ q.

Theorem 3.0.4 states that the rank of the image matrix B cannot be less than half of the rank

of S∗. Also, the theorem states that the rank of S∗ is less than or equal to the number of roles q.

However, even if the rank of S∗ can be less than q, the structure of S∗ may still reveal the number of

roles such that the clustering algorithms may extract the role partition. For example, in Figure 3.1,

the role graph has 5 roles, but the ranks of B and W is 2 and the rank of S∗ is 4. However, observe

that there are 5 blocks on the diagonal of S∗. Therefore, S∗ can be partitioned into 5 blocks and

the 5 role structure can be extracted from S∗. (Note that for visual clarity, we show the matrix S∗,

which is the similarity matrix after it has been diagonally scaled (2.27). However, the rank of S∗

is equal to the rank of S∗, so the argument still holds.)

From Theorem 3.0.4, we have the following corollaries.
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Figure 3.1: Example of rank of W and S∗ when the rank(S∗) < q. 10 largest singular values of W
and S∗ where the blocks of W are complete.

Corollary 3.0.5 Given an n×n nonnegative, weighted adjacency matrix W with q blocks that can

be written as W = ZBZT , where Z is an n × q matrix given by (3.2) and B is the q × q image

matrix. If rank(B) = q, the number of roles, then the rank of the neighborhood pattern similarity

measure defined by (2.22) is q.

Proof If rank(B) = q, then, by Theorem 3.0.4, the rank(S∗) = q.

Corollary 3.0.6 Given an n × n nonnegative, weighted adjacency matrix W with q blocks that

can be written as W = ZBZT , where Z is an n × q matrix given by (3.2) and B is the q × q

image matrix. If B is symmetric and rank(B) ≤ q, then rank of the neighborhood pattern similarity

measure defined by (2.22) is equal to rank(B).

Proof Suppose that B = BT and rank(B) ≤ q. Recall from Lemmas 3.0.2 and 3.0.3 that

rank(S∗) = rank(S1) = rank(BN2BT + BTN2B), where rank(BN2BT ) = rank(BTN2B) =

rank(B) ≤ q. Since B = BT , then BN2BT + BTN2B = 2BN2BT and rank(S∗) = rank(Sk) =

rank(S1) = rank(BN2BT ) = rank(B).

Corollary 3.0.5 states that if the rank of the image matrix B is equal to the number of roles,

then the rank of the neighborhood pattern similarity measure S∗ is equal to the number of roles.
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Figure 3.2: Example of rank of W and S∗ when the image matrix B is symmetric. 10 largest
singular values of W and S∗ where the blocks of W are complete.

This is true regardless of the structure of matrix B. The structure of the image matrix becomes

important when the rank of B is less than the number of roles. If the rank of B is less than the

number of roles and B is symmetric, then by Corollary 3.0.6 the ranks of B, W , and S∗ are equal.

For example, in Figure 3.2, the image matrix B is symmetric and the ranks of W and S∗ are 2.

Remark In the literature, there is a debate whether the image graph in Figure 3.2 is a good

representation of the data since roles 2 and 3 are structurally equivalent. Reichardt and White

in [RW07] state that a role graph cannot have structurally equivalent roles, i.e., roles 2 and 3,

while Doreian et al. in [DBF05, Section 7.5] define Figure 3.2 as a core-periphery model. That is,

there is one core role that is connected with itself and with all of the other roles. Also, all other

roles (periphery) are connected to the core role, but are not connected to each other nor are they

connected with themselves [DBF05, Section 7.5].

Throughout this dissertation, we use Reichardt and White’s constraint that no two nodes in the

role graph may be structurally equivalent. This constraint is implicitly imposed by the neighbor-

hood pattern similarity measure, since the similarity measure is not able to distinguish between the

two structurally equivalent roles. Thus, if the role structure has been maliciously chosen without
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1 {2, 3}

1

B̃ =

[
1 1
1 0

]

Figure 3.3: Alternative role graph and image matrix B̃ for Figure 3.2.

considering the role constraint (which would be the case for Corollary 3.0.6), the neighborhood

pattern similarity measure reveals the true role structure. That is, for the graph GW (VW , EW ), we

can find another factorization W = Z̃B̃Z̃T , where, for q̃ < q, the q̃× q̃ image matrix B̃ satisfies the

role constraint and Z̃ is an n× q̃ matrix (see Figure 3.3).

If we impose the role constraint that no two roles in the role graph can be structurally equivalent,

then that implies that if rows i and j in image matrix B are equal, then columns i and j cannot be

equal (or vice versa). If rows i and j are equal and columns i and j are equal, then roles σi and σj

are structurally equivalent. Note that enforcing this constraint when B is symmetric is equivalent

to forcing B to be nonsingular. Enforcing this constraint in Corollary 3.0.6 gives Corollary 3.0.7.

Corollary 3.0.7 Given an n×n nonnegative, weighted adjacency matrix W with r blocks that can

be written as W = ZBZT , where Z is an n × q matrix given by (3.2) and B is the q × q image

matrix. If B is symmetric and and no two roles are structurally equivalent, then the rank of the

neighborhood pattern similarity measure defined by (2.22) is q.

Proof Suppose B is symmetric and no two roles are structurally equivalent, that is B is nonsin-

gular. Then rank(B) = q and the rank of S∗ is q, which follows from Corollary 3.0.5.

Also, note that Theorem 3.0.4 is only true if the blocks in the adjacency matrix are complete

(additionally the blocks are all rank-1 for weighted graphs). For example, in Figure 3.4a, the blocks

of the adjacency matrix W are complete and the ranks of W and S∗ are 4. However, if the blocks

of W are regular blocks and there exist elements in the null blocks, Theorem 3.0.4 fails because the

blocks of the adjacency matrix are not rank-1 (see Figure 3.4b). That is, the rank of the similarity

measure is not equal to the number of roles. However, while the number of roles is not equivalent to

the rank of the similarity matrix, there is still approximately a factor of 10 difference between the

third and fourth singular values and the similarity measure still has three blocks on the diagonal
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Figure 3.4: Block cycle role structure, associated neighborhood pattern similarity, and 10 largest
singular values of W and S∗.

(see Figure 3.4b). Thus, it may be still possible to extract the role partition from an numerical

rank based approximation of the similarity measure.

Observe that Theorem 3.0.4 gives us an idea of the minimal rank necessary for Algorithm 1 to

extract the role structure for a weighted adjacency matrix with q blocks where the rank of each

block is 1. Browet and Van Dooren showed empirically for unweighted random Erdós-Rényi directed

graphs with regular blocks, i.e., blocks that are not rank-1, that the minimal rank necessary for

Algorithm 1 to extract the role structure is related to the number of roles [Bro14,BD14]. However,

for graphs with regularly equivalent roles, a rigorous proof of the relationship between the rank of

the similarity matrix and the number of roles in the graph is needed.

Also, since the rank of the similarity matrix may be less than the number of roles, the ability

to adjust the rank of the similarity matrix such that the clustering algorithm can extract the role
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partition is needed in the case the initial rank is assumed to be too small, or too large, in relation

to the number of roles in the network. We discuss the strengths of a rank-adaptive approach to the

role extraction problem in Chapter 7.
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CHAPTER 4

TWO-PHASE INDIRECT ROLE EXTRACTION

METHOD

In this chapter, we describe a Riemannian optimization approach for approximating the low-rank

neighborhood pattern similarity measure. In Section 4.1.1, we propose a cost function for the sim-

ilarity measure that is maximized over the symmetric positive semidefinite fixed-rank Riemannian

manifold. The manifold framework is discussed and the Riemannian objects required to apply Rie-

mannian optimization algorithms are stated in Sections 4.1.2, 4.1.3 and 4.1.4. In Section 4.2, we

motivate using k-means clustering with the silhouette statistic for the second phase of our indirect

approach to the role extraction problem.

4.1 Phase I: Riemannian Optimization Approach to Low-rank
Neighborhood Pattern Similarity Approximation

The first phase of the indirect approach to the role extraction problem is to compute the

similarity measure of the graph. Motivated by Browet and Van Dooren’s low-rank approach to

the role extraction problem, we construct our quality function by a low-rank approximation of the

neighborhood pattern similarity measure (see Section 2.4.3). However, we approximate the low-rank

similarity matrix by Riemiannian optimization on the symmetric positive semidefinite fixed-rank

manifold. This improves time and complexity of the similarity measure when computing longer

neighborhood patterns or in the presence of graph noise (which we show empirically in Section 6.1).

4.1.1 Cost Function Derivation

In order to replace the low-rank algorithm (Algorithm 1) with a Riemannian optimization

approach, we must first write the low-rank iterative scheme (2.28) in a form that is related to

optimization and deduce a cost function. Observe that (2.28) can be rewritten as

S
(r)
k+1 = Π(r)

[
S

(r)
k +

(
S

(r)
1 − S

(r)
k + β2Γ

[
S

(r)
k

])]
= Π(r)

[
S

(r)
k + grad f

(
S

(r)
k

)]
,
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where grad denotes the Euclidean gradient of f(S) and

f(S) = trace

(
ST
(
S

(r)
1 −

1

2
S + β2ASAT

))
=

〈
S, S

(r)
1 −

1

2
S + β2ASAT

〉
F

, (4.1)

where trace(·) denotes the trace operator, i.e., for matrix A ∈ Rn×n, trace(A) =
∑n

i=1 ai,i, and

〈·, ·〉F denotes the Frobenius inner product. One can verify this by considering the directional

derivative of f along Z ∈ Rn×n, that is,

Df(S)[Z] = trace

(
S

(r)T

1 Z − 1

2
(ZTS + STZ) + β2(AZATST +ASATZT )

)
= trace

(
ZT (S

(r)
1 − S + β2(ATSA+ASAT ))

)
=
〈
Z, S

(r)
1 − S + β2Γ[S]

〉
F
.

Thus, the Euclidean gradient of f is, as desired,

grad f(S) = S
(r)
1 − S + β2Γ[S]. (4.2)

If the similarity matrix S is not full-rank, i.e., S = XXT where X ∈ Rn×r and rank(X) = r

then S can be viewed as an element of the symmetric positive semidefinite fixed-rank manifold

S+(n, r), where S+(n, r) is defined as

S+(n, r) = {S ∈ Sn | S � 0, rank(S) = r}

=
{
XXT | X ∈ Rn×r, rank(X) = r

}
(4.3)

where Sn is the set of symmetric matrices of Rn×n, i.e.,

Sn =
{
S ∈ Rn×n | S = ST

}
. (4.4)

.

Finally, given the cost function f : Sn → R : S 7→ f(S), we define the function F : Rn×r∗ → R :

X 7→ F (X) where

F (X) = f(XXT ) =

〈
XXT , X1X

T
1 −

1

2
XXT + β2AXXTAT

〉
F

, (4.5)

and the optimization problem

max
X∈Rn×r∗

F (X) (4.6)
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is considered for the low-rank approximation of the neighborhood pattern similarity matrix.

Observe that (4.6) is invariant by right-multiplication of X by orthogonal matrices Q of size

r × r. Hence, we need to remove the degeneracy of the critical points. To do this, we take

S+(n, r) := Rn×r∗ /Or where Rn×r∗ /Or is a quotient manifold. Therefore, (4.6) can be rewritten on

the quotient manifold Rn×r∗ /Or as

max
π(X)∈Rn×r∗ /Or

Fr(π(X)) (4.7)

where the function Fr : Rn×r∗ /Or → R : π(X) 7→ Fr(π(X)) = F (X) and π : Rn×r∗ → Rn×r∗ /Or :

X 7→ π(X) is the quotient map that maps X ∈ Rn×r∗ to its equivalence class [X].

4.1.2 Symmetric Positive Semidefinite Fixed-Rank Manifold as Quotient
Manifold

The symmetric positive semidefinite fixed-rank manifold is a popular Riemannian manifold

that has been used in various fields (e.g., signal and image processing). It is well-known that

the manifold is a smooth manifold and that there exist several different geometries: an em-

bedded submanifold in Rn×n [HM94, HS95, KL07, OHM06, VAV09, VV10], a quotient manifold of

Rn×r [AILH09,BMS10,JBAS10,MBS11], a quotient manifold of the Stiefel manifold and the sym-

metric positive definite manifold [BMS10, BS10, MJBS09], and a quotient manifold of the general

linear group [VAV12]. Since the neighborhood pattern based similarity measure defined by Browet

and Van Dooren is a symmetric positive semidefinite or positive definite matrix [Bro14, BD14],

we can derive a cost function from Browet and Van Dooren’s low-rank iteration method and op-

timize it over the symmetric positive semidefinite fixed-rank manifold using known Riemannian

optimization algorithms. We consider the symmetric positive semidefinite fixed-rank manifold with

its quotient manifold representation Rn×r∗ /Or and derive the Riemannian gradient and action of the

Hessian with respect to a special Riemannian metric that improves the storage and computational

complexity of some of the Riemannian objects (see Section 4.1.2).

Any symmetric positive semidefinite matrix S of low rank can be written as the factorization

S = XXT where X ∈ Rn×r and rank(X) = r. Let Rn×r∗ denote the noncompact Stiefel manifold,

i.e., the set of full-rank matrices in Rn×r, and let Or denote the orthogonal group, i.e., Or ={
Q ∈ Rr×r|QTQ = Ir

}
. In Rn×r∗ , we can define the equivalence relation ∼ where X ∼ Y if and
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only if there exists a Q ∈ Or such that Y = XQ and the equivalence class of Rn×r∗ is defined as

[X] = {XQ|Q ∈ Or} . (4.8)

Let Rn×r∗ /Or = Rn×r∗ / ∼ denote the quotient of Rn×r∗ by this equivalence class relation. Also,

let π : Rn×r∗ → Rn×r∗ /Or denote the quotient map that sends X ∈ Rn×r∗ to its equivalence class

[X] viewed as an element of Rn×r∗ /Or. For notation, π(X) denotes [X] viewed as an element in

Rn×r∗ /Or and π−1(π(X)) denotes [X] viewed as a subset of Rn×r∗ . Absil et al. showed in [AILH09]

that

S+(n, r) ' Rn×r∗ /Or (4.9)

is a quotient manifold.

Journée et al. in [JBAS10] equipped the quotient manifold (4.9) with the Euclidean metric.

The Riemannian objects of Rn×r∗ /Or with the Euclidean metric are derived in [JBAS10]. While the

Euclidean metric is a natural choice of a Riemannian metric on Rn×r∗ , it may not be the ideal metric

because, given the horizontal space (which is the orthogonal complement of the vertical space in

the tangent space with respect to the Euclidean metric and derived in [JBAS10])

H1,XRn×r∗ /Or =
{
X(XTX)−1S +X⊥K | S = ST , S ∈ Rr×r, K ∈ R(n−r)×r

}
, (4.10)

a natural basis of (4.10) is

{
X(XTX)−1eie

T
i , i = 1, . . . , r

}⋃{
1√
2
X(XTX)−1(eie

T
j + eje

T
i ), i = 1, . . . , r, j = i+ 1, . . . , r

}
⋃{

X⊥ẽie
T
i , i = 1, . . . , n− r, j = 1, . . . , r

}
, (4.11)

where (e1, . . . , er) is the canonical basis of Rr and (ẽ1, . . . , ẽ(n−r)) is the canonical basis of Rn−r.

The basis (4.11) is not an orthonormal basis with respect to the metric. An orthonormal basis is

important if the size of the problem is large since it allows us to simplify the intrinsic representation

of some of the Riemannian objects (e.g., vector transport, metric, etc.) and to efficiently store the

tangent vectors. Thus, we define an alternative Riemannian metric for Rn×r∗ /Or that provides a

natural basis of a new horizontal space that is orthonormal with respect to the new metric.

The vertical space VXRn×r∗ /Or is defined as

VXRn×r∗ /Or =
{
XΩ | ΩT = −Ω, Ω ∈ Rr×r

}
. (4.12)
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An alternative Riemannian metric ḡ on Rn×r∗ is

ḡX(ηx, ξx) = trace((XTX)ηTx ξx) (4.13)

for all ηx, ξx ∈ Rn×r∗ . Then, the horizontal space is the orthogonal complement to the vector

space (4.12) with respect to the metric (4.13) is

H2,XRn×r∗ /Or =
{
Z ∈ Rn×r∗ |(XTX)−1XTZ = ZTX(XTX)−1

}
(4.14)

=
{
XS +X⊥K | S = ST , S ∈ Rr×r,K ∈ R(n−r)×r

}
. (4.15)

The horizontal space is important because it allows us to represent tangent spaces to the quotient

manifold. To do this, we define the horizontal lift [AMS08]. Given X ∈ Rn×r∗ and a tangent vector

ηπ(X) ∈ Tπ(X)Rn×r∗ /Or, there exists a unique vector η↑X ∈ H2,XRn×r∗ /Or, called the horizontal lift

of ηπ(X) at X, that satisfies

Dπ(X)[η↑X ] = ηπ(X). (4.16)

Also, note that a vector field X ∈ Rn×r∗ 7→ η↑X ∈ H2,XRn×r∗ /Or is a horizontal lift of a tangent

vector to Rn×r∗ /Or if and only if it satisfies

ηXQ = ηXQ, ∀Q ∈ Or. (4.17)

The horizontal lift allows us to define a Riemannian metric g on the quotient manifold Rn×r∗ /Or.
Given a horizontal lift satisfying (4.16), the metric (4.13) on Rn×r∗ defines a metric g on Rn×r∗ /Or.

Lemma 4.1.1 The mapping g defined by

g2,π(X)(ηπ(X), ξπ(X)) = ḡ2,X(η↑X , ξ↑X) = trace((XTX)ηT↑Xξ↑X) (4.18)

is a Riemannian metric on Rn×r∗ /Or.

Proof The lifted metric is invariant on the chosen representation for π(X)

ḡ2,XQ(η↑XQ, ξ↑XQ) = trace
(
(XQ)T (XQ)(ηT↑XQξ↑XQ)

)
= trace

(
(XQ)T (XQ)((η↑XQ)T ξ↑XQ)

)
= trace

(
(XTX)ηT↑Xξ↑X

)
= ḡX(η↑X , ξ↑X).
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An orthonormal basis of (4.15) with respect to (4.18) is

{
XL−T eie

T
i L
−1, i = 1, . . . , r

}⋃{
1√
2
XL−T (eie

T
j + eje

T
i )L−1, i = 1, . . . , r, j = i+ 1, . . . , r

}
⋃{

X⊥ẽie
T
i L
−1, i = 1, . . . , n− r, j = 1, . . . , r

}
, (4.19)

where (e1, . . . , er) is the canonical basis of Rr, (ẽ1, . . . , ẽ(n−r)) is the canonical basis of Rn−r, and

XTX = LLT is the Cholesky decomposition.

The orthogonal projections to the horizontal and vertical space (defined by (4.15) and (4.12),

respectively) are easily characterized.

Lemma 4.1.2 Let X be a point on Rn×r∗ . For any ηx ∈ Rn×r, the orthogonal projection onto the

horizontal space H2,X (4.15) is

PhX(ηx) = ηx −X skew
(
(XTX)−1XT ηx

)
(4.20)

and the projection onto the vertical space VX (4.12) is

PvX(ηx) = X skew
(
(XTX)−1XT ηx

)
(4.21)

where skew(A) = 1
2(A−AT ) for any matrix A ∈ Rr×r.

Proof Any vector η ∈ Rn×r has the unique decomposition

η = ηVXM + ηHXM

whereM = Rn×r∗ /Or and each element ηX belongs to the vector space X . The orthogonal projection

PhX(·) extracts the component that lies in the horizontal space, i.e.,

PhX(η) = η −XΩ

where Ω is a skew-symmetric matrix and PhX(η) satisfies

(XTX)−1XTPhX(η) = (PhX(η))TX(XTX)−1.

Therefore, Ω is given by

Ω =
1

2

(
(XTX)−1XT η − ηTX(XTX)−1

)
= skew

(
(XTX)−1XT η

)
.
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4.1.3 Retractions and Vector Transports on Quotient Manifold

A natural choice of retraction for Rn×r∗ /Or is

Rπ(X)(ηπ(X)) = π(X + η↑X ) (4.22)

which maps a point ηπ(X) ∈ TXRn×r∗ /Or to Rn×r∗ /Or. This mapping can be represented by the

mapping RX : HXRn×r∗ → Rn×r∗ , where the retraction is defined as

RX(ηx) = X + ηx. (4.23)

That is, the retraction can be used to map representative elements of the total space and horizontal

space to a representative element of the equivalence class. Therefore, it is crucial to quotient

spaces to choose representative elements of the equivalence classes carefully for computational and

analytical reasons.

Note that (4.23) may fail if X is not full rank. Thus, we check to see if X is full rank by

computing the QR factorization of X and checking to see if the diagonal of R is nonzero. If the

first p elements on the diagonal of R are nonzero and the p + 1 diagonal element is zero, i.e.,

Rp,p 6= 0 and Rp+1,p+1 = 0, then we truncate X to the be equal to the first p columns of X. This

reduces the rank of X and moves to a manifold with a smaller rank. In Chapter 7, we explore other

rank-adaptive strategies for the role extraction problem.

A common vector transport used in Riemannian optimization is differentiated retraction. The

vector transport by differentiated retraction (which is also the vector transport by projection) is(
Tηπ(X)

(ξπ(X))
)
↑(X+η↑X

)

= Ph(X+η↑X )(ξ↑X ). (4.24)

However, this vector transport is not isometric and may be expensive to compute. Since we have

an orthonormal basis of H2,XRn×r∗ /Or with respect to the Riemannian metric (4.18). Vector

transport by parallelization is the identity. In other words, for the d-dimensional tangent vector

v↑X = B[
Xη↑X , the vector transport by parallelization is given by

T dv↑X = B[
Y T η↑X = B[

YBYB
[
Xη↑X = (B[

YBY )(B[
XBX)v↑X = v↑X (4.25)

where BY and BX are orthonormal bases of H2,Y Rn×r∗ /Or and H2,XRn×r∗ /Or, respectively, and T d

is a d-dimensional representation of the vector transport [Hua13, Section 9.5].
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Since BX forms an orthonormal basis of H2,XRn×r∗ /Or, the Riemannian metric (4.18) reduces

to the Euclidean metric for the intrinsic representations, i.e.,

gX(η↑X , ξ↑X) = vT↑Xu↑X , (4.26)

where η↑X = BXv↑X and ξ↑X = B↑Xu↑X ∈ H2,XRn×r∗ /Or [Hua13, Section 9.5].

4.1.4 Riemannian Gradient and the Action of the Hessian on Quotient
Manifold

Recall the definition of Riemannian gradient [AMS08, (3.31)]: the gradient of F at a point π(X)

on Tπ(X)Rn×r∗ /Or satisfies

DF (π(X))[ηπ(X)] = g2,π(X)(gradF (π(X)), ηπ(X)) (4.27)

for all ηπ(X) ∈ Tπ(X)Rn×r∗ /Or. With this definition, we are able to derive the horizontal lift of the

gradient of (4.6) at π(X) with respect to the metric (4.18), which is given in Lemma 4.1.3.

Lemma 4.1.3 If the horizontal space is (4.15) with respect to the Riemannian metric (4.18), then

the horizontal lift of the gradient of (4.5) at π(X) is

(gradFr(π(X)))↑X = 2 grad f(XXT )X(XTX)−1. (4.28)

Proof Let F̂ denote the cost function on Rn×r∗ . Then, the directional derivative of F̂ along any

Z ∈ Rn×r∗ is

DF̂ (X)[Z] = trace

(
ZXTX1X

T
1 +XZTX1X

T
1 −

1

2
ZXTXXT − 1

2
XZTXXT − 1

2
XXTZXT

− 1

2
XXTXZT + β2ZXTAXXTAT + β2XZTAXXTAT + β2XXTAZXTAT

+ β2XXTAXZTAT
)

= trace
((
ZXT +XZT

)T (
X1X

T
1 −XXT + β2Γ

[
XXT

]))
= trace

((
ZXT +XZT

)T
grad f(XXT )

)
= trace

(
ZT grad f(XXT )X

)
+ trace

(
ZT
(
grad f(XXT )

)T
X
)
.

Since grad f(XXT ) =
(
grad f(XXT )

)T
, then

DF̂ (X)[Z] = trace
(
ZT 2 grad f(XXT )X

)
(4.29)
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and the gradient in Rn×r∗ is

grad F̂ (X) = 2 grad f(XXT )X. (4.30)

Now, observe that the directional derivative along any ηπ(X) ∈ Tπ(X)Rn×r∗ /Or is

DF (π(X))[ηπ(X)] = DF (π(X))[Dπ(X)[η↑X ]] = DF̂ (X)[ηπ(X)]

= ḡX(grad F̂ (X), η↑X) = ḡX(PhX(grad F̂ (X)), η↑X).

Using the definition of the Riemannian gradient given by (4.27), the directional derivative of

the gradient in Rn×r∗ (4.29), the Riemannian metric (4.18), and the fact that

g2,π(X)(ηπ(X), ξπ(X)) = ḡX(η↑X , ξ↑X),

then F along any ηX ∈ Rn×r∗ is

DF̂ (X)[ηX ] = trace(ηTX2 grad f(XXT )X)

= trace(ηTX2 grad f(XXT )X(XTX)−1(XTX))

= trace((XTX)ηTX2 grad f(XXT )X(XTX)−1).

Therefore, the horizontal lift of the gradient is

(gradFr(π(X)))↑X = PhX
(
2 grad f(XXT )X(XTX)−1

)
= 2 grad f(XXT )X(XTX)−1.

Observe that (4.28) satisfies (4.16). Also, (4.28) is in the horizontal space (4.15) with respect

to the metric (4.18) and that it is orthogonal to all vectors in the vertical space (4.12) with respect

to the metric (4.18).

For a Riemannian quotient manifold M = M̄/ ∼, if ∇ and ∇̄ denote the Riemannian connec-

tions onM and M̄, respectively, then the horizontal lift of the Riemannian Hessian of a real-valued

function f at a point π(x) ∈M along ηπ(x) ∈ HxM is defined as

(
Hess f(π(x))[ηπ(x)]

)
↑x =

(
∇ηπ(x) grad f

)
↑x

= Phx

(
∇̄η↑x (grad f)↑x

)
(4.31)

where Phx(·) is the projection onto the horizontal space and η↑x ∈ HxM is the horizontal lift (see

Proposition 5.3.3 in [AMS08] and Definition 1.3.5). Note that we do not have the Riemannian

connection for our metric. However, Absil et al. in [AMS08, Section 6.4.3] show that for Newton’s
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method the affine connection ∇ does not need to be the Riemannian connection induced by the

metric ḡ. Since the geodesics of Rn×r∗ with respect to the metric (4.13) are unknown, we use the

quadratic local model, i.e.,

mx(η) = f(x) + 〈grad f(x), η〉x +
1

2
〈Hess f(x)[η], η〉x , (4.32)

for all η ∈ TxM, and the retraction (4.23) to determine an approximate Hessian along the horizontal

lift η↑X ∈ HXRn×r∗ /Or. Then, we project this approximate Hessian onto the horizontal space using

the projection operator (4.20) to determine the horizontal lift of the approximate Hessian of (4.5)

at π(X) along ηπ(X) ∈ Tπ(X)Rn×r∗ /Or (see Lemma 4.1.4).

Lemma 4.1.4 The horizontal lift of the approximate Hessian of (4.5) at π(X) along ηπ(X) ∈
Tπ(X)Rn×r∗ /Or is(

HessFr(π(X))[ηπ(X)]
)
↑X = PhX

(
2
(
Hess f(XXT )[XηT↑X + η↑XX

T ]X

+ grad f(XXT )η↑X
)

(XTX)−1
)
, (4.33)

where the projection operator to the horizontal space PhX(·) is given by (4.20).

Proof A function on the manifold can be pulled back to the tangent space through the retrac-

tion (1.7), i.e., let F̂ (X) = F (RX(η↑X)) for X ∈ Rn×r∗ and η↑X ∈ HXRn×r∗ /Or where the cost

function F is given by (4.5) and the retraction R is given by (4.23). Then, we expand F̂ such

that we get something in the form of the second order local model (4.32) with respect to the

metric (4.18), i.e., (for simplfication, η = η↑X)

F (RX(η)) = trace

(
(X + η)(X + η)T (X1X

T
1 −

1

2
(X + η)(X + η)T + β2A(X + η)(X + η)TAT )

)
= trace

(
XXT (X1X

T
1 −

1

2
XXT + β2AXXTAT )

)
+ trace

(
XXT (−1

2
(XηT + ηXT )

+ β2A(XηT + ηXT )AT ) + (XηT + ηXT )(X1X
T
1 −

1

2
XXT + β2AXXTAT )

)
+ trace

(
XXT (−1

2
ηηT + β2AηηTAT ) + (XηT + ηXT )(−1

2
(XηT + ηXT )

+ β2A(XηT + ηXT )AT ) + ηηT (X1X
T
1 −

1

2
XXT + β2AXXTAT )

)
+O(‖η3‖)

=F (X) + trace
(
(XηT + ηXT )(X1X

T
1 −XXT + β2(AXXTAT +ATXXTA))

)
+ trace

(
ηT (−(XηT + ηXT ) + β2(A(XηT + ηXT )AT +AT (XηT + ηXT )A))X

+ ηT (X1X
T
1 −XXT + β2(AXXTAT +ATXXTA))η

)
+O(‖η3‖). (4.34)
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Observe that the second trace operator in the truncated expression (4.34) simplifies to (4.29). Since

the local model is evaluated with respect to a given Riemannian metric, the Riemannian gradient

of (4.5) is given by

〈η, grad f(X)〉X = trace
(
ηT 2 grad f(XXT )X

)
= trace

(
(XTX)ηT 2 grad f(XXT )X(XTX)−1

)
=
〈
η, 2 grad f(XXT )X(XTX)−1

〉
X
. (4.35)

By Lemma 4.1.3, we know that 2 grad f(XXT )X(XTX)−1 is the horizontal lift of the gradient

of (4.5) at π(X); thus, it is already in the horizontal space.

Next, we have that the third trace operator in (4.34) contributes to the expression of the Hessian

with respect to the metric (4.13), i.e.,

〈η,HessF (X)[η]〉X = 2 trace
(
ηT ((−(XηT + ηXT ) + β2Γ[XηT + ηXT ])X

+ (X1X
T
1 −XXT + β2Γ[XXT ])η)

)
= trace

(
ηT 2(Hess f(XXT )[XηT + ηXT ]X + grad f(XXT )η)

)
= trace

(
(XTX)ηT 2(Hess f(XXT )[XηT + ηXT ]X + grad f(XXT )η)(XTX)−1

)
=
〈
η, 2(Hess f(XXT )[XηT + ηXT ]X + grad f(XXT )η)(XTX)−1

〉
X
. (4.36)

To enforce that the approximate Hessian is a linear and symmetric mapping of HXRn×r∗ /Or to

HXRn×r∗ /Or, we will apply the orthogonal projector onto HXRn×rr∗ /Or (4.20) to (4.36). Thus, the

horizontal lift of the action of the Hessian of (4.5) at π(X) along ηπ(X) ∈ Tπ(X)Rn×r∗ /Or is

(
HessFr(π(X))[ηπ(X)]

)
↑X =PhX

(
2
(
Hess f(XXT )[XηT↑X + η↑XX

T ]X

+ grad f(XXT )η↑X
)

(XTX)−1
)
.

4.2 Phase II: Extract Role Partition with K-means Clustering
and Silhouette Statistic

In order to avoid computing the full approximate similarity matrix S(r) for the second phase,

we propose using k-means clustering [AV07, HTF09] on the scaled low-rank factor X ∈ Rn×r∗ of

the similarity matrix, where X is scaled by its unscaled self-similarity scores. This allows us to

exploit the low-rank structure we found for the similarity matrix in the first phase, maintaining
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efficiency in time and complexity. Scaling the low-rank factor ensures that nodes are more similar

to themselves than other nodes, which improves the quality of the clustering algorithm.

To determine the optimal number of roles, we propose to use the silhouette statistic [Rou87,

KR05] to evaluate the clustering assignment at an assumed number of clusters. We test the sil-

houette statistic for an assumed list of roles {2, . . . , r + 1}, where r is the rank of the approximate

similarity matrix. We choose to test the silhouette statistic to r+1 because the rank of the similarity

matrix can be less than the number of roles in the network (see Theorem 3.0.4).

While the gap statistic is more robust than the silhouette statistic, the gap statistic is more

computationally expensive [TWH01]. We show, empirically, in Section 6.1.4, that the silhouette

statistic is able to determine the correct number of roles for simulated random networks.

The main issue of using the silhouette statistic to extract the role structure is that if r is large,

then the computational complexity in time and space increases because we have to test for several

numbers of roles. We discuss in Chapter 7 a way to use Riemannian rank-adaptive techniques to

fix this issue.
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CHAPTER 5

BROWET’S FULL-RANK SIMILARITY

ALGORITHM VIEWED AS EUCLIDEAN

OPTIMIZATION

In this chapter we describe Browet and Van Dooren’s algorithms for the neighborhood pattern

based similarity measure as Euclidean optimization with respect to the cost function (4.1).

5.1 The Euclidean Gradient Projection Algorithm

The gradient projection method is a popular Euclidean method to solve the constrained opti-

mization problem

min f(x), subject to x ∈ K ⊆ Rn (5.1)

where K is a nonempty and convex set, f : Rn → R is a continuously differentiable function over

K, and Rn denotes an n-dimensional vector space with an unspecified metric (5.1).

The gradient projection method given in [Ber99] generates a sequence of iterates {xk} given by

xk+1 = xx + αk(x̄x − xk), (5.2)

where

x̄k = [xk − tk grad f(xk)]
+ , (5.3)

αk ∈ (0, 1], tk > 0 is a scalar, and [·]+ denotes the projection onto the set K, which is defined as

[x]+ = arg min
z∈K

‖z − x‖22. (5.4)

The convexity of K guarantees that the projection [x]+ is unique for all x ∈ Rn. However, in

practice, arg minz∈K‖z − x‖22 may be expensive to compute, unless K has a structure that can be

exploited to reduce the computational cost.

There are several stepsize selection procedures for (5.3) where either αk or tk can be viewed as

the stepsize. If tk is some fixed number and αk is the stepsize, then the gradient projection method
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is a feasible direction method with feasible direction dk = x̄k − xk. If αk = 1 for all k and tk is

taken to be the stepsize, then the update for the gradient projection method is

xk+1 = [xk − tk grad f(xk)]
+ . (5.5)

This means that xk+1 is determined by an Armijo-like search on the projected arc {xk(s) | t > 0}.
The convergence analysis of the gradient projection method is given in [Ber99, Section 2.3.2].

Proposition 5.1.1 (Armijo Rule along the Projection Arc) [Ber99, Proposition 2.3.3]

(a) For every x ∈ K there exists scalars t̄ > 0, θ ∈ (0, 1), and σ ∈ (0, 1), and we set tk = θmk t̄,

where mk is the first nonnegative integer m for which

(f(xk)− f(x̄k)) ≥ −σθm grad f(xk)
T (x̄k − xk), (5.6)

where x̄k = [xk − θmt̄ grad f(xk)]
+ and t̄ > 0 is the minimal initial stepsize

(b) Let {xk} be a sequence generated by the gradient projection method with αk ≡ 1 for all k and

with stepsize tk chosen by the Armijo rule along the projection arc. Then every point of {xk}
is stationary.

Suppose that tk = t for some fixed constant t > 0 and αk = 1 for all k. Then, it is possible to

show that the limit point of a sequence generated by the gradient projection method is a critical

point (or stationary point) if t is sufficiently small and the gradient satisfies the Lipschitz continuity

condition [Ber99].

Proposition 5.1.2 (Constant Stepsize) [Ber99, Proposition 2.3.2] Let {xk} be a sequence gener-

ated by the projection method with αk = 1 and tk = t for all k. Assume that for some constant

L > 0, that

‖grad f(x)− grad f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ K. (5.7)

Then, if 0 < t < 2/L, every limit point of {xk} is stationary.

Lastly, we determine a bound for all stepsizes t that satisfy the Armijo condition (5.6). To

prove this bound, we use two theorems. The first is the descent lemma given in [Ber99, Proposition

A.24].
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Lemma 5.1.3 (Descent Lemma) [Ber99, Proposition A.24] Let f : Rn → R be continuously dif-

ferentiable and let x and y be two vectors in Rn. Suppose that

‖grad f(x+ sy)− grad f(x)‖ ≤ Ls‖y‖, ∀s ∈ [0, 1]

where L is some scalar. Then

f(x+ y) ≤ f(y) + yT grad f(x) +
L

2
‖y‖2. (5.8)

The second theorem we use is a result of the projection theorem [Ber99, Proposition 2.1.3].

That is, for x ∈ K, if x̄ = [x− t grad f(x)]+ for t > 0, then

(y − x̄)T (x− x̄) ≤ t(y − x̄)T grad f(x)

and

‖x− x̄‖ ≤ t(x− x̄)T grad f(x). (5.9)

With these theorems, we can prove the following lemma.

Lemma 5.1.4 If grad f(x) is Lipschitz continuous with constant L > 0, then the Armijo rule along

the projection arc (5.6) is satisfied for all t such that

t ≤ 2(1− σ)

L
. (5.10)

There is a lower bound on the stepsize t

t− =
2θ(1− σ)

L
≤ θmt̄ = t, (5.11)

where t̄ > 0 is the minimal initial stepsize and θ ∈ (0, 1) is the reduction factor used in the Armijo

line search.

Proof By the descent lemma 5.1.3, we have

f(xk+1)− f(xk) = f(x̄k)− f(xk) ≤ (grad f(xk))
T (x̄k − xk) +

L

2
‖x̄k − xk‖2. (5.12)

Subtracting σ(grad f(xk))
T (x̄k − xk) from both sides of the inequality, we get

f(x̄k)− f(xk)− σ(grad f(xk))
T (x̄k − xk) ≤ (1− σ)(grad f(xk))

T (x̄k − xk) +
L

2
‖x̄k − xk‖2

≤ −(1− σ)

t
‖x̄k − xk‖2 +

L

2
‖x̄k − xk‖2

≤
(
L

2
− (1− σ)

t

)
‖x̄k − xk‖2. (5.13)
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If t ≤ (2(1 − σ))/L for all t, then the right hand side of (5.13) is nonpositive and the Armijo

condition along the projection arc (5.6) is satisfied for σ ∈ (0, 1).

The search of stepsize t will terminate either when t is large, or when

θmt̄ ≤ 2(1− σ)

L
≤ θm−1t̄.

Therefore, we have a lower bound on stepsize t by applying an additional θ, i.e.,

t− =
2θ(1− σ)

L
≤ θmt̄ = t.

5.2 Browet’s Full-Rank Similarity Algorithm viewed as a
Gradient Projection Method

In this section, we reformulate Browet and Van Dooren’s full-rank similarity algorithm as a

Euclidean optimization problem for our cost function (4.1). Then, we show that their full-rank

iterative algorithm is a Euclidean gradient projection method along a projection arc with respect

to the cost function (4.1) for constant stepsize tk = 1 for all k (Section 5.2.1). Lastly, in Sec-

tion 5.2.2, we add an Armijo stepsize to the gradient projection method and use Lemma 5.1.4 to

show which stepsizes always satisfy Proposition 5.1.1 with respect to the neighborhood pattern

similarity parameter β.

5.2.1 Euclidean Gradient Projection Method with Constant Stepsize

First, we show that Browet and Van Dooren’s full-rank similarity algorithm (2.22) is a gradient

projection method along a projection arc for the cost function (4.1) with constant stepsize tk = 1

for all k, and by Proposition 5.1.2, it converges to the stationary point.

Let Sn+ denote the set of n×n symmetric positive semidefinite matrices. Consider the gradient

projection method along a projection arc (5.5) for an ascent direction. If the stepsize is a fixed

constant tk = 1 for all k, then the Euclidean updated is give by

Sk+1 = Sk + grad f(Sk) = Sk + S1 − Sk + β2(ASkA
T +ATSkA) = S1 + β2ΓA[Sk], (5.14)

which is equivalent to the full-rank iterative update (2.22) in Browet and Van Dooren’s algorithm.

Next, consider the Euclidean projection operator. The Euclidean projection onto the convex

set Sn+ with the Frobenius norm ‖·‖F is given by

[S]+ =
n∑
i=1

max{0, λi}uiuTi , (5.15)
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where S =
∑n

i=1 λiuiu
T
i is the eigenvalue decomposition of S [BV04].

Lastly, we must show that for fixed stepsize tk = 1, the gradient projection method for the

cost function satisfies the convergence Proposition 5.1.2 [Ber99]. To do this, we must show that the

gradient is Lipschitz continuous. Take S,R ∈ S+
n such that grad f(S) = S1−S+β2(ASAT +ATSA)

and grad f(R) = R1 −R+ β2(ARAT +ATRA), where S1 = AAT +ATA = R1 by equation (2.23).

Then, using properties of the Frobenius norm [HJ90, Section 5.6], we have

‖grad f(S)− grad f(R)‖F = ‖
(
S1 − S + β2(ASAT +ATSA)

)
−
(
R1 −R+ β2(ARAT +ATRA)

)
‖F

= ‖(R− S)− β2(A(R− S)AT +AT (R− S)A)‖F

= ‖
(
I − β2

(
A⊗A+AT ⊗AT

))
vec(R− S)‖2

= ‖
(
I − β2ΓA

)
vec(R− S)‖2

≤
(
1− β2ρ

(
A⊗A+AT ⊗AT

))
‖R− S‖F

≤
(
1− β2

(
‖A‖2 + ‖AT ‖2

))
‖R− S‖F

=
(
1− 2β2‖A‖2

)
‖R− S‖F , (5.16)

where ‖·‖ is the spectral norm. For the inequality above to be true, L = 1 − 2β2‖A‖2 must be

greater than zero. Hence, L > 0 when

β2 <
1

2‖A‖2 . (5.17)

Therefore, the Euclidean gradient of the cost function (4.1) is Lipschitz continuous for L = 1 −
2β2‖A‖2 > 0 if β satisfies the bound (5.17). Observe also that L is less than 1.

By Proposition 5.1.2, every limit point {Sk} of the gradient projection method is stationary if

0 < t < 2/L. For L = 1− 2β2‖A‖2 where β satisfies (5.17), the inequality 0 < t < 2/L is true for

t = 1. Therefore, for stepsize t in the interval 0 < t < 2/(1− 2β2‖A‖2) where β is bounded above

by (5.17), every limit point of a sequence of iterates {Sk} for convex optimization problem solved

by the gradient projection method along a projection arc with a fixed stepsize is a stationary point.

Observe that the bound (5.17) is looser than (2.26) if the adjacency matrix A is nonnegative

(i.e., A ≥ 0). To prove Theorem 5.2.1, we need the following properties [HJ90]:

(i) ‖AAT ‖ = ‖ATA‖ = ‖A‖2 for all A ∈ Rn×n;

(ii) Let A,B ∈ Rn×n. If |A| ≤ B, then ρ(A) ≤ ρ(|A|) ≤ ρ(B).
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Theorem 5.2.1 Let A be a nonnegative matrix in Rn×n. Then

1

ρ(A+AT )2
≤ 1

2‖A‖2 ≤
1

ρ(A⊗A+AT ⊗AT )
. (5.18)

Proof Observe that 2ATA ≤ (A+AT )2 since A is nonnegative. Therefore,

ρ(A+AT )2 = ρ((A+AT )2) ≥ ρ(2ATA) = 2‖ATA‖ = 2‖A‖2. (5.19)

Also, recall that ρ(A⊗A+AT ⊗AT ) ≤ 2‖A‖2. Therefore, (5.18) follows.

Therefore, when the adjacency matrix A is nonnegative, by Theorem 5.2.1, we have a range for

the similarity parameter β with stepsize tk = 1 for which the Euclidean gradient projection method

along a projection arc converges to a stationary point.

5.2.2 Euclidean Gradient Projection Method with Armijo Stepsize

Next we include a stepsize and Armijo line-search method to compute the neighborhood pattern

similarity matrix. That is, the Euclidean update with stepsize tk is

Sk+1 = [Sk + tk grad f(Sk)]
+ =

[
Sk + tk

(
S1 − Sk + β2(ASkA

T +ATSkA)
)]+

, (5.20)

where [·]+ is the Euclidean projection operator (5.15) onto the set Sn+ with the Frobenius norm.

Therefore, if the stepsize tk is chosen by the Armijo rule (5.6), then by Proposition 5.1.1, the

Euclidean gradient projection method converges to a stationary point.

Note that by 5.1.4, we have, for all k, that the stepsize

tk ≤
2(1− σ)

L
<

2

L
, (5.21)

where σ ∈ (0, 1) and L = 1−2β2‖A‖2 is positive when β satisfies (5.17). In practice, σ is chosen to be

10−4 [Ber99]. Therefore, the choice of the Armijo stepsize is dependent upon the parameter β. If β

is chosen close to (5.17), then the right hand side of (5.21) goes to infinity and large stepsizes satisfy

the Armijo rule (5.6). If β is chosen close to zero, then the right hand side of (5.21) is 2. Therefore,

tk = 1 satisfies the Armijo condition, implying the Armijo condition need not be performed and the

gradient projection algorithm converges. So, including a stepsize and Armijo line-search method

may not improve the performance of Browet and Van Dooren’s algorithm because a stepsize of 1

guarantees convergence to a stationary point if the similarity metric is well-defined.
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Even if we reframe Browet and Van Dooren’s iterative algorithm into the Euclidean optimization

framework, the computational complexity of the Euclidean update (5.20) is O(n3), which is the

computational complexity of Browet and Van Dooren’s full-rank iterative algorithm. So, the full-

rank Euclidean optimization approach is inefficient for large networks. Therefore, more aggressive

low-rank optimization approaches, such as Riemannian optimization, are needed to solve the full-

rank optimization approach efficiently.
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CHAPTER 6

UNSIGNED NETWORK EXPERIMENTS FOR

TWO-PHASE ALGORITHMS

In this chapter, we evaluate empirically our two-phase indirect approach to the role extraction

problem. In Section 6.1, using random unweighted Erdós-Rényi graphs containing a structural

block distribution of their nodes, we compare our Riemannian optimization approach to Browet

and Van Dooren’s low-rank neighborhood pattern similarity iterative algorithm (Section 2.4.3)

and the low-rank similarity measure of Cheng et al. (Section 2.4.4). To extract the roles from

the similarity approximations, we compare k-means clustering with Browet et al.’s community

detection algorithm. The community detection algorithm uses either the configuration null model

(CNM) or the Constant Potts Model (CPM) as the cost function, and k-means clustering uses

either the silhouette statistic or the gap statistic. We compare the normalized mutual information

(NMI) of the extracted role structure with the exact role structure to assess the effectiveness of the

algorithms.

Lastly, in Section 6.2 we investigate our approach on a weighted network defined by trade data

from several manufactures of metal among 80 countries in 1994.

6.1 Erdós-Rényi Graphs: Unweighted Networks

To assess the quality of our Riemannian optimization approach to the low-rank neighborhood

pattern similarity approximation in comparison with Browet and Van Dooren’s iterative algorithm,

we analyze its accuracy on synthetic networks with known role structure. Our indirect approach

to the role extract problem consists of two phases:

(1) From the adjacency matrix of the input graph, compute the low-rank factor X(r) of the neigh-

borhood patterns similarity approximation S(r) = X(r)(X(r))T from the optimization prob-

lem (4.7) for suitable values of β and r, and suitable optimization parameters.

(2) Extract the roles from the similarity approximation using k-means clustering with the silhouette

statistic on the low-rank factor X(r).
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Figure 6.1: Erdós-Rényi Role Graphs: (a) block cycle role structure; and (b) almost isomorphic
role structure.

Additionally, to asses specifically the quality of the silhouette statistic in the second phase of our

role extraction approach, we also use Browet et al.’s community detection algorithm with either

CNM or CPM as the cost function on the full similarity approximation S(r), and k-means clustering

with the gap statistic on the low-rank factor X(r).

As in [Bro14], we compute the similarity measure of Erdós-Rényi random graphs containing

a block structure (see Figure 6.1). To build our graphs, we first select a directed role graph

GB(VB, EB) where each node in GB defines a role. We consider two different role structures: the

block cycle structure (Figure 6.1a) and the almost isomorphic role structure (Figure 6.1b).

Given the role graph GB, we build our random graph GA(VA, EA) in the same manner used

in [Bro14] where each node in GA has a corresponding role in GB. Edges are added to EA according

to two probability parameters pin and pout. For every pair of nodes i, j ∈ VA, an edge (i, j) ∈ EA is

added with probability pin if an edge between the corresponding roles exists in GB. If the edge does

not exist between the corresponding roles in GB, then the edge is added with probability pout. If pin

is much larger than pout (pin � pout), then the role graph GB is an accurate representation of the

different roles in the graph GA and it is expected that the pairwise similarity measure S∗ between

the vertices VA should allow the roles to be extracted. On the other hand, if pout is much larger

than pin (pout � pin), then the different roles in GA are closely represented by the complement

graph of GB represented by the adjacency matrix 11T − B. However, the role structure strongly

exists in the complement graph and it is expected that the pairwise similarity measure S∗ should

differentiate between them. When pin and pout are close to each other, then it is difficult to extract

the roles since this graph is close to a uniform Erdós-Rényi graph, which is known to be free of any

structure [New10].
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Once we create the random graph, we randomly permute the rows and columns of the adjacency

matrix by the permutation matrix P to create the matrix PAP T . The matrix PAP T is the adja-

cency matrix to which the algorthims are applied to compute the low-rank neighborhood similarity

approximation. Lastly, we apply either community detection or k-means clustering to extract the

permutation P and retrieve the original adjacency matrix A.

The Riemannian algorithms, Browet and Van Dooren’s low-rank iterative algorithm, and the

Cheng et al.’s low-rank similarity measure computation were written in Matlab. The k-means

clustering, silhouette statistic and gap statistic algorithms are internal Matlab functions located

within the statistics library and Browet et al.’s community detection algorithm and cost functions

are C++ functions. All algorithms are called within Matlab R2015a on a 64 bit Mac platform with

2.5 GHz and 4 GB of memory.

The Riemannian optimization methods used in the experiments are steepest descent (RSD)

[AMS08], Newton (RNewton) [AMS08], and limited-memory BFGS (LRBFGS) [HGA15]. Due to

the assumption that ideally the networks are large, we compare the Riemannian algorithms for the

symmetric positive semidefinite fixed-rank manifold as a quotient space with respect to our special

metric (Section 4.1.2). We represent the tangent vectors by their intrinsic representation and use

vector transport by parallelization (4.25).

All optimization algorithms are line-search algorithms and use the back tracking line search

algorithm to determine an Armijo point [AMS08, Definition 4.2.2]. The initial stepsize is taken to

be 1, the coefficient c1 in the Armijo condition is 10−4, and the ratio ρ for the decreasing the stepsize

is 0.25. For LRBFGS, the number of rank-1 updates is m = 4 [HGA15]. The linear system in the

RNewton method is solved using a truncated conjugate gradient (CG) [Ste83,CGT00] and requires

the action of Hessian. The θ and κ parameters in the inner iteration stopping criterion [AMS08,

(7.10)] of the truncated CG were set to 1 and 0.1.

The optimization algorithms start from two different initial conditions. The first initial condi-

tion (IC1) is the initial iterate of Browet and Van Dooren’s low-rank algorithm (lines 1 and 2 in

Algorithm 1). The second initial condition (IC2) is generated by a random subspace iteration in

the subspace of [A | AT ] with oversampling parameter l = r+ 5 [HMT11]. The factors U and Σ of

[A |AT ] are truncated to be rank r, i.e., X1 = UrΣr where Ur is an n × r orthogonal matrix and

Σr is an r × r diagonal matrix of the singular values.
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Table 6.1: Notation for reporting experimental results.

iter number of iterations

nf number of function evaluations

ng number of gradient evaluations

nH number of of operations of the form Hη
nV number of vector transport operations

nR number of retraction evaluations

ff final function value

gff Riemannian metric value of the final gradient

Stop value stopping criterion gff for Riemannian and (2.31) for Browet LR

time time (seconds)

NMI normalized mutual information

The stopping criterion for the optimization methods requires the norm of the Riemannian final

gradient to be less than 10−6, and for the algorithm of Browet and Van Dooren ε = 10−6 in (2.31).

The maximum number of iterations allowed for the algorithm of Browet and Van Dooren and outer

iterations for the optimization algorithms is 5000. Table 6.1 summarizes the notation used when

describing the experimental results.

6.1.1 Measuring the Quality of a Partition

To compare the results of each algorithm, we need a quantitative criterion to measure how

close the extracted partitions are to the exact partitions. In community detection, it is a common

practice to use measures based on information theory. Since clustering problems are a generalization

of community detection problems, we use the normalized mutual information (NMI) to measure

the quality of the extracted partition compared to the exact partition.

Assuming X is an event that may occur with probability p(x), the information contained in

event X is defined by

I(X) = − log(p(x)). (6.1)

The joint entropy measures the uncertainty of the joint probability distribution p(x, y) to observe

X = x and Y = y and is defined by

H(X,Y ) = −
∑

X=x,Y=y

p(x, y) log(p(x, y)) = H(Y,X). (6.2)
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If we observe a particular realization of the random variable Y = y, then the entropy of the

probability distribution of X is given by

H(X|Y = y) = −
∑
X=x

p(x|y) log(p(x|y)), (6.3)

and the conditional entropy is defined as

H(X|Y ) = −
∑

X=x,Y=y

p(x, y) log

(
p(x, y)

p(y)

)
, (6.4)

where p(x, y) = p(y)p(x|y) = p(x)p(y|x). The probability that a node randomly taken belongs to

community x in partition X is

p(x) =
nx
n
, (6.5)

where nx is the number of nodes in community x in partition X, and

p(x, y) =
nxy
n
, (6.6)

where nxy is the number of nodes that belong to community x in partition X and to community y

in partition Y . The mutual information between X and Y is the difference between the entropy of

X and the condition entropy of X given Y , i.e.,

I(X,Y ) = H(X)−H(X|Y ) =
∑

X=x,Y=y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
. (6.7)

Observe that I(X,Y ) = 0 when X and Y are independent. Also, the closer X and Y are to each

other, then the larger I(X,Y ) becomes. However, it has been shown that the mutual information

cannot accurately distinguish between different sub-partitions. Thus, Danon et al. introduced

in [DDGDA05] the normalized mutual information

NMI(X,Y ) =
I(X,Y )√

H(X)
√
H(Y )

, (6.8)

which is bounded between 0 and 1. NMI equal to 1 indicates identical partitions, while NMI equal

to 0 (in the limit) indicates independent partitions.

6.1.2 Low-Rank Neighborhood Pattern Based Similarity Approximation
Relative Error Comparison

For our first set of experiments, we compare the similarity matrices of the low-rank approaches

for unweighted random Erdós-Rényi graphs with the two different role structures shown in Fig-

ure 6.1. Figures 6.2 and 6.3 display the relative error for both Erdós-Rényi graphs, Each figure is
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divided into four panels corresponding to the pin and pout pairs (0.9, 0.1), (0.8, 0.2), (0.7, 0.3), and

(0.6, 0.4). The relative error for each fixed-rank r is computed as

‖S(r) − S∗‖F
‖S∗‖F

(6.9)

where S(r) = XXT is the approximate low-rank similarity matrix computed from either the al-

gorithm of Browet and Van Dooren or our optimization approach and S∗ is the fixed point given

by (2.24). This reveals the minimum rank required for S(r) to be a qualitatively good approximation

of S∗.

In each panel, we show the adjacency matrix A of the random graph GA, the random permu-

tation of the adjacency matrix PAP T , the role assignment of each nodes as extracted by k-means

clustering applied to the low-rank factor X ∈ Rn×r∗ when r equals the number of roles for both

graphs, and the relative error trend as r increases from 1 to 15.

From the figures, observe that the relative error for all of the Riemannian optimization methods

is the same as Browet and Van Dooren’s low-rank iterative method for both role graphs. Also, the

minimal rank necessary for the low-rank similarity matrix to be close to the full-rank similarity

matrix is revealed to be equal to the number of roles when (pin, pout) = (0.9, 0.1). However, the

minimal rank becomes less obvious as more noise is added to the network by changing pin and

pout to be closer to each other. For Figure 6.3, there is a larger drop in the relative error between

r = 1 and r = 2 than between r = 2 and r = 3, and, as the noise in the graph increases, the

minimal numerical rank necessary to approximate the neighborhood pattern similarity measure

reduces from 3 to 2. Therefore, when using a low-rank approximation method for the similarity

measure, it is better to assume that the rank is larger than the number of roles because the low-rank

approximation is closer the full-rank similarity measure.

In addition, notice that the relative error for r ≥ 3 increases as the roles become less distinct in

as pin and pout get closer in value. Thus, in graphs free of any structure, determining an appropriate

rank for the fixed-rank neighborhood pattern similarity algorithms is difficult. For problems where

there exists some type of structure within the network, using a low-rank method to approximate

the neighborhood pattern similarity measure should be appropriate but the feasibility of techniques

for detecting the likelihood that no significant role structure exists is an open question.
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6.1.3 Low-Rank Similarity Approximation Time Comparison

Next, we compare the average time (out of 5 runs) to complete Browet and Van Dooren’s

low-rank algorithm, Riemannian optimization approaches, and the low-rank similarity measure of

Cheng et al. for the unweighted random Erdós-Rényi graphs. We compare the time for both role

structures in Figure 6.1 for pin and pout pairs (0.9, 0.1) and (0.7, 0.3). The size of the adjacency

matrix is fixed to n = 1200 where there are 500 nodes in the first role, 300 nodes in the second

role, and 400 nodes in the third role.

Table 6.2 compares the time to compute the two initial conditions for both role graphs as r

increases from 1 to 15. Observe that as r increases, the difference in time between IC1 and IC2 also

increases, where IC1 takes more time to compute than IC2. This difference in time is noticeable

for both pin and pout pairs in both examples. However, while computing the initial condition can

be costly if n and r are both large, we are mainly concerned about the computational time it takes

to approximate the low-rank similarity matrix. Therefore, when we compare the computational

time of the neighborhood pattern similarity matrices, we isolate the computation time of the initial

condition from the time it takes for the low-rank algorithms for the neighborhood pattern simi-

larity matrices. However, when we compare the computational time of the neighborhood pattern

similarity matrix with the similarity matrix of Cheng et al., we include the initial condition time,

which is labeled as Total time in the tables.

Recall that the parameter β determines the weight of the long neighborhood patterns for the

neighborhood pattern similarity measure. Also, by Theorem 5.2.1, we have for nonnegative matrices

Table 6.2: Table of times (seconds) to compute the initial condition (iterate) for role graphs (a)
and (b). The subscript ν indicates a scale of 10ν

Graph (pin, pout) r 1 2 3 4 5 10 15

(a)
(0.9, 0.1)

IC1 time 5.88−1 1.17−1 8.33−1 1.98 2.10 1.47 1.06
IC2 time 1.71−1 5.77−2 5.53−2 6.27−2 8.39−2 7.99−2 9.33−2

(0.7, 0.3)
IC1 time 1.33−1 1.17−1 5.14−1 9.82−1 1.45 2.56 2.02
IC2 time 5.68−2 6.40−2 6.34−2 7.50−2 7.24−2 9.46−2 1.10−1

(b)
(0.9, 0.1)

IC1 time 1.12−1 1.09−1 3.67−1 7.86−1 1.38 1.09 1.37
IC2 time 5.39−2 5.95−2 5.95−2 6.89−2 7.12−2 9.55−2 1.04−1

(0.7, 0.3)
IC1 time 1.23−1 1.20−1 3.96−1 7.82−1 1.01 1.62 1.89
IC2 time 5.82−2 6.65−2 6.48−2 7.50−2 7.57−2 1.00−1 1.22−1
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that

β2 ≤ 1

ρ(A+AT )2
≤ 1

2‖A‖2 <
1

ρ((A⊗A) + (A⊗A)T )
. (6.10)

Therefore, we compare the average low-rank algorithm times for three different β values:

β1 =
0.95

ρ(A+AT )
, β2 = 0.5

(
1

ρ(A+AT )
+

1√
2‖A‖2

)
, and β3 =

0.95√
2‖A‖2

. (6.11)

In Figures 6.4 and 6.5, we compare the times of low-rank similarity algorithms for the neighborhood

pattern similarity measure for the three different β’s as the rank r increases from 1 to 15. Tables 6.3

and 6.4 displays the number of iterations, computational time of the iteration (or optimization) (in

seconds), final stopping criterion value, and overall total time (in seconds) for all of the algorithms,

and the number of computations for the Riemannian algorithms.

When β is less than the lower bound, the computational times of all the algorithms are ap-

proximately the same for all r. However, the time for RNewton for (pin, pout) = (0.9, 0.1) when

r ≥ 7 for both role graphs is increased noticeably. The increase in time as r is chosen larger than

the number of roles is probably due to some type of degeneracy in the Hessian, which cause the

number of Hessian computations during the truncated conjugate gradient line search to increase

(see Tables 6.3 and 6.4). Thus, if we knew the number of roles, or could assume a rank very close

to the number of roles, all of the algorithms would converge rapidly to a solution.

For β2, observe that RSD and Browet both slow down, while RNewton (except for (pin, pout) =

(0.9, 0.1)) and LRBFGS are approximately the same time to approximate a solution. The degra-

dation in time for RSD may be due to the scaling of the problem and applying a scaling matrix to

RSD may improve performance. While RSD is competitive in time with Browet, observe from Ta-

bles 6.3 and 6.4 that RSD converges in fewer iterations. Also, observe that LRBFGS is the fastest

algorithm for all fixed ranks. In particular, for role graph (b) and (pin, pout) = (0.7, 0.3), observe

in Figure 6.5 that the difference in time increases between Browet and LRBFGS as r increases.

Since, in practice, real data graphs tend to be noisy and r is unknown, this implies that LRBFGS is

superior to Browet and Van Dooren’s low-rank algorithm when approximating the similarity matrix

for large networks, especially for problems where we must consider several values of r to determine

an acceptable set of roles.

Lastly, we use longer neighborhood patterns by setting β equal to β3. From Figure 6.4, observe

that RSD slowed down significantly after r = 3 (the number of roles). Also, note that for LRBFGS
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starting from IC2, the time fluctuated as r increased, while the LRBFGS starting from IC1 had a

smoother increase in time. This indicates a sensitivity to the initial point of the algorithm when

searching longer neighborhood patterns. Regardless of sensitivity, the optimization algorithms were

still able to converge to a solution. In addition, RNewton and LRBFGS converged in significantly

fewer iterations compared to the low-rank algorithm of Browet and Van Dooren (see Tables 6.3

and 6.4).

Comparing to total time of the low-rank neighborhood pattern similarity algorithms with the

low-rank similarity measure of Cheng et al., the RNewton and LRBFGS are faster or competitive

with Cheng et al.’s similarity measure in time. However, we will show later for role graph (b)

that, while the low-rank similarity measure of Cheng et al. is competitive with the Riemannian

algorithms in time, the clustering algorithms have difficulty extracting the role partition from Cheng

et al.’s similarity measure compared to the low-rank neighborhood pattern similarity matrices.

Therefore, we see that for β small, i.e., β = β1, all of the low-rank algorithms for the neighbor-

hood pattern similarity measure are competitive in time. However, as we allow for longer neigh-

borhood patterns and larger rank, LRBFGS starting from IC1 is significantly faster than Browet

and Van Dooren’s low-rank iterative algorithm and the other Riemannian algorithms. This speed

and robustness is particularly important for problems where an appropriate beta is not known and

several values must be considered.

6.1.4 Low-Rank Similarity Approximation Normalized Mutual Information
Comparison

Next, from the similarity measures computed in Section (6.1.3), we compare the quality of the

role partitions are extracted using NMI.

Tables 6.5 and 6.6 display the NMI and time of k-means clustering with the gap and silhouette

statistics and community detection with CNM as the cost function. CPM is used for role graph (b),

when two of the three roles are almost isomorphic, meaning it is difficult to distinguish between

the two roles. For k-means clustering with the gap and silhouette statistics, we test the cluster list

{1, . . . , r+ 1} and {2, . . . , r+ 1}, respectively, and choose the optimal number of clusters based on

the discussions in Sections 2.6.1 and 2.6.2. Note that the k-means algorithm is a Matlab function

while the community detection algorithm is a C++ algorithm called within Matlab. Thus, while
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we report the time of the algorithms, we do not compare the times between k-means clustering and

community detection only the times for each individual algorithm as the rank increases.

Since k-means clustering starts with a random initial centroid and Browet et. al’s community

detection algorithm is a greedy hierarchical algorithm, we run both clustering algorithms 5 times,

where k-means clustering chooses the partition with the smallest sum of distance and community

detection chooses the partition with maximum modularity and compare the NMI value of the

chosen partition. The time (in seconds) is the total time of the 5 runs. In addition, the time to

compute XXT is added to the algorithm time for community detection. Since all of the Riemannian

algorithms approximate the same low-rank similarity matrix and LRBFGS is the fastest Riemannian

algorithm, we only consider LRBFGS in the tables and compare it with Browet and Van Dooren’s

low-rank similarity algorithm and Cheng et al. low-rank similarity matrix.

From the tables, observe that for k-means clustering the NMI was 1.00 when r is equal to the

number of roles. For graph (a), both clustering statistics are able to determine the optimal role

partition from the neighborhood pattern similarity measures for r ≥ 2 and all β’s. However, for

graph (b), the silhouette statistic fails to extract the role partition for (pin, pout) = (0.7, 0.3) for the

low-rank neighborhood similarity approximations when r = 15 and β = β1. When β is equal to β2

or β3, the silhouette statistic extracts the role partition (see Table 6.6). For more complicated role

structures, such as role graph (b), longer neighborhood patterns are preferred for the silhouette

statistic to extract the role partition when r is much larger than the number of roles.

For role graph (b), the silhouette statistic only extracts a 2 role partition from Cheng et al.

low-rank similarity matrix for r = 2 and 15 for (pin, pout) = (0.9, 0.1) and r = 2, 10 and 15 when

(pin, pout) = (0.7, 0.3). This is because their similarity matrix is a low-rank approximation of a

pairwise node self-similarity measure and has trouble extracting the two isomorphic roles. Thus,

for this example, the longer neighborhood patterns are necessary to extract the role structure,

favoring the Riemannian algorithms for the first phase.

The gap statistic for the low-rank neighborhood similarity approximations is able to extract the

role partition for r = 15. It takes about 80 seconds to extract the role partition while the time to

determine the optimal partition for the silhouette statistic is closer to 3 seconds. Thus, while the

gap statistic may be more robust than the silhouette statistic, its computation time is significantly

longer and it is not recommend to use the gap statistic on large datasets.
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Figure 6.6: NMI and number of roles as resolution parameter γ varies in [0, 1] for role graph (b).

Community detection with CNM is able to extract the role structure of graph (a) when r is

greater than or equal to the number of roles. However, for role graph (b), the NMI is 0.773 for r ≥ 2

(see Table 6.6). This difficulty to extract the role structure is possibly due to either a resolution

limit phenomenon or to the almost isomorphic behavior of the two roles. Thus, we consider CPM

with community detection for graph (b) and vary the resolution parameter γ in [0, 1] by 0.02 to

determine the γ that extracts the role structure. Figure 6.6 displays the NMI and the number of

roles for (pin, pout) = (0.9, 0.1) and (0.7, 0.3). For the low-rank algorithms, we display the results

when r = 3. Note that when (pin, pout) = (0.9, 0.1), CPM is able to extract the role structure
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from the neighborhood pattern similarity measure when γ is in the interval [0.8, 0.98] for β1 and

[0.82, 0.98] for β2 and β3. Unfortunately, note that that the length of this interval is less than

the length of the interval where CPM extracts a 2 role structure (which was [0.36, 0.78] for β1,

[0.44, 0.8] for β2, [0.52, 0.8]). Thus, the 2 role partition is the more stable (or natural) partition

than the 3 role partition. Observe that as we consider longer neighborhood patterns, the plateau

that finds a 2 role structure decreases in length, while the plateau corresponding to the 3 role

structure does not. So the longer neighborhood patterns help determine the 3 role structure of the

network. However, as pin decreases and pout increases, the interval of resolution parameter values

that extract the correct role structure decreases and it is impossible to extract the roles. This is

different from the silhouette statistic, which is able to extract the roles from noisy graphs when

using longer neighborhood patterns.

While CPM on the low-rank neighborhood pattern similarity measure is able to determine the

role structure, CPM on the low-rank similarity measure of Cheng et al. is only able to extract a 2

role partition for (pin, pout) = (0.9, 0.1) and is unable to extract the role partition for (pin, pout) =

(0.7, 0.3). Therefore, CPM is not a good community detection cost function for Cheng et al.’s

low-rank similarity measure.

6.1.5 Robustness Comparison

Finally, we compare the robustness of k-means clustering with the silhouette statistic and Browet

et al.’s community detection algorithm with CNM as the cost function for extracting the roles

from the low-rank similarity approximations. The neighborhood pattern similarity algorithms we

compare are Browet and Van Dooren’s low-rank iterative algorithm and LRBFGS starting from

both IC1 and IC2. We compare the neighborhood patterns similarity algorithms with Cheng et

al.’s low-rank similarity measure and assume that the rank is fixed at r = 10. For each reduced

graph, we generate 20 random realizations for each pair of probability parameters pin and pout in

the interval [0, 1] for step size 0.05 and compute the average NMI between the true role partition

and the extracted role partition. For k-means clustering with the silhouette statistic, we assume

that the number of clusters is from 2 to r. We implement both algorithms for three different β

values given by (6.11). Note that the low-rank similarity measure of Cheng et al. does not use the

parameter β.
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Figure 6.7: Complement Erdós-Rényi role graphs.

For our first example, we consider homogeneous and nonhomogeneous role sizes for role graph

(a). For the homogeneous role size case, there are 100 nodes in each role, and for the nonhomo-

geneous role sizes, there are 320 nodes in the first role, 80 in the second role, and 20 in the third

role. Note that for pin � pout, we have role graph (a), but for pin � pout, we have the complement

role graph (see Figure 6.7). The complement role graph has a cycle in the opposite direction and

every role has a self-loop. While the role structure in the complement role graph is different than

role graph (a) in Figure 6.1, the nodes in the roles are partitioned the same, so the role extraction

algorithms should extract similar role partitions.

Figures 6.8 and 6.9 display the adjacency matrices of the homogeneous and nonhomogeneous

role size cases, respectfully, as (pin, pout) goes from the noiseless case (1, 0) of role graph (a) to

the noiseless case of the complement role graph (0, 1). Note that for the homogeneous role sizes,

the adjacency matrix has a distinct role structure for role graph (a) and its complement for the

noiseless case. As we add noise to the graphs, the role structures are still distinct until pin ≈ pout.
Thus, we expect the role extraction algorithms to extract the exact role partitions until pin ≈ pout.

For the nonhomogeneous role sizes, the role structures are noticeable for the noiseless case, but

become indistinguishable as noise is added to the graphs. In particular, role 3 in both graphs is

difficult to distinguish from the other roles since there are 20 nodes in the role. Therefore, adding
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(a) (1, 0) (b) (0.9, 0.1) (c) (0.8, 0.2) (d) (0.7, 0.3)

(e) (0.6, 0.4) (f) (0.5, 0.5) (g) (0.4, 0.6)

(h) (0.3, 0.7) (i) (0.2, 0.8) (j) (0.1, 0.9) (k) (0, 1)

Figure 6.8: Adjacency matrices of the Erdós-Rényi graphs with role graph (a) and homogeneous
role sizes, where (pin, pout) goes from (1, 0) to (0, 1).

(removing) edges between role 3 and roles 1 and 2 and, for the complement role graph, adding

(removing) edges between the nodes within the role will change the node distribution between the

roles and change the role partition. Thus, we expect the role extraction algorithms to struggle

when extracting the exact role partitions for this example because adding (removing) edges from

small roles changes the role structure greater than adding (removing) edges from larger roles.

Figures 6.10 and 6.11 display the average NMI values for role graph (a) with homogeneous

(Figure 6.10) and nonhomogeneous (Figure 6.11) role sizes. For the neighborhood pattern similarity

measure, k-means clustering with the sillhouette statistic (rows (1), (3), and (5) in Figure 6.10)

and community detection with CNM (rows (2), (4), and (6) in Figure 6.10) have similar results
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(a) (1, 0) (b) (0.9, 0.1) (c) (0.8, 0.2) (d) (0.7, 0.3)

(e) (0.6, 0.4) (f) (0.5, 0.5) (g) (0.4, 0.6)

(h) (0.3, 0.7) (i) (0.2, 0.8) (j) (0.1, 0.9) (k) (0, 1)

Figure 6.9: Adjacency matrices of the Erdós-Rényi graphs with role graph (a) and nonhomogeneous
role sizes, where (pin, pout) goes from (1, 0) to (0, 1).

for homogeneous role sizes. Both algorithms are able to extract the role partition exactly when

pin � pout (role graph (a)) and pin � pout (complement role graph of role graph (a)), and fail

to extract the role partition when pin ≈ pout. Also, there was little change between β1, β2 and

β3, except for LRBFGS when β = β3 and pin ≈ pout. Both the silhouette statistic and CNM

extracted different role partitions that were still close to the original role partition. A possible

explanation is that the optimization algorithm may have found a different local minimizer of the

low-rank neighborhood pattern similarity matrix when β = β3 compared to the low-rank similarity

matrix found by Browet and Van Dooren’s algorithm. Thus, the clustering algorithms extracted a

different, but close, role partition.
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Figure 6.10: NMI for k-means clustering with silhouette statistic and community detection algo-
rithm with CNM for role graph (a) and homogeneous role sizes.
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Figure 6.11: NMI for k-means clustering with silhouette statistic and community detection algo-
rithm with CNM for role graph (a) and nonhomogeneous role sizes.
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When the role sizes are different (Figure 6.11), k-means clustering with the silhouette statistic

was able to extract the role structure from the neighborhood pattern similarity approximation for

pin � pout (and vice versa) for β1. For β2 and β3, the algorithm began to struggle to extract

the role partition when pin � pout, but did not struggle for its complement role graph. The

asymmetry in the NMI values for β2 and β3 is due to how the noise was distributed for role graph

(a), where the longer neighborhood patterns detected a different role partition for the noisy graphs

compared to the exact role partition. However, the noise in the complement role graph did not

affect the silhouette statistic from extracting the exact role partition. The average NMI values for

community detection with CNM was the opposite. CNM fails to extract the exact role partition

when pin � pout for all three β values. For some pin and pout parameters when pin � pout, CNM

also fails to extract the exact role partition. This is probably due to the resolution limit of CNM.

Overall, the NMI values for the silhouette is higher than CNM.

For the low-rank similarity measure of Cheng et al., when pin ≈ pout, both role extraction

algorithms fail to extract the role structure sooner, i.e., the blue band in the middle is wider, than

the neighborhood pattern similarity measure. The reason for the higher NMI results is that the

neighborhood pattern similarity measure gains extra information about the role structure from the

longer neighborhood patterns while Cheng et al.’s similarity measure only considers the immediate

neighbors of a node. Thus, for empirical data, the neighborhood pattern similarity measure may

be preferable because it is more robust in the presence of noise and nonhomogeneous roles sizes.

For our second example, we consider homogeneous role sizes for role graph (b), where there are

100 nodes in each role. Similar to role graph (a), when pin � pout, the Erdós-Rényi graphs have

the role structure given by role graph (b), but when pin � pout, they have the complement role

graph structure (see Figure 6.7). However, the roles are partitioned the same, so the role extraction

algorithms should extract similar role partitions.

Figure 6.12 displays the adjacency matrices as (pin, pout) transitions from the noiseless case (1, 0)

of role graph (b) to the noiseless case of the complement role graph (0, 1). For the noiseless cases,

the rank of the adjacency matrix is 2; however, the rank of the neighborhood pattern similarity

matrix is 3, which is the number of roles. Therefore, the role extraction algorithms should extract

the role partitions from the similarity matrix for both noiseless cases. As edges are added (or

removed) from the graphs, it becomes difficult to distinguish between the 3 role structure. Also,
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(a) (1, 0) (b) (0.9, 0.1) (c) (0.8, 0.2) (d) (0.7, 0.3)

(e) (0.6, 0.4) (f) (0.5, 0.5) (g) (0.4, 0.6)

(h) (0.3, 0.7) (i) (0.2, 0.8) (j) (0.1, 0.9) (k) (0, 1)

Figure 6.12: Adjacency matrices of the Erdós-Rényi graphs with role graph (b), where (pin, pout)
goes from (1, 0) to (0, 1).

note that the noise is not symmetric between role graph (b) and its complement. That is, adding

edges to null blocks in the complement role graph distorts the role graph sooner than adding edges

to the null blocks in role graph (b). Therefore, the role extraction algorithms may extract the exact

role partitions more often for role graph (b) than its complement.

Figure 6.13 displays the NMI for the Erdós-Rényi graphs with almost isomorphic role structure

where the roles are assumed to all be the same size. Comparing the silhouette statistic (rows

(1), (3), and (5)) with CNM (rows (2), (4), and (6)), we see that the silhouette statistic extracts

the role partition better for the neighborhood pattern similarity measure when pin � pout and

pout � pin, while the NMI values for CNM is around 0.773 for most pin and pout combinations. As
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Figure 6.13: NMI for k-means clustering with the silhouette statistic and community detection
algorithm with CNM for role graph (b).
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the neighborhood pattern similarity measure searched longer neighborhood patterns, the silhouette

statistic was able to determine the role structure for the role graph, but not its complement. The

asymmetry of the NMI values is expected since the noise distribution for the graph is not symmetric.

Community detection was only able to extract the role structure from a small subset of probability

pairs for β3. This is probably due to the fact that β3 allows the similarity algorithms to search longer

neighborhood patterns for similarity between the nodes, which provided the extract information

CNM needed to extract the role partition.

Compared with the previous role structure example, both clustering methods fail to extract the

role partition more often. This is probably due to the almost isomorphic behavior of two of the

roles. For the low-rank similarity measure of Cheng et al., the NMI for k-means clustering with

the silhouette statistic and CNM are also around 0.773. However, the silhouette statistic extracts

the role partition for more pin and pout pairs from the neighborhood pattern similarity measure

than from Cheng et al.’s low-rank similarity measure. Thus, for more complicated role graphs, the

indirect approach using the neighborhood pattern similarity measure and k-means clustering is a

better approach to extract the role structure.

6.1.6 Summary

Overall, for the role extraction problem, the neighborhood pattern similarity measure is pre-

ferred over the similarity measure of Cheng et al. because the longer neighborhood patterns are

significant for examples where there are two roles that mainly interact with each other or there is

a difference in role sizes, both of which are common in real world applications.

Comparing the algorithms to compute the neighborhood pattern similarity measure, the low-

rank algorithm by Browet and Van Dooren is competitive in time with Riemannian optimization

algorithms when the parameter β is small. However, a small β means we are not looking at long

neighborhood patterns in the network. In practice, we do not know the role structure is and

observing longer neighborhood patterns helps determine an accurate role structure. When β is

large (but still satisfies the existence bounds), LRBFGS is significantly faster than Browet and Van

Dooren’s low-rank algorithm and RSD for all r. When r is less than or equal to the number of

roles, RNewton and LRBFGS are competitive in time, but when r is larger than the number of

roles, LRBFGS is faster than RNewton. Therefore, LRBFGS is preferable to compute a low-rank
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approximation of the similarity matrix for networks with a large number of roles because we would

assume that r is also large.

When comparing the clustering methods for the second part of the role extraction process,

k-means clustering with the silhouette statistic and community detection with the CNM have

similar NMI results for role graph (a), but different NMI results for role graph (b). The silhouette

statistic extracts the exact role partition more often than community detection with CNM as pin

and pout vary. However, the silhouette statistic fails to extract the exact role partition when the

rank is assumed to be much larger than the number of roles for β = β1. In practice, we do not

know the number of roles necessary to represent the network. Therefore, we should consider longer

neighborhood pattern for the silhouette statistic in case we have overestimated the rank with respect

to the number of roles.

Also, k-means clustering with the silhouette statistic requires an assumed index list of number

of roles to compute k-means clustering with and choosing the optimal number of clusters by maxi-

mizing the silhouette value over the data set, which can be costly when the index list is not chosen

carefully. Community detection does not require the user to assume the number of roles; however,

it requires the computation of the similarity matrix S(r) = XXT , which is O(n2r) computations

and is costly when either n or r are large. So, both clustering methods suffer for large n and r and

a more sophisticated approach is needed to extract the role structure.

Fortunately, there is a relationship between the smallest rank necessary to approximate the

similarity measure and the number of roles in the graph. If the role blocks are complete, then the

rank of the neighborhood pattern similarity measure is equal to the number of roles (see Theo-

rem 3.0.5). If the blocks are regular, then the rank is not equal to the number of roles, but there is

still a noticeable gap between the singular values (see Figure 3.4b). Thus, in Chapter 7, we combine

the current methods for determining the low-rank approximation of a matrix using Riemannian

optimization (see [JBAS10,MS13,Zho15,ZHG+16,HGZ16]) to develop a Riemannian optimization

algorithm that determine the numerical rank of the neighborhood pattern similarity measure and

optimal number of roles using k-means clustering with the silhouette statistic simultaneously, i.e.,

mixing the functions of the previously defined two phase into a single phase. The list of assumed

clusters to test for the silhouette statistic is determined by the rank and assumed number of clus-
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ters and is adjusted until convergence. This approach combines the two-step process of the indirect

approach into a single, low-rank iterative process.

6.2 Metal World Trade Network

Next, we analyze a real world example. We classify countries based on 1994 trade data from

several manufactures of metal1. This dataset is from [NMB11, Chapter 2], where Nooy et al. used

it to analyze global relationships between countries in trade systems. The authors use the capitalist

world trade concept first introduced by Wallerstein in [Wal74], where the world economy is classified

into three categories: core, semiperiphery, and periphery. The core consists of countries that profit

by successfully exploiting the periphery and the sempheriphery, while the semiperiphery consists of

countries that profit by being a link between the core and the periphery [Chapter 2] [NMB11]. Also,

core countries specialize in capital-intensive and high-tech production, while peripheral countries

specialize in low-valued, labor-intensive products or raw materials. Thus, core countries import

raw materials from periphery countries, transform them into high-tech products, then export them

to core, semiperiphery, and periphery countries [NMB11, Chapter 2]. For the metal trade network,

we expect the network to be dominated by trade from the core countries and see very little trade

by periphery countries.

The metal trade dataset contains all countries with entries in the paper version of the Com-

modity Trade Statistics published by the United Nations, except for countries Austria, Seychelles,

Bangladesh, Croatia, and Barbados, which used the 1993 statistics, and South Africa and Ecuador,

which used the 1995 statistics, because the information for 1994 was unavailable [Nat,Nat94,BM06,

NMB11]. Countries that are not sovereign are excluded because additional economic data is not

available, e.g., Faeroe Islands and Greenland belong to Denmark and Macau belongs to Portugal.

Note that most of the missing countries are located in central Africa and the Middle East, or

belonged to the former Union of Soviet Socialist Republics (USSR).

In the dataset, a directed edge represents imports by one country (source) from another (target)

for the class of commodities classified as “miscellaneous manufactures of metal”, which represents

high technology products or heavy manufactures. The absolute value of imports (in 1, 000 US $)

is used; but imports with values less than 1% of the country’s total imports are omitted from the

1http://vlado.fmf.uni-lj.si/pub/networks/data/esna/metalWT.htm

107

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/metalWT.htm


Table 6.7: Countries partitioned by their world system positions in 1994.

World Position Countries

Core
Austria, Belgium /Lux., China, France Mon., Germany, Italy, Japan,
Netherlands, Sweden, Switzerland, United Kingdom, United States

Semiperiphery

Algeria, Argentina, Australia, Barbados, Brazil, Canada, Chile, Colombia,
Croatia, Cyprus, Czech Rep., Denmark, Ecuador, Egypt, Finland, Greece,

Hong Kong, Hungary, Iceland, India, Indonesia, Ireland, Israel, Jordan,
Rep. of Korea, Kuwait, Latvia, Madagascar, Malaysia, Mauritius, Morocco,

New Zealand, Norway, Oman, Pakistan, Peru, Philippines, Poland,
Portugal, Romania, Singapore, Slovenia, Southern Africa, Spain, Sri Lanka,

Thailand, Trinidad and Tobago, Tunisia, Turkey, Uruguay, Venezuela

Periphery
Bangladesh, Belize, Bolivia, El Salvador, Fiji, French Guiana,

Guadeloupe, Guatemala, Honduras, Martinique, Mexico, Nicaragua,
Panama, Paraguay, Rep. of Moldova, Reunion, Seychelles

dataset. The only preprocessing applied to the data is to take the logarithm of the imports, which

preserves the relative strength of the imports, but prevents countries with large trade values from

dominating the quality of the role model. Table 6.7 partitions the countries by their world position

in 1994 [Nat,Nat94,BM06,NMB11].

For our experiments, we compare the low-rank similarity algorithms with r = 10. For the

Riemannian optimization methods, vector transport is by parallelization, and k-means clustering

with the silhouette statistic extracts the role partition. The cluster list for the silhouette statistic

was {2, . . . , 11}. We compare our role extraction approach with the approach by Browet and Van

Dooren, which uses their low-rank algorithm to approximate the similarity matrix and community

detection with CPM to extract the role partition. For both approaches that use the neighborhood

pattern similarity measures, we compare results for the three β given by (6.11).

Lastly, we compare the extracted role partition from the low-rank neighborhood pattern simi-

larity algorithms with the low-rank similarity measure of Cheng et al.. For Cheng et al.’s similarity

measure, we use both k-means clustering with the silhouette statistic and community detection

with CPM to extract the role partition.

For CPM, we vary the resolution parameter γ in the interval [0, 1] incrementally by 0.02 and

look for the longest plateau where the number of roles does not vary. In Figure 6.14 for β1, notice

that longest plateau for the low-rank neighborhood pattern similarity measures is for the interval
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Figure 6.14: Number of roles as resolution parameter γ varies in [0, 1].

Table 6.8: Countries partitioned by CPM.

Algorithm Countries

Browet LR
(all β)
γ = 0.56

Algeria, Egypt, Madagascar, Mauritius, Morocco, Reunion, Seychelles,
Southern Africa, Tunisia, Bangladesh, INDIA, Indonesia, Israel, Jordan,
Kuwait, Malaysia, Oman, Pakistan, Philippines, Singapore, Sri Lankauy,
Thailand, Croatia, Cyprus, Czech Rep., DENMARK, Finland, Greece,

Hungary, Iceland, Ireland, Latvia, Norway, Poland, Portugal,
Rep. of Moldova, Romania, Slovenia, SPAIN, Turkey, Belize, Canada,

El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Australia,
Fiji, New Zealand, Argentina, Barbados, Bolivia, Brazil, Chile,

Colombia, Ecuador, French Guiana, Guadeloupe, Martinique, Paraguay, Peru,
Trinidad and Tobago, Uruguay, Venezuela

China, Hong Kong, Japan, Rep. Of Korea, Austria, Belgium /Lux.,
France Mon., Germany, Italy, Netherlands, Sweden, Switzerland,

United Kingdom, United States

LRMSIM
γ = 0.52

Rep. of Moldova
Hong Kong, Indonesia, Malaysia, Singapore, Thailand, Australia, New Zealand

Canada, El Salvador, Guatemala, Honduras, Mexico, Panama, Argentina,
Brazil, Chile, Colombia, Ecuador, Peru, Venezuela

Algeria, Madagascar, Mauritius, Morocco, Reunion, Seychelles, Bangladesh,
China, Japan, Jordan, Kuwait, Oman, Pakistan, Philippines,

Sri Lanka, Cyprus, France Mon., Germany, Iceland, Italy, Latvia,
United Kingdom, Belize, Nicaragua, United States, Fiji,

French Guiana, Guadeloupe, Martinique, Paraguay, Uruguay
Barbados, Bolivia, Trinidad and Tobago

Egypt, Southern Africa, Tunisia, India, Israel, Rep. Of Korea, Austria,
Belgium /Lux., Croatia, Czech Rep., Denmark, Finland, Greece, Hungary,

Ireland, Netherlands, Norway, Poland, Portugal, Romania, Slovenia,
Spain, Sweden, Switzerland, Turkey
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Table 6.9: Number of roles and silhouette coefficient (SC). The asterisk and plus indicates that the
role structure was different than the others. The subscript ν indicates a scale of 10ν .

Algorithm Silhouette

# Roles SC
β1 β2 β3 β1 β2 β3

RSD, IC1 5 2 2 5.58−1 5.99−1 6.11−1

RNewton, IC1 5 2 2 5.58−1 5.99−1 6.11−1

LRBGS, IC1 5 2 2 5.58−1 5.99−1 6.11−1

RSD, IC2 5 2 2 5.43−1 5.95−1 6.10−1

RNewton, IC2 2 2 2 5.41−1 5.95−1 6.10−1

LRBFGS, IC2 2 2 2 5.41−1 5.95−1 6.10−1

Cheng LR 8 6.70−1

[0.46, 0.62] and the number of roles for these resolution parameters is 2. For β2 and β3, the plateau

is slightly longer, indicating that the plateau is more stable; however, the number of roles is still 2.

For the similarity measure of Cheng et al., the longest plateau is [0.46, 0.56] with 6 roles. Table 6.8

displays the partitions of the countries extracted from the similarity measures using community

detection.

For k-means clustering with the silhouette statistic, the ideal number of clusters varies for the

Riemannian algorithms and the parameter β. When β = β1, the silhouette statistic extracts either

2 or 5 roles (see Table 6.9). The silhouette coefficients for these roles range from 5.41 × 10−1 and

5.58×10−1, indicating reasonable role structures for the network (see Section 2.6.1). However, as we

search longer neighborhood patterns in the network, i.e., loosened the parameter β, the silhouette

statistic extracts 2 roles for all of the algorithms. Also, the silhouette coefficients for β2 and β3 are

larger than those for β1.

For the role structure extracted for β = β2 and β = β3, k-means clustering with the silhouette

statistic extracts 8 roles from Cheng et al.’s low-rank similarity measure and the silhouette coeffi-

cient for this role structure is 6.70× 10−1, which is a reasonable role structure. Table 6.10 displays

the partitions of the countries extracted from the similarity measures using k-means clustering.

Observe that both CPM and the silhouette statistic for the neighborhood pattern similarity

measure detects 2 roles within the data set (see Tables 6.8 and 6.10). Also, note that while the

partitions for k-means clustering and community detection differ slightly by the assignments of three

countries – Denmark, India, and Spain – for the neighborhood pattern similarity approximations,
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Table 6.10: Countries partitioned by silhouette statistic.

Algorithm Countries

Riemannian
Opt
β2 β3

Algeria, Egypt, Madagascar, Mauritius, Morocco, Reunion, Seychelles,
Southern Africa, Tunisia, Bangladesh, Indonesia, Israel, Jordan, Kuwait,

Malaysia, Oman, Pakistan, Philippines, Singapore, Sri Lanka,
Thailand, Croatia, Cyprus, Czech Rep., Finland, Greece, Hungary,

Iceland, Ireland, Latvia, Norway, Poland, Portugal,
Rep. of Moldova, Romania, Slovenia, Turkey, Belize, Canada,

El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama,
Australia, Fiji, New Zealand, Argentina, Barbados, Bolivia,

Brazil, Chile, Colombia, Ecuador, French Guiana, Guadeloupe,
Martinique, Paraguay, Peru, Trinidad and Tobago, Uruguay, Venezuela

China, Hong Kong, INDIA, Japan, Rep. Of Korea, Austria,
Belgium /Lux., DENMARK, France Mon., Germany, Italy, Netherlands,

SPAIN, Sweden, Switzerland, United Kingdom, United States

Cheng LR

China, Hong Kong, India, Indonesia, Japan, Rep. Of Korea,
Malaysia, Singapore, Thailand, United States, Australia, New Zealand

Algeria, Madagascar, Mauritius, Morocco, Reunion, Seychelles,
Bangladesh, Jordan, Kuwait, Oman, Pakistan, Philippines,
Sri Lanka, Cyprus, Iceland, Latvia, Belize, Nicaragua, Fiji,

French Guiana, Guadeloupe, Martinique, Paraguay, Uruguay
Canada, Mexico, Argentina, Brazil, Chile, Colombia, Ecuador,

Peru, Venezuela
Egypt, Southern Africa, Tunisia, Greece, Romania, Turkey, Israel

Austria, Belgium /Lux., Denmark, Finland, France Mon., Germany,
Ireland, Italy, Netherlands, Norway, Poland, Portugal, Spain,

Sweden, Switzerland, United Kingdom
El Salvador, Guatemala, Honduras, Panama

Croatia, Czech Rep., Hungary, Rep. of Moldova, Slovenia
Barbados, Bolivia, Trinidad and Tobago

the reduced graphs are the same (see Figure 6.152). When considering how the data is partitioned

by k-means clustering compared to CPM, the main difference is that k-means clustering included

India, Denmark, and Spain in role B while the CPM places them in role A. However, the two role

graphs groups the core countries (with a few semiperphery countries) together in one role and the

semiperiphery and periphery countries in the other role. Also, the self-loop in role B and the arc

from B to A indicate that the core countries dominate the dataset (which is true) and that the

2Maps were colored using the open source website: http://www.paintmaps.com/index.php? [pai14]
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Figure 6.15: Role graphs for metal world trade network.

periphery and semiperiphery countries imported very little (or not at all) between themselves and

from B. Therefore, these role graphs are an adequate representation of the metal trade data.

Lastly for Cheng et al.’s low-rank similarity measure, CPM and the silhouette statistic determine
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that the network contains 6 and 8 roles, respectively. Observe that some blocks in the permuted

adjacency matrices, while much denser than others, have entire rows of zeros. Recall that these types

of blocks are called row-regular blocks and are still considered a role in the reduced graph [DBF05].

However, most of the row-regular blocks are sparse, which indicates an inconsistency in the role

partition, since an arc may or may not need to be added to represent the data. These inconsistencies

indicate that the role graphs may not be a good representation of the data.

For the low-rank similarity measure of Cheng et al. using the silhouette statistic, there are

obvious null blocks within its permuted adjacency matrix. Thus, this partitioning may not be

considered unreasonable and cannot be dismissed immediately. However, if we consider the image

matrix of the role graph

B =



1 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

note that the roles B and D are structurally equivalent, which violates the role constraint. So, the

countries in roles B and D should be grouped together into a single role. Thus, this role graph

may be over partitioned.

Also, the country partitioning for the low-rank similarity measure of Cheng et al. makes little

sense from a global trade point-of-view. For example, when using CPM to group the roles, the

approach placed several of the countries classified as core countries (e.g., United States, China, etc.)

in the same roles as periphery countries (e.g., Fiji, Belize, etc.). When using k-means clustering

with the silhouette statistic, the core countries are not grouped with any periphery countries, but

they have been divided and placed into roles with semipherphery countries. Therefore, k-means

clustering with the silhouette statistic gave better results than community detection with CPM for

the Cheng et al.’s similarity measure, but the results are still difficult to interpret.

In conclusion, the neighborhood patterns of the arcs provide extra information in the similarity

measure that allow us to accurately represent the metal world trade data in the reduced graphs,

in comparison to Cheng et al.’s similarity measure that provided block structures with several

inconsistencies. Thus, only considering pairwise nodes in the similarity measure is not sufficient.
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Browet’s approach and our approaches extract 2 roles and partition the network similarly (excluding

India, Denmark, and Spain), where countries that dominate the trade network were placed into

one role and everyone else was place in the other role. CPM is able to extract the 2 roles when

the parameter β was tight, while the silhouette statistic requires a looser β bound to extract the 2

roles. Regardless, the 2 role structures were good representations of the network.

6.3 Summary

In this chapter, we evaluate our two-phase approach on unsigned networks for both unweighted

and weighted graphs. From our experiments in Section 6.1.3, we show that using LRBFGS to

compute a low-rank approximation of the neighborhood pattern similarity measure is robust in

time when there exists graph noise, when we search for longer neighborhood patterns in the graph,

or when we assume that the rank of the similarity matrix is large. Being robust in the presence of

noise is important since real world networks tend to be noisy, i.e., for unweighted networks there

may exist edges in blocks that would be classified as null blocks in the adjacency matrix or there

may be edges missing in dense blocks, and for weighted networks edges that are really small (or

large) may lead to misleading partitions of the network. Robustness across the rank and parameter

β is also ideal since, in practice, the optimal rank and β are unknown and we would need to probe

across a range of values to be able to interpret the results. Therefore, we recommend LRBFGS as

a generic first phase approach for computing a low-rank approximation of the similarity matrix.

In Section 6.1.4, we show that using k-means clustering with the silhouette statics is robust in

quality when extracting the role partition from noisy graphs, when searching longer neighborhood

patterns for ranks that are larger than the number of roles. In practice, the number of roles is

unknown and we need to run k-means clustering on several assumed number of roles, which is

inefficient for large n or r. Therefore, an approach to determine a better value for the bound on

the number of roles is necessary to improve the second phase our role extraction algorithm.

Lastly, in Section 6.2, we show that we are able to achieve reasonable results for the world trade

network using our role extraction algorithm. But, our results indicate that we should compute

longer neighborhood patterns to get a stable role partition of the network or that the application

user must provide additional information to assess the resulting roles for various betas. The com-

munity detection approach with CPM used by Browet and Van Dooren was able to detect the role
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structures for β1; however, searching across the resolution parameter in CPM for stable community

partitions may be just as costly as searching across the index list of roles for the silhouette statistic.

Therefore, while we have improved the second phase of the indirect approach to the role extraction

problem, more efficient methods to determine the role partitions are needed.
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CHAPTER 7

ONE-PHASE INDIRECT APPROACH:

RIEMANNIAN RANK-ADAPTIVE ROLE

EXTRACTION METHOD

In this chapter, we combine the two phases of our indirect role extraction method into a one-phase

indirect approach that iteratively approximates the best low-rank solution of the neighborhood pat-

tern similarity measure and determines the role structure of the network. To do this, we reformulate

the problem as a rank-inequality constrained optimization problem.

7.1 Introduction

Recall in Chapter 4 that we solve the first phase of our indirect approach to the role extraction

problem by approximating a low-rank solution of the neighborhood pattern similarity measure by

solving (4.7) on S+(n, r). We consider the low-rank factorizatoin S(r) = X(r)(X(r))T and represent

S+(n, r) by the quotient manifold Rn×r∗ /Or. Then, we apply k-means clustering on the low-rank

factor X(r) and group the rows of X(r) into k roles. We implement k-means clustering for an

assumed index list of roles from 2 to r + 1 and determine the optimal number of roles by the

silhouette statistic (see Section 2.6.1).

We suggest the user set the role index list {2, 3, . . . , r+ 1}, where r is the rank of the similarity

matrix, since, in practice, the rank of the similarity matrix and the number of roles are unknown.

This suggestion is supported by our analytical results of the rank-role relationship between the

neighborhood pattern similarity measure and the number of roles in the network for the ideal case

where all of the nodes in the network are structurally equivalent (see Chapter 3). That is, by

Therorem 3.0.4, the rank of the neighborhood pattern similarity matrix is less than or equal to the

number of roles in the network and greater than or equal to the rank of the image matrix B.

If the graph is noisy, i.e., the nodes are regularly equivalent or there are edges in the null blocks

of the adjacency matrix, then the rank of the similarity measure is not equal to the number or roles.

Our empirical results in Section 6.1 indicated that if there exists enough of a spectral gap in the
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singular values of the similarity matrix, the clustering algorithm can still extract the role partition

up to some threshold (see Section 6.1.4). Our experiments also indicated that the minimal rank

necessary to extract the role structure is related to the number of roles.

Therefore, rather than choosing a particular value for the expected rank or number of roles,

in this chapter we consider extracting the role partition for the graph by optimizing the cost

function (4.5) under the rank inequality constraints to approximate a low-rank solution to the

similarity measure. That is, we solve the optimization problem

max
S∈D≤p

f(S) = trace

(
S

(
S1 −

1

2
S + β2ASAT

))
(7.1)

for a low-rank approximation to the similarity measure where D≤p = {S ∈ Sn | S � 0, rank(S) ≤
p}. We use Riemannian rank-adaptation techniques from [Zho15,HGZ16,ZHG+16] and heuristics

derived from our observations in Chapter 3 and Section 6.1 to define our one-phase role extraction

process.

In Section 7.2, we give an overview of our one-phase role extraction algorithm. In Sections 7.3, 7.4,

and 7.5, we describe the main components in our approach and define the Riemannian objects re-

quired. In Section 7.6, we state the full algorithm and summarize the heuristics for choosing the

parameters of the algorithm. Lastly, in Section 7.7, we compare the time and NMI values of one-

phase algorithm with our two-phase algorithm to assess the effectiveness and robustness of the

algorithm.

7.2 Overview of One-Phase Algorithm

Due to work by Browet and Van Dooren in [Bro14,BD14] and our work in the previous chapters,

the two-phase indirect approach to the role extraction problem has become efficient in time and

space and it can determine a representative role partition of a network. However, both two-phase

methods suffer from parameter and complexity issues.

Both algorithms are very dependent on the choice of the rank r used to compute a low-rank

approximation of the similarity measure. In practice, the optimal choice of r is unknown. Also, we

have shown empirically in Section 6.1.4 that if r is assumed to be less than the number of roles, then

the algorithms cannot extract the roles. However, if r is assumed to be too large compared to the

number of roles, then we may not extract the role partition and the algorithm suffers in time and
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computational complexity. Thus, we propose to combine the two-phase indirect approach into a

one-phase approach to solve the role extraction problem by optimizing problem (7.1) to determine

a low-rank solution of the similarity measure that we can use to extract the role partition.

Our Riemannian rank-adaptive role extraction method (RRAREM) repeats the following three

tasks to determine the role structure of a network:

(1) Riemannian update: Given the initial guess X̂
(r)
k on Rn×r∗ /Or, we solve problem (4.7) and

return a point X
(r)
k when a suitable stopping criterion is satisfied. This is equivalent to the

first phase in our two-phase role extraction approach for a fixed rank r (Section 4.1).

(2) Role extraction update: We extract the role partition from the iterateX
(r)
k by k-means clustering

with the silhouette statistic where the range of the index list of clusters is between r and the

previous number of roles in the network. This is similar to the second phase in our two-phase

role extraction approach (Section 4.2), except that we run k-means clustering on a narrower

index list of roles and repeatedly update the partition as we converge towards a low-rank

solution.

(3) Rank-related update: We generate new iterate X
(r̃)
k+1 ∈ D≤p, where rank r̃ is the new rank, by

either increasing or decreasing the rank. We use the rank-adaptive strategies in [Zho15,HGZ16,

ZHG+16] to update the rank.

These three steps are repeated until convergence, where we output a low-rank matrix and role

structure of the network.

In the next three sections, we describe the implementation details of the role extraction update

and rank-related update, including the rank reduction and rank increasing strategies.

7.3 Role Extraction Step

Given the factor X
(r)
k on the k-th iteration of the algorithm, we must extract the role partition.

In Section 6.1.4 we showed empirically that using k-means clustering with the silhouette statistic

to extract the role structure from the low-rank similarity measure can be time consuming since we

must determine the partition for each assumed number of roles using k-means clustering. We have

shown analytically for the ideal case (Chapter 3) and empirically for practical cases (Section 6.1.4)

that there is a relationship between the rank of the neighborhood pattern similarity measure and

the number of roles. We exploit this relationship when choosing the index list of the number of

clusters we use for k-means clustering.
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Similar to the second phase in our two-phase approach, we first scale the low-rank factor X
(r)
k

by its unscaled self-similarity scores. Then, we use k-means clustering with the silhouette statistic

defined in Section 2.6.1 for an assumed index list of roles. The list of roles is determined by the

rank r of X
(r)
k and the previously assumed number of roles q. If r < q, then the index list is

given by {r − 1, . . . , q + 1}; otherwise, it is {q − 1, . . . , r + 1}. Recall that the silhouette value

cannot be calculated for 1 cluster. Therefore, if either r, or q, equals 1, we start the index list from

r+ 1, or q+ 1. After k-means clusters the role assignment for each index in the list and computed

the silhouette value, the algorithm returns the optimal number of roles q∗ and role partition c∗

associated with the maximal silhouette value. Algorithm 2 summarizes the role extraction step.

Algorithm 2 Role Partition and Number of Roles Algorithm

Input: X ∈ Rn×r; number of roles q;

Output: number of roles q∗; partition c∗;

1: Scale X by diagonal matrix DS(r) of unscaled self-similarity scores;

2: Determine cluster list {l, . . . , u} by using r and q as bounds;

3: l← min{r, q}; u← max{r, q}+ 1;

4: if l = 1 then

5: l← l + 1;

6: else if l > 2 then

7: l← l − 1;

8: end if

9: Given X, compute k-means clustering for each assumed number of clusters in {l, . . . , u} and

compute the silhouette measure for each data set partition;

10: Choose the number of clusters and partition that gives the maximum silhouette measure as the

number of roles q∗ and role partition c∗;

7.4 Adaptive Rank Reduction Strategy

We use the adaptive rank reduction strategy in [HGZ16] to reduce the rank of an iterate in our

one-phase role extraction algorithm.

Recall that our cost function (4.5) is defined on the quotient manifold Rn×r∗ /Or. Therefore, the

domain of the cost function is not closed. That is, the sequence of iterates {X(r)
k } may have a limit

point X
(r)
∗ that has rank less than r. For this situation, we must be able to reduce the rank of X

(r)
k .
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Consider the thin SVD of X
(r)
k , i.e., X

(r)
k = UΣV T where U ∈ Rn×r and V ∈ Rr×r are

matrices with orthonormal columns and Σ = Diag(σ1, . . . , σr) where σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.

Let σ̂ = ‖Σ‖F /
√
r. If there exists p < r such that σp/σ̂ > δ and σp+1/σ̂ < δ for some given

threshold δ, then we set the initial point for optimizing the cost function (4.5) over Rn×p∗ /Op to

be X
(r)
∗ = U(: .1 : p) Diag(σ1, · · ·σp), where Diag(σ1, · · ·σp) denotes a p× p diagonal matrix of the

singular values. The details for reducing the rank are given in Algorithm 3.

The rank reducing parameter δ is initialized close to 1. Unlike in [HGZ16], we decrease the

threshold parameter δ after each iterate. That is, for examples like Figure 3.4 in Chapter 3, the

rank of the similarity matrix is large, but there exists a small, but noticeable, gap in the singular

values that we have shown empirically is associated with the number of roles in the graph. Reducing

the parameter δ allows us to detect this gap in the singular values.

Algorithm 3 is ideal when the true rank of the minimizer is known and the current iterate X
(r)
k

has a rank higher than the desired rank. In practice, we do not know the rank of the neighborhood

pattern similarity measure; however, we know that there exists a relationship between the rank

and the number of roles of the graph. So for this approach, a priori information about the number

of roles means we can assume a rank slightly larger than the number of roles for our initial iterate

and reduce the rank accordingly.

Algorithm 3 Adaptive Rank Reduction Strategy [HGZ16]

Input: X
(r)
k ∈ Rn×r/Or; threshold δ;

Output: Y ∈ Rn×p;
1: Take thin singular value decomposition for X

(r)
k , i.e., X

(r)
k = U Diag(σ1, . . . , σr)V

T , where

U ∈ St(r, n), V ∈ St(r, r), and σ1 ≥ · · · ≥ σr ≥ 0;

2: Set σ̃ = ‖Diag(σ1, . . . , σr)‖F /
√
r;

3: if σr/σ̃ > δ then

4: p← r, Y ← X
(r)
k and return;

5: else

6: Find p such that σp/σ̃ > δ and σp+1/σ̃ ≤ δ;
7: Let Y = U(:, 1 : p) Diag(σ1, . . . , σp) and return;

8: end if
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7.5 Adaptive Rank Increasing Strategy

In Section 6.1, we showed empirically that it was difficult to extract (or impossible if the

solution was rank-1) the role structure from a solution with rank less than the number of roles. So,

an adaptive rank increasing strategy is needed.

The adaptive rank increasing strategy we use is by Zhou et al. [Zho15, ZHG+16]. Their ap-

proach can increase the rank by an adaptively chosen amount during the iteration, unlike previous

methods that increase the rank by a fixed number [Ye05, ABG07, JBAS10, LKLS13, MMBS13].

Their rank-update procedure is governed by parameters that can be adjusted to balance between

saving space and time for the rank reduction and achieving higher accuracy for the rank incre-

ment. Additionally, a convergence analysis is provided and their algorithm is demonstrated on the

weighted low-rank approximation problem and the low-rank graph similarity measure by Blondel

et al. [Zho15,ZHG+16].

In this section, we define additional objects that are needed to increase the rank and give a

brief overview of their rank increasing strategy.

7.5.1 Symmetric Positive Semidefinite Fixed-Rank Manifold as an Embedded
Submanifold

The convergence analysis of the rank increasing strategy in [Zho15,ZHG+16] was on the fixed-

rank manifold viewed as an embedded submanifold of Rm×n. Since the analysis does not support

the quotient manifold, we define an equivalent cost function of (4.5) that maps S+(n, r) viewed as

an embedded submanifold of the general linear group, i.e., the set of all non-singular real n × n
matrices, to R. That is, for S ∈ S+(n, r), we define the function fr : S+(n, r) → R : S 7→ fr(S)

such that for the rank-inequality problem (7.1) we have that fr = f |S+(n,r) where f is given

by (4.1). Thus, when we want to increase the rank of the similarity matrix, we convert from the

quotient manifold to the embedded submanifold and use the rank increasing strategy by Zhou et

al. [Zho15, ZHG+16]. Therefore, we need to define the Riemannian objects of S ∈ S+(n, r) as an

embedded submanifold of the general linear group.

In [VAV09], Vandereycken et al. studied S+(n, r) as an embedded submanifold of the general

linear group denoted GLn, of dimension nr − r(r − 1)/2. The authors considered S = XXT and

derived some Riemannian objects for the embedded submanifold. For implementation purposes,
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we consider the eigendecomposition (or SVD) of S, i.e., S = UΣUT , and derive the Riemannian

objects for the manifold

S+(n, r) =
{
UΣUT | U ∈ St(r, n), Σ = Diag(σ1, . . . , σr)

}
, (7.2)

where Σ is a diagonal matrix of the singular values σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. Some of the objects of

the manifold with this representation can be found in [VV10].

The tangent space is

TSS+(n, r) =
{
ZS + SZT | Z ∈ Rn×n

}
. (7.3)

However, this is an over-parametrization of the tangent space since the tangent space is of dimension

nr − r(r − 1)/2. Thus, if S = UΣUT then the tangent space is given by

TUΣUTS+(n, r) =

{[
U U⊥

] [H KT

K 0

] [
UT

UT⊥

]∣∣∣∣ H = HT ∈ Rr×r,K ∈ R(n−r)×r
}
, (7.4)

where U⊥ ∈ Rn×(n−r) is the orthogonal complement of U in GLn, i.e., UT⊥U = 0.

The metric endowed from the Euclidean space is given by

gS(ηS , ξS) = trace
(
ηTS ξS

)
(7.5)

for all ηS , ξS ∈ TSS+(n, r). Taking ηS = UH1U
T + U⊥K1U

T + UK1U
T
⊥ and ξS = UH2U

T +

U⊥K2U
T + UK2U

T
⊥ , equation (7.5) becomes

gUΣUT (ηS , ξS) = trace
(
HT

1 H2 + 2KT
1 K2

)
. (7.6)

The orthogonal projection onto TSS+(n, r) is given by

PtS(ηS) = PtUΣUT (ηS) =
1

2

(
PU (ηS + ηTS )PU + P⊥U (ηS + ηTS )PU + PU (ηS + ηTS )P⊥U

)
, (7.7)

where PU = UUT and P⊥U = I − PU .

Since S+(n, r) is an embedded submanifold, the Riemannian gradient of fr is equal to the pro-

jection of the gradient of f on Rn×n onto TSS+(n, r) [Section 3.6.1] [AMS08], i.e., the Riemannian

gradient of fr is given by

grad fr(S) = PS (grad f(S)) (7.8)

where PtS(ηS) is defined by (7.7) and grad f(S) is the Euclidean gradient (4.2).
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7.5.2 Retractions on the Embedded Submanifold

In this section, we define a retraction on S+(n, r) that uses the two factor representation (U,Σ)

for S defined on the embedded submanifold S+(n, r). That is, given Ṡ ∈ TSS+(n, r), we want to

find RS(Ṡ) = U+Σ+U
T
+ .

In [KL07, Section 2], Koch and Lubich showed for m×n real matrices on the fixed-rank manifold

rewritten in the form X = UΣV T , where U ∈ Rm×r and V ∈ Rn×r have orthonormal columns and

Σ ∈ Rr×r is nonsingular, that there is a unique representation in the tangent space of the fixed-rank

manifold.

These results can be easily applied to the symmetric positive semidefinite fixed-rank manifold

since for any n×n symmetric positive semidefinite matrix S, the (not unique) eigendecomposition

is S = UΣUT where U ∈ Rn×r has orthonormal columns and Σ ∈ Rr×r is nonsingular and diagonal.

Thus, given a pair (U,Σ) for S ∈ S+(n, r), then there exists a unique representation (U̇ , Σ̇) of any

Ṡ ∈ TSS+(n, r) that can be computed efficiently and satisfies

Ṡ = U̇ΣUT+U Σ̇UT + UΣU̇T , (7.9)

UT U̇ = 0. (7.10)

The computation of (U̇ , Σ̇) is similar to the computation of (U̇ , Σ̇, V̇ ) in [Zho15, Section 4.3.4]

on the fixed-rank manifold. The computations have been simplified since, due to the symmetry

of S and Ṡ, V = U and V̇ = U̇ . Since Ṡ = ṠT implies that Σ̇ = Σ̇T , substituting V = U into

equations (4.20), (4.21), and (4.22) in [Zho15, Section 4.3.4], we get the following equations for U̇

and Σ̇:

U̇ = (I − UUT )ṠUΣ−1, (7.11)

Σ̇ = UT ṠU. (7.12)

Once we have U̇ and Σ̇, we can use them to derive a retraction onto S+(n, r). Absil and

Oseledets in [AO15] analyzed retractions on the fixed-rank manifold. Most of the retractions in

their paper preserve symmetry, i.e., RS(Ṡ) is a symmetric matrix if S and Ṡ are symmetric matrices.

Using retractions related to the compact Stiefel manifold and projections, we can define a retraction

on S+(n, r) based on the two factor representation of S [AM12, AO15]. The two-factor SVD-type
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retraction is the projection-like retraction defined as

RS(Ṡ) = arg min
Y ∈S+(n,r)

‖Y − (S + Ṡ)‖F ,

where ‖·‖F denotes the Frobenius norm [AM12, AO15]. Therefore, simplifying the SVD-type re-

traction in [Van13] on the fixed-rank manifold, the two-factor SVD-type retraction onto S+(n, r)

can be computed as follows:

RS(Ṡ) = U+Σ+U
T
+ , (7.13)

where

U̇Σ = QR,

UsΣsU
T
s =

[
Σ + Σ̇ RT

R 0

]
by the SVD,

U+ =
[
U Q

]
Us(:, 1 : r),

Σ+ = Σs(1 : r, 1 : r).

This algorithm requires the QR factorization of the n × r matrix U̇Σ, the SVD computation of a

2r×2r matrix, and 4nr2 operations in the matrix multiplication yielding a total of O(nr2) +O(r3)

operations where the coefficient of the first term depends upon the method used to compute the

QR factorization.

7.5.3 Tangent Cone

Note that the set D≤p is not a manifold, but the union of symmetric positive semidefinite

fixed-rank manifolds, i.e.,

D≤p =
⋃
r≤p
S+(n, r). (7.14)

So, for any S ∈ D≤p with rank less than p, the set D≤p does not have a tangent space, but there

exists a tangent cone (see Section 1.3.7). Therefore, we can define directions that increase rank in

the tangent cone TSD≤p.
Huang et al. [HGZ16] derived the tangent cone for the union of Hermitian positive semidefinite

fixed-rank manifolds and the derivation in Lemma 7.5.1 is modified for the real case.
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Lemma 7.5.1 Let S ∈ D≤p with rank r ≤ p. Then the tangent cone to D≤p at a point S is

TSD≤p =

{[
U (r) (U (r))⊥

] [H W T

W R

] [
(U (r))T

(U (r))T⊥

]∣∣∣∣ H = HT ∈ Rr×r,W ∈ R(n−r)×r,

R = RT ∈ R(n−r)×(n−r), rank(R) ≤ p− r
}

=

{
U (r)H(U (r))T + U (r)W T (U (r))T⊥ + (U (r))⊥W (U (r))T + (U (r))⊥R(U (r))T⊥

∣∣∣∣
H = HT ∈ Rr×r,W ∈ R(n−r)×r, R = RT ∈ R(n−r)×(n−r), rank(R) ≤ p− r

}
, (7.15)

where U (r) ∈ St(r, n) and U
(r)
⊥ ∈ Rn×(n−r) is the orthogonal complement of U (r) in Rn×n.

7.5.4 Rank-Related Retractions

In order to change the rank, we must derive a rank-related retraction, where the rank-related

retraction maps a tangent vector on the tangent cone back to D≤p. We define a SVD-type rank-

related retraction, which is similar to the SVD-type rank-related retraction [Zho15, Section 4.3.5].

Let fF denote a cost function that maps from Sn+ to R, where f = fF |D≤p and fF |S+(n,r) =

fr = f |S+(n,r). Then the gradient of fF (which is called the full gradient) is the projection of the

Euclidean gradient (4.2) onto Sn+, i.e.,

grad fF (S) = [grad f(S)]+ , (7.16)

where [·]+ is given by (5.15).

The full gradient grad fF (S∗) of a point S∗ = UrΣrU
T
r on Sn+ can be written as

grad fF (S∗) =
[
Ur (Ur)⊥

] [H KT

K R

] [
UTr

(Ur)
T
⊥

]
, (7.17)

where H = HT ∈ Rr×r, R = RT ∈ R(n−r)×(n−r), and K ∈ R(n−r)×r Therefore, increasing the rank

depends upon the symmetric matrix R.

Let r̃ = r + ∆r, where ∆r is the amount the rank has been increased. Then a search direction

on the tangent cone satisfies [Zho15]

η∗ = arg min
η∈TSD≤r̃

‖grad fF (S∗)− η‖F . (7.18)

Due to the symmetry of η∗, we can simplify the three-factored SVD-type rank-related retraction for

the union of fixed-rank manifolds in [Zho15, Section 4.3.5] to a two-factored SVD-type rank-related

retraction

R̃S(η∗) = Ũ+Σ̃+Ũ
T
+ , (7.19)
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given by

U̇r̃Σ = QR,

UsΣsU
T
s =

[
Σr̃ + Σ̇r̃ RT

R 0

]
by the SVD,

Ũ+ =
[
Ur̃ Q

]
Us(:, 1 : r),

Σ̃+ = Σs(1 : r, 1 : r)

where r̃ = r + ∆r, Ur̃ =
[
Ur̃ (Ur̃)⊥

]
, Σr̃ =

[
Σr̃ 0r̃×(n−r̃)

0(n−r̃)×r̃ 0(n−r̃)×(n−r̃)

]
, and the two factors (U̇r̃, Σ̇r̃)

are defined as

U̇r̃ = (I − Ur̃UTr̃ )η∗Ur̃Σ
−1
r̃ , (7.20)

Σ̇r̃ = UTr̃ η
∗Ur̃. (7.21)

7.5.5 Overview of Adaptive Rank Increasing Strategy

Zhou et al.’s rank increasing strategy uses the first order information provided by grad fF and

grad fr to increase the rank. In their Riemannian rank-adaptive method, the authors first check if

the angle and difference between grad fF and grad fr at the current iterate X
(r)
k are both large. If

so, then it is assumed that the maximal rank has not been reached and their method increases the

rank of X
(r)
k [Zho15,ZHG+16].

As in Zhou et al., we use the idea of the angle and difference between the full gradient grad fF

and grad fr (equations (7.16) and (7.8), respectively) to determine if we have reached the maximal

rank or if we need to increase the rank. Parameters ε1 and ε2 in Algorithm 5 are the parameters

associated with this check and were analyzed in [Zho15, ZHG+16]. If they are small, then the

algorithm is more likely to increase the rank. Zhou et al. in [Zho15,ZHG+16] discuss choices of ε1

and ε2 for their Riemannian rank-adaptive method to work efficiently.

If the rank is allowed to increase, then the algorithm determines how much by incrementing r̃

from r to at most p until the tangent of the angle between − grad fF (S
(r)
k ) and its projection η∗

onto T
S
(k)
r
D≤r̃ is smaller than some parameter ε4 where 0 < ε3 � 1. Assuming that r̃ 6= p, it is

assumed that the update rank of η∗ is r̃ > r. Then, η∗ is updated by the rank-related retraction

and a stepsize is chosen by an Armijo-type backtracking procedure (Algorithm 4) to yield the next

iterate S
(r̃)
k+1, whose rank is less than or equal to r̃ but not necessarily equal to r̃. The details of

rank increasing strategy are given in Algorithms 4 and 5.
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Algorithm 4 Rank-related Armijo backtracking [ZHG+16]

1: Inherit R̃, S
(r)
k , β, ᾱ, η∗, S+(n, r̃), f , an d σ from Algorithm 6 where Algorithm 4 is called;

2: Compute the smallest nonnegative integer m such that

(i) R̃
S
(r)
k

(βmᾱη∗) belongs to D≤r̃, and

(ii) fr(S
(r)
k )− fr(R̃S(r)

k

(βmᾱη∗)) ≥ σ
〈
− grad fF (S

(r)
k ), βmᾱη∗

〉
S
(r)
k

;

3: Return t∗ ← βmᾱ;

Algorithm 5 Adaptive Rank Increase Strategy [Zho15,ZHG+16]

Input: S
(r)
k ∈ S+(n, r); δ > 0, ε1, ε3 > 0, ε2 ≥ 0, cA, τε, τδ ∈ (0, 1); maximum possible rank pmax;

Output: S̃
(p)
k+1 ∈ S+(n, p); threshold parameters δ, ε3;

1: Take thin singular value decomposition for S
(r)
k , i.e., S

(r)
k = U Diag(σ1, . . . , σr)U

T , where U ∈
St(r, n) and σ1 ≥ · · · ≥ σr ≥ 0;

2: if ‖grad fF (S
(r)
k )− grad fr(S

(r)
k )‖ > max{ε1‖grad fr(S

(r)
k )‖, ε2} and r < pmax then

3: r̃ ← r; η∗ ← − grad fr(S
(r)
k ); choose ε4 < ε1;

4: while ‖− grad fF (S
(r)
k )− η∗‖ > ε4‖η∗‖ and r̃ < pmax do

5: r̃ ← r̃ + 1; choose η∗ ∈ arg minη∈TD≤r̃
‖− grad fF (S

(r)
k )− η‖;

6: end while

7: Select S̃
(r̃)
k+1 ∈ D≤r̃ such that f(S

(r)
k ) − f(S̃

(r̃)
k+1) ≥ cA(f(S

(r)
k ) − f(R̃

S
(r)
k

(t∗η∗))), where t∗ is

the rank-related Armijo step size returned by Algorithm 4;

8: p← rank(S̃
(r̃)
k+1);

9: else

10: ε3 ← τεε3 and δ ← τδδ;

11: end if

7.6 Riemannian Rank-Adaptive Role Extraction Algorithm

Algorithm 6 summarizes our Riemannian rank-adaptive role extraction approach. For our

algorithm, we suggest starting from an initial rank larger than the expected number of roles since

much of the information for the similarity measure is contained in the neighborhood patterns of

length 1.

The main part of Algorithm 6 is determining when to increase or decrease the rank of the

similarity matrix such that we have enough information about the network to extract the role

structure. In practice, the gap in the singular values of the similarity matrix is not that large (with
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Algorithm 6 Riemannian Rank-Adaptive Role Extraction Method (RRAREM)

Input: X
(r)
1 ∈ Rn×r a representation of initial point π(X

(r)
1 ) for Fr; stopping criterion threshold ε

and ε3; rank reducing threshold δ; a Riemannian optimization method; τδ, τε ∈ (0, 1);

Output: Y ∗; role partition c∗; number of roles q∗;

1: Set initial number of roles q1 ← r and X̂
(r)
1 ← X

(r)
1 ;

2: for k = 1, 2, . . . , do

3: Apply a Riemannian optimization method to maximize Fr over Rn×r∗ /Or with initial point

π(X̂
(r)
k ) until i-th iterate X

(r)
i satisfies g(gradFr, gradFr) < ε23 (rank dec flag ← 0) or the

requirement of reducing rank with threshold δ (rank dec flag ← 1);

4: if r > 1 then

5: Apply Algorithm 2 on X
(r)
k using r and qk as bounds for the list of assumed number of

roles to determine the updated role partition ck+1 and number of roles qk+1;

6: else

7: Set rank dec flag ← 0;

8: end if

9: if g(gradFr, gradFr) < ε2 and r ≥ qk+1 then

10: Find a minimizer Y ∗ = Yi over Rn×r∗ /Or;
11: else

12: if r ≤ qk+1 and rank dec flag = 0 then

13: Apply Algorithm 5 to increase rank and obtain an output factors (Û , D̂) on the embedded

submanifold representation of S+(n, r̃);

14: r ← r̃; Set X
(r)
k+1 = Û diag(

√
D̂);

15: else

16: Apply Algorithm 3 with threshold δ to reduce the rank and obtain an output Ŷ ∈ Rn×r̃;

17: r ← r̃; set X
(r)
k+1 ← Ŷ ; ε3 ← τrε3;

18: if δ < εδ then

19: δ ← δ0;

20: else

21: δ ← τδδ;

22: end if

23: end if

24: end if

25: end for

an exception for the ideal case where the nodes are structurally equivalent), hence, it is difficult

to determine when to increase or decrease the rank using generic methods, such as Zhou et al.’s
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rank-adaptive method [Zho15, ZHG+16]. Therefore, we use heuristics based on our knowledge of

the role extraction problem, the current rank r and number of roles qk+1 to determine if we should

increase or decrease the rank.

Since we have seen that we are more likely to extract the role structure when the rank is greater

than the number of roles, if we find a low-rank solution before convergence where r ≤ qk, then we

apply our rank increasing strategy (Algorithm 5). However, recall that in Algorithm 5 the rank

only increases if the angle and difference between the full gradient and local gradient is larger than

some parameter. If this is not the case, then we reduce the convergence parameter ε3 and the

rank reducing parameter δ by some factor and go to the role extraction step. This case happens

in situations where we have reached a low-rank solution where the rank is equal to the number of

roles. Therefore, the heuristic prevents us from accidentally reducing the rank to a solution where

we will be unable to extract the role structure from and the rigorous gradient check prevents us

from accidentally increasing the rank when we have reached a low-rank solution of the similarity

matrix.

If the rank is greater than the number of roles, we apply our rank reduction strategy (Algo-

rithm 3). This allows us to reduce the rank of the solution and narrow down the assumed number

of roles we have to test for k-means clustering, since the role extraction steps is typically the most

time consuming step in the algorithm due to the fact we have to test and evaluate several different

partitions of the network. The silhouette statistic helps us determine the optimal number of roles.

The main problem with Algorithm 6 is that the rank increasing strategy requires the full

gradient, which is O(n2r0 +n2r) in complexity, where r0 is the rank of the initial condition. Future

work is required to improve the efficiency of line 13 in Algorithm 5 by avoiding computing the full

gradient.

7.7 Evidence of Robustness of the One-Phase Approach
Compared to the Two-Phase Approach

One of the main issues with our two-phase approach is that it depends on the rank chosen by

the user. If the rank is assumed to be less than the number of roles, then the two-phase approach

will not extract the role partition since we only test role assignments from 2 to r+ 1. If r is chosen

to be greater than the true rank of the similarity measure (which is equal to the number of roles in
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the noiseless graph case), then the matrix XTX in the Riemannian objects defined in Section 4.1.2

may be singular; hence affecting the numeric of our approach when computing the inverse of the

matrix. Our two-phase approach allows for the rank to decrease if the matrix XTX is close to

singular, but it does not allow for the rank to increase. Therefore, we need to be able to adjust

the rank of the similarity matrix if we overestimate, or underestimate, the rank with respect to the

number of roles.

In Table 7.1, we generate unweighted, random Erdós-Rényi graphs that have the same 3 role

structures given in Figure 6.1, i.e., block cycle role structure (role graph (a)) and almost isomorphic

role structure (role graph (b)), where there are 100 nodes in each role. In the table, we show the

average total role extraction time (RMP time) and NMI values for 20 random realizations for pin

and pout probability pairs (1, 0), (0.9, 0.1), and (0.7, 0.3). We increase the initial rank r0 (or fixed

rank for the two-phase algorithm) from 1 to 5. For RRAREM, we set the maximum rank for the

algorithm to 5. In Table 7.1, if the algorithm fails to extract a role structure, we denote the number

of roles (#ofRoles) by ∼. rf denotes the final rank of the algorithm.

We consider RNewton for both the two-phase approach and the Riemannian update in RRAREM.

The algorithm parameters for the two-phase approach are the same as in Section 6.1. For our one-

phase approach, the initial rank reducing parameter δ in the rank-update step is 0.5 and we reduce

the parameter by a factor of τδ = 0.1 to account for potential noise within the graphs. We reset

parameter δ to 0.5 when it is less than 10−8. The rank-increasing parameters ε1, ε2, and ε4, are
√

5, 10−2, and 0.5ε1, respectively. Note that we set the angle threshold parameter ε1 to be larger

than in [Zho15, ZHG+16], where it was
√

3. This choice is due to the fact that the solutions our

algorithms find are not the optimal low-rank solution; they are projected onto a rank that is good

enough to extract the role structure. So, we want to be able to increase the rank if we have reduced

the rank too far, but the solution we want may never give us a small angle between the full and

local gradient in Algorithm 5.

Lastly, the initial stopping criterion value ε3 is 1 and we reduce it by a factor of 0.1 until the

norm of the gradient is less than 10−6. The maximum number of outer iterations for RRAREM is

100 and the maximum number of iterations for the local Riemannian optimization problem (line 3

in Algorithm 6) is 2000.
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For role graph (a) when (pin, pout) = (1, 0), both the two-phase and one-phase approaches are

able to extract the role partition when r is greater than or equal to the number of roles, i.e.,

r ≥ 3. However, RRAREM is also able to extract the 3 role block cycle partition for all three

β’s when r0 = 2. When r0 = 1, RRAREM extracts the role partition for every graph for β1 and

β2, but fails to extract the three role partition for one graph when β = β3. The inconsistency

of extracting the correct role partition is probably due to the fact that a rank-1 representation of

the neighborhood patterns of length 1 is missing information about the similarity matrix, hence

making it difficult to the to extract the exact role partition. Note that for (pin, pout) = (0.9, 0.1)

and (0.7, 0.3) that RRAREM still fails to extract the role partition for r0 = 1 and all three β’s.

When (pin, pout) = (0.9, 0.1) and (0.7, 0.3) for all three β values, the two-phase approach is able

to extract the role partition when r ≥ 3 since the rank of the similarity matrix is not 3, but

there still exists a large enough gap in the singular values such that k-means clustering with the

silhouette statistic is able to extract the 3 role partition in the second phase of the approach.

When (pin, pout) = (0.9, 0.1), RRAREM extracts the exact role partition for r0 ≥ 2. However, for

(pin, pout) = (0.7, 0.3), RRAREM is only able to extract the role partition for r0 ≥ 3. RRAREM

fails to extract the 3 role partition for most of the graphs when r0 = 2 because there exists too

much noise within the graphs that the algorithm is unable to recover enough information within

the rank adjustment step to distinguish the 3 roles. However, when r0 is assumed to be greater

than or equal to the number of roles, there exists enough information from the initial condition to

adjust the ranks of the longer neighborhood patterns and extract the exact role partition.

Similar to the previous role graph, the two-phase approach is able to extract the role partition

for role graph (b) when (pin, pout) = (1, 0) and (0.9, 0.1) when r ≥ 3. For (pin, pout) = (0.7, 0.3), the

two-phase approach struggles to extract the role partition for every graph for r ≥ 3, but it finds an

alternative 3 role partition that has the same role structure as role graph (b). For this example,

due to the noise within the graphs, what was previously assumed to be the true role partition may

not be the role partition that best represents the network. For r = 5 and β = β1, the two-phase

approach determines a 2 role partition. However, recall for noisy graphs, longer neighborhood

patterns are necessary to distinguish between the roles in the role structure since two of the roles

are almost isomorphic to each other.
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For role graph (b), RRAREM extracts the 3 role partition for r0 ≥ 2 when (pin, pout) = (1, 0)

and for r0 ≥ 1 when (pin, pout) = (0.9, 0.1). Unlike the previous role graph, RRAREM is unable to

find the 3 role partition for role graph (b) when r0 = 1 and (pin, pout) = (1, 0). It fails for this case

because the initial iterate satisfied the stopping criterion. That is, the norm of the gradient is less

than the final tolerance and the number of roles is equal to the rank. Thus, RRAREM returns a

role partition with one role. When some noise is added to the network, RRAREM may extract the

role partition; however, the unpredictability of the algorithm does not make r0 = 1 an ideal initial

rank choice for RRAREM. When (pin, pout) = (0.7, 0.3), the behavior of RRAREM is similar to the

two-phase approach for r0 ≥ 2.

While RRAREM is able to compete with the two-phase approach in quality for role graphs

(a) and (b), it cannot compete in time, except for instances when the two-phase approach fails

to extract the role partition. A way to improve the computational time of RRAREM is to avoid

the computation of the full gradient in the rank increasing algorithm (Algorithm 5). Computing

the full gradient is expensive, and an alternative approach that avoids this computation by either

approximating the full gradient or exploiting properties of symmetric positive semidefinite matrices

and the Euclidean inner product needs to be explored.

Note that there is not a significance difference in time between the three β parameters because

both approaches are dominated in computational time by the role extraction step, which is not

dependent upon β. Therefore, overall improvement in computation time to both approaches would

be to improve the efficiency the role extraction step.

Overall, RRAREM is able to compete with our two-phase approach in quality when the initial

rank is assumed to be greater than or equal to the number of roles, and superior if the initial rank

is assumed to be less than the number of roles because it allows for recoverability. In practice, the

true rank of the similarity matrix with respect to the number of roles in the network is unknown.

Therefore, one should implement the two-phase approach for several ranks to determine the role

partition of the graph. This systematic search may be expensive in time, especially when n or

r are large. Therefore, the rank-adaptive techniques in RRAREM provides a more sophisticated

approach to approximating the rank and finding the number of roles.
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CHAPTER 8

SIGNED NETWORK EXPERIMENTS FOR

TWO-PHASE INDIRECT APPROACH

In this chapter we investigate our two-phase indirect approach on the role graphs of signed graphs.

8.1 Introduction

Networks of interest often have both positive and negative weights, e.g., social analysis net-

works [WF94, DBF05, Tra14], where negative edges often denote a dislike towards a person, place

or thing. Partitioning signed networks can be determined by social balance theory (also known as

structural balance theory) [WF94,DBF05,Tra14]. First formulated by Heider in [Hei46,Hei58] and

then generalized by Cartwright and Haray in [CH56], given a triad, i.e., a cycle of length 3, social

balance theory predicts the third edge of the triangle such that it is balanced, i.e., it does not cause

the system to change. For example, given three nodes a, b, and c, then if c is a friend of b who is a

friend of a, then c is a friend of a (Figure 8.1a). Similarly, in Figure 8.1b, if c is an enemy of b who

is a friend of a, then c is an enemy of a [DBF05]. However, an imbalanced system would be if both

a and b are friends with c, but b is an enemy of a (Figure 8.1c), or an enemy (c) of my enemy (b)

is my enemy (a) (Figure 8.1d). These two examples are imbalanced because they cause strain on

the system. Several more examples of balanced and imbalanced triads are in [WF94,DBF05].

c

ba

1(a) Balanced

c

ba

1(b) Balanced

c

ba

1(c) Imbalanced

c

ba

1(d) Imbalanced

Figure 8.1: Balanced (left) and imbalanced (right) signed triads, where dashed lines indicate neg-
ative edges and solid lines indicate positive edges.
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Recall that a signed graph is denoted G(V,E−, E+), where E− ⊆ V × V are the negative

edges, E+ ⊆ V × V are the positive edges, and no edge can be both positive and negative (i.e.,

E− ∩ E+ = ∅). The definitions of walks, paths, cycles, and semiwalks are the same for signed

graphs as they are for unsigned graphs (see Section 1.2), except that the edges now include signs.

The sign of a (semi)walk is the product of signs of the lines in the sequence. Thus, the (semi)walk

on signed networks is positive if and only if it has an even number of negative edges; otherwise it

is negative.

In Figure 8.1, the balanced triads are positive, while the imbalanced triads are negative. There-

fore, a signed network is balanced if and only if the sets of nodes can be partitioned into two clusters

such that every positive edge joins nodes of the same cluster and every negative edge joins nodes

from difference clusters [DBF05, Chapter 10]. For example, Figure 8.2 is a balanced signed network

partitioned such that the positive blocks have only positive or zero entries and are on the block

diagonal while the negative blocks have negative or zero entries and are off-diagonal blocks. That

is, balanced signed networks can be determined by the following theorem.

Theorem 8.1.1 [DBF05, Theorem 10.1] A signed network G(V,E−, E+) is balanced if and only

if every closed semiwalk is positive.

In the next section, we investigate if our indirect role extraction methods can find role structures

in signed networks that conform to balance theory. That is, we want to find well-defined role

structures where every positive edge joins nodes in the same role and every negative edge joins

nodes from different roles.

In addition to partitioning the network appropriately for positive and negative edges, we in-

vestigate if our indirect methods can extract a positive subgraph within the larger signed network

(Figure 8.3). Being able to extract smaller subgraphs within larger signed graphs is of interest in ex-

amples where people are interested in isolating positive, or negative, characteristics of the network.

For example, Ayroles et al. in [ACS+09] computed the correlation of 10, 096 genetic transcripts of

40 inbred lines of Drosophila melanogaster and used community detection methods to cluster the

correlation of the transcripts into 241 communities. They isolated positive correlation subsets of

data related to a specific traits and observed any biological significance and overlap between genes

within those traits. While their analysis focused on community structures and did not consider role
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A B

−

−

+ +

1
(a)

(b)

Figure 8.2: Example of block structure of signed networks.

structures, it inspired the idea of there possibly existing role subgraphs within a larger role graph

of a signed network.

8.2 Experiments

To construct the signed graphs, we assume there exist two separate role subgraphs such that

each role subgraph has positive edges within the subgraph and negative edges between the subgraph

(see Figure 8.3a). The role signed role graph is denoted by GB(VB, E
+
B , E

−
B ), where E+

B ⊆ VB ×VB
is the set of positive edges in GB and E−B is the set of negative edges in GB. In Figure 8.3a, the red

positive edges represent the 4 role structure in the network and the purple edges represent the block

cycle role structure. The dashed blue edges are the negative edges between the two structures. The

adjacency matrix of Figure 8.3a is shown in Figure 8.3c, where the size n is fixed at 1700 and the

sizes of the roles in the first structure are 200, 300, 100, and 500, and the size of the roles in the

second role structure are 100, 100, and 400. The edges of the adjacency matrix are unweighted.

We build our signed graph GA(VA, E
+
A , E

−
A ) by adding edges to E+

B and E−B according to the

probability parameters pin and pout, where the negative edges in the role graph are denoted by

negative edges in the image matrix (Figure 8.3b). That is, for every pair of nodes i, j ∈ VA, a

positive edge (i, j) ∈ E+
A is added with probability pin if a positive edge between the corresponding

roles exists in GB. Similarly, a negative edge (i, j) ∈ E−A is added with probability pin if a negative

edge between the corresponding roles exists in GB. If a positive (or negative) edges does not exist
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−

++

+ +

+

+

+

+
1

(a)

B =



0 1 0 0 −1 −1 −1
0 0 1 1 −1 −1 −1
1 0 0 0 −1 −1 −1
0 0 0 1 −1 −1 −1
−1 −1 −1 −1 0 1 0
−1 −1 −1 −1 0 0 1
−1 −1 −1 −1 1 0 0


(b)

(c)

Figure 8.3: Signed Erdós-Rényi graph with two role subgraphs, where there exists negative edges
between the subgraphs and positive edges within the subgraphs.

between the corresponding roles, then the positive (or negative) edge is added with probability pout.

We consider two pin and pout pairs: (0.9, 0.1) and (0.7, 0.3).

We extract the role structures using our two-phase approach, and compare the quality and

time. We consider three β values given by (6.11). Since GA(VA, E
+
A , E

−
A ) has negative edges, then,

in general, β1 may not be less than β2 and β3 since the left-hand side of the inequality (5.18) in

Theorem 5.2.1 may not be true. However, all three β values are less than the upper bound in (5.18).

That is, the similarity metric is well-defined for all three β values.

As in Section 6.1, we compare our structures when starting from initial ranks 1 to 15. Table 8.1

summarizes the average time it took to complete the role extraction process once and the average
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NMI results out of 5 runs.

We have omitted Browet and Van Dooren’s approach from this experiment because the com-

munity detection cost functions within their algorithm are not designed to handle negative edge

weights. Modifications for negative edge weights could be made to the code using ideas in [Tra14].

From Table 8.1, observe for r = 7, our two-phase role extraction approach is able to extract

the role structure for the signed network for all three β values when (pin, pout) = (0.9, 0.1). When

more null edges are added to the network, the approach only extracted 5 roles for β1, and 2 roles

for β2 and β3. However, the silhouette coefficient indicates that all of the partitions are a good

representations of the dataset. The high silhouette value indicates that we were able to extract

roles partitions for the graph that were balanced. That is, we have groups of nodes in a role that

are joined by a positive edge and every negative edges joins nodes from different roles.

In Figure 8.4, we observe the three different role structures extracted by our two-phase process

when r = 7 for β1 for both probability pairs and for β2 when (pin, pout) = (0.7, 0.3). Notice in

Figure 8.4a that we extract the role structures exactly, as indicated by the NMI value of 1.00 in

Table 8.1. However, in Figure 8.4c, we obtain a 5 role structure where 4 of the blocks follow our

assumed 4 role subgraph and the fifth block of the permuted adjacency matrix is nonnegative and

there is no clear grouping of positive edges.

Since we have almost constructed the full role graph of the network, we isolated this nonnegative

block from the adjacency matrix and applied our role extraction approach again on the smaller sub-

block to see if there is a hidden role structure within the sub-block. This allowed us to extract

the small block cycle role structure (see Figure 8.4e) and the NMI value of the new, role structure

is 1.00. Similarly, for the 2 role graph in Figures 8.4f and 8.4g, we were able to obtain our two

separate role structures (Figure 8.4h) after implementing our role extraction algorithm on each

block.

8.3 Summary

Therefore, for signed networks, our two-phase role extraction algorithm is able to extract role

structures that satisfy the ideas of balanced signed network. This is probably because the neighbor-

hood patterns of the similarity matrix are semiwalks with even lengths and the similarity measure
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(a) (0.9, 0.1) and β1: Permuted A

A B

C

D

E

G

F

1(b) Role graph

(c) (0.7, 0.3) and β1: Permuted A

A B

C

DE

1(d) Role graph
(e) A after implementing algo-
rithm on block 2.

(f) (0.7, 0.3) and β2: Permuted A

A B

1
(g) Role graph

(h) A after implementing algo-
rithm on both blocks individually.

Figure 8.4: Results from our two-phase role extraction approach. Left: Permuted adjacency matrix
A. Middle: Corresponding role graph. Solid lines indicate positive edges and dashed lines indicate
negative edges. Right: Final solution.
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may be creating indirectly balanced triads, but a more rigorous analysis of the similarity measure

on signed networks is needed.

When trying to find a positive role subgraph within the larger role graph, our approach indicates

the need to run an indirect hierarchical role detection algorithm. Our simulated experiments

show that we must run the indirect approach twice to find the role subgraphs, where the first

implementation of the algorithms partitions the adjacency matrix into positive and negative blocks.

If the positive blocks are not dense or do not have a dense sub-block, then the positive block can

be isolated from the adjacency matrix and the role extraction methods can be implemented again

on the smaller block to see if there exists a role subgraph. Therefore, an indirect hierarchical

role detection algorithm may need to be considered for signed networks in case there exists role

subgraphs within the larger graph, and we would need to run the hierarchical algorithm at least

twice to find the complete role structure. However, in practice, the required number of times the

indirect approach should be run is unknown and must be investigated.
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CHAPTER 9

OVERLAPPING COMMUNITIES VERSUS ROLES

9.1 Introduction

Community detection emphasizes the presence of dependencies inside a group and the absence

of dependencies between groups (see Section (2.2)), while role extraction focuses on interdependen-

cies between groups (see Section 1.1). Therefore, community structures are a special case of role

structures. However, there may exist nodes that can be placed in multiple communities without

significantly altering the value of the quality function optimized. That is, given two separate com-

munities A and B, a third group of nodes C may be included in either A or B if the quality function

fails to determine a significance of one community over the other [PDFV05, Rei09]. Therefore, it

can be concluded that A and B are overlapping communities and C is the overlap (see Figure 9.1a).

Palla et al. developed an algorithm to detect overlapping community structures by the clique

percolation method [DPV05, PDFV05, APF+06, FPV07, PDV07, PFP+07]. The clique percola-

tion method builds communities from k-cliques, i.e., complete subgraphs of k nodes. A k-clique-

community is the union of all k-cliques that can be reached through a series of adjacent k-cliques,

where two k-cliques are adjacent if they share k − 1 nodes [PDFV05]. The basic definition for

k-cliques is only for unweighted and undirected graphs; however, the authors extended the defini-

tion of k-cliques to handle directed and weighted graphs [FPV07, PFP+07]. The software, called

CFinder1 implements the clique percolation method by Palla et al. for overlapping community

structures [APF+06].

A problem with the clique percolation method is that it is dependent upon the existence of

triangles in the network. Nodes that are not connected by triangles to communities cannot be a

part of the communities. Also, only nodes with at least k − 1 cliques can be a part of a k-clique.

So, single edges may be added or removed from the network [Rei09]. This is a concern for noisy

networks since two communities may be connected by a single edge. Lastly, searching for k-cliques

1http://www.cfinder.org/
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A BC

1

(a) Overlapping Community
Structure (b) Adjacency Matrix

A B

CC

1

(c) Role Structure

Figure 9.1: Example of two overlapping communities.

in a network may be slow and costly, especially for dense graphs [DPV05,Rei09]. Hence, the clique

percolation method mainly works well for sparse and small graphs.

Observe for the adjacency matrix (Figure 9.1b) that the overlapping community structure in

Figure 9.1a can be represented by the 3 role structure in Figure 9.1c. That is, the overlap C can be

represented by its own role where its role has connections to other nodes within the same role and

to nodes in roles A and B. Also, the nodes in roles A and B do not interact with each other and

only interact with nodes in the same role or with nodes in role C. Lastly, the above role structure

is a valid role structure since it satisfies our role constraint that no two roles can be structurally

equivalent (see Section 1.1). Thus, role extraction algorithms can be used to extract role partitions

that are representative of overlapping community structures.

In the next section, we show empirically that the overlapping community structures can be

viewed as role structures where the overlap is a role.

9.2 Experiments

In this section, we observe a relationship between role structures and overlapping community

structures for synthetic networks. For our first set of experiments, we compare the overlapping

community structure found by the clique percolation method (CFinder) [APF+06] and the role

structure extracted by Browet and Van Dooren’s full-rank iterative algorithm for the neighborhood

pattern similarity measure and k-means clustering with the silhouette statistic. For the clique
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B

D
C

2

(a) 3 Overlapping Communities
where D is the overlap

(b) Adjacency Matrix

A B

DDDC

1

(c) 4 Roles

Figure 9.2: Example of three overlapping communities.

Figure 9.3: Two overlapping communities found by CFinder where the black nodes are the overlap.

percolation method, we look at 6-clique communities, and for the silhouette statistic, we run k-

means clustering for 2 to 6 clusters and choose the one with the largest silhouette value. We use

the unweighted Erdós-Rényi graphs with probability parameters (pin, pout) = (0.7, 0) to generate

our synthetic overlapping community examples. We assume two different overlapping community

structures: a two overlapping community structure (Figure 9.1) and a three overlapping community

structure (Figure 9.2). The size of the adjacency matrix is n = 35 for both examples. For the two

overlapping community structure, there are 20 nodes in each community, where 5 of the nodes

are in the overlap, and for the three overlapping community structure, there are 15 nodes in each

community, where all three communities share 5 nodes.

Figure 9.3 is the two overlapping communities determined by CFinder. In the figure, nodes 31,
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C B

A

1

(a) 3 Role Structure (b) Permuted Adjacency Matrix

Figure 9.4: Three role structure found by role extraction method where role C is the overlap.

32, 33, 34, and 35 are the overlapping nodes. This overlapping community structure corresponds

with the three role structure found by the role extraction method (Figure 9.6) where role C (first

block in the adjacency matrix) contains nodes 31, 32, 33, 34, and 35, and these nodes interact with

themselves, with nodes in roles B (second block in the adjacency matrix), and with nodes in role A

(third block of the adjacency matrix). Roles B and A only interact with other nodes in the same

role, similar to how the nodes in the blue and green communities in Figure 9.3 are only connected

to other nodes in the same community. Therefore, the role extraction method can extract a three

role partition that is similar to a two overlapping community structure, where the third role that

contains edges to and from the other roles and a self-loop can be viewed as the overlap of the two

community structure.

Figure 9.5: Three overlapping communities found by CFinder where the black nodes are the overlap.
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DC

1

(a) 4 Role Structure
(b) Permuted Adjacency Matrix

Figure 9.6: Four role structure found by role extraction method where role C is the overlap.

Next we consider our three overlapping community structure in Figure 9.2. For this structure,

we have three communities A, B, and C that all share 5 nodes that are located in overlap D.

Figure 9.5 are the results from CFinder on this simulated data. Observe that the overlapping

community detection algorithm found 3 communities that had 5 overlapping nodes. The role

extraction method finds four roles where each role interacts with nodes in the same roles and roles

A, B, and C also interact with the 5 nodes in role D (Figure 9.6). This structure is equivalent to

the overlapping community structure, where role D in Figure 9.6 is the overlap in Figure 9.5.

As we increase the number of nodes in the graphs, we can still extract a role structure that

is equivalent to an overlapping community structure. For example, consider the three overlapping

community structure in Figure 9.2 generated with probability parameter pair (0.7, 0) and 350 nodes,

where there are 150 nodes in each community and 50 of those nodes makes up the overlap. The

low-rank role extraction methods can extract the 4 role structure in Figure 9.6a.

In Table 9.1, we compare the role partition extracted by the low-rank role extraction algorithms

with exact 4 role structure that is equivalent to the overlapping community structure. The table

shows that the low-rank algorithms are able to extract the 4 role structure in Figure 9.6a depending

upon the assumed rank r and the neighborhood pattern similarity parameter β.

Therefore, overlapping community structures can be viewed as role structures where the overlap

of the communities is classified as its own role and we can use role extraction algorithms to find this

role structure. For large networks with dense roles, we can use a low-rank role extraction algorithm

to find overlapping community structures.
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Our simulations on synthetic data support this observation, but a more thorough investigation

on empirical datasets must be done. In particular, a survey on the parameters defined for role

extraction algorithms applied to overlapping community structures needs to be performed.

Table 9.1: Comparison of NMI values of the low-rank role extraction algorithms for overlapping
community role structure and three β values given by (6.11). The subscript ν indicates a scale of
10ν .

Algorithm
Browet LR

CNM

Two-Phase
LRBFGS

IC1

Two-Phase
LRBFGS

IC2

r # of Roles NMI # of Roles NMI # of Roles NMI

2
β1 2 6.10−1 3 8.88−1 3 8.88−1

β2 2 5.85−1 3 8.88−1 3 8.88−1

β3 2 5.68−1 3 8.88−1 3 8.88−1

3
β1 3 7.70−1 4 1.00 4 1.00
β2 3 7.70−1 4 1.00 4 1.00
β3 3 7.70−1 4 1.00 4 1.00

4
β1 4 1.00 4 1.00 4 1.00
β2 4 1.00 4 1.00 4 1.00
β3 4 1.00 4 1.00 4 1.00

10
β1 4 1.00 4 1.00 4 1.00
β2 4 1.00 4 1.00 4 1.00
β3 4 1.00 4 1.00 4 1.00

15
β1 4 1.00 4 1.00 4 1.00
β2 4 1.00 4 1.00 4 1.00
β3 4 1.00 4 1.00 4 1.00
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CHAPTER 10

CONCLUSIONS AND FUTURE RESEARCH

10.1 Conclusion

In this dissertation, we propose a two-phase indirect approach to solving the role extraction

problem. The first phase consists of using Riemannian optimization to approximate the low-rank

neighborhood pattern similarity measure and the second phased uses k-means clustering with the

silhouette statistic on the low-rank factor to extract the role partition of the graph. We also propose

a one-phase indirect approach that combines the two phases of our indirect approach that iteratively

approximates the best low-rank solution of the similarity measure and determine the role structure

of the network.

The major contributions of this dissertation are:

1. We analyze the rank of the neighborhood pattern similarity measure with respect

to the rank of the adjacency matrix of a graph and the number of roles.

The idea of using a rank projection of the similarity matrix and what that means for the role

extraction problem is a very recent development. Browet and Van Dooren empirically showed

that the role graph could be recovered from a low-rank projection of the neighborhood pattern

similarity measure. We extend this by theoretically analyzing when the number of roles is

equal to the rank. In addition, we analyze, for certain role graph structures, the relationship

between the rank of the adjacency matrix, the rank of the similarity matrix and the number

of roles. Our work is the first theoretical analysis of this relationship.

2. We develop a cost function and use Riemannian optimization to approximate the

neighborhood pattern similarity measure on the symmetric positive semidefinite

fixed-rank manifold for the first phase of the role extraction problem.

For the first phase of the indirect approach, we use a similarity measure to measure the

node-to-node similarity. Browet and Van Dooren propose in [Bro14, BD14] to use a low-

rank projection of the neighborhood pattern similarity measure to measure the similarity

between the nodes in a fast and efficient way. We derive a cost function (4.1) from their

iterative low-rank similarity algorithm and use Riemannian optimization on the symmetric

positive semidefinite fixed-rank manifold to approximate the similarity measure in a robust

and efficient manner.
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3. We define new Riemannian objects for the symmetric positive semidefinite fixed-

rank manifold to improve the performance of state-of-the-art Riemannian algo-

rithms.

Since we assume the networks are large, we use recent developments in Riemannian opti-

mization such as the intrinsic representation of tangent vectors and vector transport by par-

allelization to improve the efficiency and minimize the storage for the Riemannian approach.

However, the Euclidean metric for the quotient manifold representation of the symmetric

positive semidefinite fixed-rank manifold cannot be used because the natural basis of the

horizontal space with respect to the metric is not a orthonormal basis. This is important to

simplify the representation and computation of the intrinsic approach. Thus, we define a new

metric for the manifold where the natural basis of the new horizontal space is orthonormal

with respect to the metric.

4. We use of k-means clustering and the silhouette statistic on the low-rank factor

to extract the role partition for the second phase of the role extraction problem.

Browet and Van Dooren use a fast community detection to extract the role partition from

the similarity measure. However, the community detection algorithm requires the full ap-

proximate similarity measure, which may be costly for large n and r. Therefore, to avoid

computing the full similarity measure, we use k-means clustering with the silhouette statistic

on the low-rank factor to extract the role partition. The silhouette statistic allows us to

efficiently determine the optimal number of roles for k-means clustering from an index set of

assumed roles. Furthermore, we show empirically that this approach for the second phase of

the algorithm is efficient in time and robustness for simulated graphs. Also, for the metal

world trade data, this approach gives us role partitions that make sense from the context of

the problem.

5. We prove that Browet and Van Dooren’s full-rank iterative algorithm is a Eu-

clidean gradient projection method along a projection arc with a fixed stepsize.

With respect to the new cost function (4.5), we prove that Browet and Van Dooren’s full-rank

iterative algorithm is a Euclidean gradient projection method along a projection arc with a

fixed stepsize. From a proposition in [Ber99], we prove that their full-rank iterative algorithm

converges to a stationary point if the similarity parameter β satisfies bound (5.17).

In addition, for nonnegative matrices, we prove that the new bound for β is less than necessary

and sufficient condition (2.25) that ensures the convergence of Browet and Van Dooren’s

iterative algorithm, and is greater than Browet and Van Dooren’s sufficient bound for β (2.26).

6. We include a stepsize and Armijo line-search method to the Euclidean gradient

projection method along a projection arc, and prove that the choice of the Armijo

stepsize is dependent upon the similarity measures parameter β.
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Since Browet and Van Dooren’s full-rank iterative algorithm is a Euclidean gradient projection

method along a projection arc with a fixed stepsize, we include a stepsize and Armijo line-

search method to the optimization method. Then, we prove that the Armijo stepsize is

dependent upon the similarity parameter β when β satisfies (5.17).

7. We develop empirical evidence that our two-phase role extraction approach is

more efficient in time and more robust compared to Browet and Van Dooren’s

role extraction approach.

We provide empirical evidence that our proposed two-phase role extraction approach is ef-

ficient in time and robust compared to Browet and Van Dooren’s low-rank role extraction

approach. We show that as we consider longer neighborhood paths for the neighborhood pat-

tern similarity measure, our Riemannian approach is able to approximate a low-rank solution

faster than Browet and Van Dooren’s low-rank algorithm and the clustering algorithm is able

to extract the role partition from the similarity approximation.

We compare the time and robustness of the silhouette and gap statistics with k-means cluster-

ing. In the literature, the gap statistic has been shown to be more robust than the silhouette

statistic in clustering; however, the gap statistic is significantly slower than the silhouette

statistic. We show empirically that the silhouette statistic is fairly robust for certain types of

role graphs and that the ability of the silhouette statistic to extract the role partition depends

on characteristics of the set of clusters.

8. We develop and analyze techniques to form a one-phase indirect approach to

the role extraction problem and provide empirical evidence of robustness of the

approach than to our two-phase approach.

Our two-phase approach is dependent upon the assumed rank, which is a problem if the rank

is chosen too large or small compared to the number of roles in the graph. So, we propose

to combine our two-phase approach into a one-phase indirect approach and use Riemannian

rank-adaptive techniques to adjust the rank of the similarity matrix as we attempt to extract

the role partition of the graph. We provide empirical evidence of the robustness of our new

approach compared to our two-phase approach.

9. We provide empirical evidence that our two-phase indirect approach can partition

signed networks such that the network is balanced.

In the literature, social balance theory is used to partition signed networks such that nodes

can be grouped into two clusters such that every positive edges joins nodes in the same cluster

and every negative edge joins nodes from different clusters. We generate a signed Erdós-Rényi

graph where there exists two positive groups, where the nodes within the group are joined

by positive edges and the nodes between the groups are joined by negative edges. Also,

150



we include a role subgraph structure within each positive block, and apply our two-phase

approach to extract the overall role structure.

Most of the time, our two phase-approach extracted a large 2 role structure where the role

subgraphs are within each role. We apply our role extraction approach again on both positive

sets of data and show that we can extract the role subgraph. This provides empirical evidence

that a hierarchical role extraction method is a promising approach to search for role subgraphs

on signed networks.

10. We provide empirical evidence that there exists a relationship between overlap-

ping community structures and role structures.

We observe that overlapping communities in a graph can be represented by role structures.

That is, the overlap of the separate communities is classified as its own role where the nodes

in the role interact with other nodes in the same role and with nodes in each of the separate

communities, and the separate communities are roles that only interact with nodes in the

same community or with nodes in the overlap.

We simulate small, random, unweighted, directed graphs that have an overlapping community

structure and we compare the results of the clique percolation method to the two-phase

indirect role extraction approach using the full-rank similarity matrix to empirically determine

if it the overlapping community structure and the role structure are equivalent. Our results

indicate a relationship between the two structures.

10.2 Future Research

There are several areas of future research for the role extraction problem that can be explored.

(1) Improve the quality of our one-phase role extraction algorithm;

We must investigate the rank-adaptive parameters within our one-phase role extraction al-

gorithm to improve its robustness in quality and time. The parameter selection is currently

based on heuristics derived from our analysis of the rank-role relationship in the neighborhood

pattern similarity measure and empirical results derived from simulated experiments. A more

rigorous analysis of these parameters is needed to improve the quality of the algorithm.

The rank increasing strategy uses the full gradient, which is computationally expensive. To

improve the complexity of our approach, we must determine an alternative method for our

rank increasing strategy that avoids computing the full gradient. That is, we either find a less

expensive way to compute the search direction on the tangent cone without explicitly computing

the full gradient, or we replace the rank increasing strategy by Zhou et al [Zho15, ZHG+16]

with another rank increasing strategy, such as the one in [HGZ16].
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(2) Extend our preliminary results on signed networks to determine if the neighbor-

hood pattern similarity measure supports known results in social balance theory;

Typically, mathematical extensions of social balance theory is used to partition signed networks.

We showed empirically that we could partition a signed network into its ideal clustering using

our two-phase indirect approach. A rigorous analytical explanation of the structure of the

neighborhood pattern similarity measure with respect to signed networks must be investigated

to determine if the measure supports theorems and conditions in social balance theory.

(3) Extend our preliminary results on the relationship between overlapping community

structures and role structures by applying our role extraction algorithm to real

world applications with known overlapping community structures;

We observed that an overlapping community structure can be represented by a role structure,

and tested our hypothesis on two synthetic, unweighted and directed graphs by comparing the

overlapping community detection results determined by the clique percolation method with

the role extraction results determined by the two-phase indirect method. A more rigorous

investigation on real world datasets with known overlapping community structure is needed.

(4) Compare our role extractions algorithms to other competitive indirect and direct

role extraction methods

For this dissertation, we focused on indirect role extraction methods and compared our proposed

two-phase method to the role extraction method proposed by Browet and Van Dooren. A

complete survey and comparison of competitive indirect and direct role extraction methods is

needed to determine the overall quality of our algorithms.
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[DPV05] Imre Derényi, Gergely Palla, and Tamás Vicsek, Clique percolation in random net-
works, Phys. Rev. Lett. 94 (2005), 160202.

[DYB10] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona, Stability of graph communities
across time scales, Proceedings of the National Academy of Sciences 107 (2010),
no. 29, 12755–12760.

[EAS98] Alan Edelman, TomAs A. Arias, and Steven T. Smith, The geometry of algorithms
with orthogonality constraints, SIAM Journal on Matrix Analysis and Applications
20 (1998), no. 2, 303–353.

[EB94] Martin G. Everett and Stephen P. Borgatti, Regular equivalence: General theory, The
Journal of Mathematical Sociology 19 (1994), no. 1, 29–52.

[EB96] , Exact colorations of graphs and digraphs, Social Networks 18 (1996), no. 4,
319 – 331.

[FB07] Santo Fortunato and Marc Barthlemy, Resolution limit in community detection, Pro-
ceedings of the National Academy of Sciences 104 (2007), no. 1, 36–41.

[For10] Santo Fortunato, Community detection in graphs, Physics Reports 486 (2010), no. 3–
5, 75 – 174.

[FPV07] Ills Farkas, Dniel bel, Gergely Palla, and Tams Vicsek, Weighted network modules,
New Journal of Physics 9 (2007), no. 6, 180.

[Gab82] D. Gabay, Minimizing a differentiable function over a differential manifold, Journal
of Optimization Theory and Applications 37 (1982), no. 2, 177–219.
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