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Abstract. A C1 circle diffeomorphism with irrational rotation number need not
have any dense orbits. However, any C2 circle diffeomorphism with irrational rotation

number must in fact be topologically conjugate to an irrational rotation.
This paper addresses the analogous matter for the 2-torus. We say that a dif-

feomorphism f of T 2, isotopic to the identity, has Denjoy type if hf = Rh, where

R is some minimal translation of the torus, and h is a continuous torus mapping
homotopic to the identity such that {x ∈ T 2 : cardinality(h−1(x)) > 1} is nonempty

and countable. If f has Denjoy type, the interior of any fiber h−1(x), if nonempty,
is a wandering domain for f .

It is known that there are C2 diffeomorphisms of Denjoy type, but not known

whether they can be C3. Our main results imply the following

Theorem. Let f ∈ Diff1(T 2) have Denjoy type, with minimal set Γ 6= T 2.
(i) If f preserves a measurable, essentially bounded conformal structure on Γ,

then the collection {fn} (considered as mappings of the ideal boundaries of the wan-

dering domains) has unbounded quasisymmetric distortion, and
(ii) if f preserves a C1+Z conformal structure on Γ, then f cannot be C2+Z .

A simple corollary of (ii) is that no C3 diffeomorphism of Denjoy type exists with,

for example, circular wandering domains.

0. Introduction

Let f : S1 → S1 be a homeomorphism of the circle without periodic points.
There is always a continuous monotone function h such that hf = Rh, where R is
some irrational rotation. (In fact h(x) =

∫ x
c
dµ, where c is some point on the circle,

and µ is the (unique) invariant probability measure for f .) If h is a homeomorphism,
f is said to be topologically conjugate to R. Otherwise f is semiconjugate to R,
and f permutes countably many pairwise disjoint closed intervals of S1 [8].

Poincaré [16] essentially understood both these possibilities, and asked whether a
homeomorphism of this second type (now called a “Denjoy counterexample”) could
be realized as an analytic function. About 100 years later, Yoccoz [19] showed that
the answer is “no”. Previously, Hall [5] showed that there are nevertheless C∞

Denjoy counterexamples.
For diffeomorphisms (i.e. smooth homeomorphisms without critical points), this

question was settled by A. Denjoy [4] in 1932 with the following theorem.
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Denjoy’s Theorem. If f : S1 → S1 is a C1 diffeomorphism without periodic
points and Df has bounded variation (f ∈ C1+b.v.), then f is topologically conjugate
to an irrational rotation.

Furthermore, Denjoy, and before him Bohl [2], provided examples of C1 dif-
feomorphisms semiconjugate but not conjugate to an irrational rotation. (The
condition C1+b.v. is sharp in the sense that there are C1+α counterexamples for
all α ∈ (0, 1) [8]. Also C1+b.v. in the theorem can be replaced by the condition
C1+Zygmund, [17], and Hu [10] showed recently that this condition can be replaced
by one weaker than both C1+b.v. and C1+Zygmund.)

Denjoy’s techniques make strong use of the one-dimensionality of the problem,
and so do subsequent proofs. E.g. see [8,12,18].

It is natural to ask whether similar phenomena occur in higher dimensions. For
example, one might consider the dynamics on an invariant circle in the plane. A
famous argument of Ghys shows that a complex analytic homeomorphism defined
on a neighborhood of an invariant closed curve in C with no periodic points on
the curve has only dense orbits on the curve. (Use the Riemann mapping theorem
and the Schwarz reflection principle, followed by Denjoy’s theorem.) On the other
hand, J. Harrison constructed in [7] a C2+ε diffeomorphism of the annulus in which
there is a (non-rectifiable) invariant closed curve with no periodic points and no
dense orbits, and which has a wandering domain. G.R. Hall constructed in [6] a
C∞ diffeomorphism of the annulus with an invariant rectifiable curve having also
no dense orbits and no periodic points.

In this paper we generalize the setting of Denjoy’s theorem more fully to two
dimensions by considering diffeomorphisms of the torus. (This matter has been pre-
viously addressed in [14] and [15].) An equivalent formulation of Denjoy’s theorem,
more suggestive for this kind of generalization, is the following:

Denjoy’s Theorem revisited. If f : S1 → S1 is a C1+b.v. diffeomorphism, Rα
is the irrational rotation Rα(x) = x + α mod 1, and hf = Rαh for some contin-
uous degree one mapping h, then h is a homeomorphism (and so f is topologically
conjugate to Rα).

In two dimensions we take as the analog of irrational rotation the minimal trans-
lation Rα,β : (x, y) 7→ (x + α mod 1, y + β mod 1), where α and β are rationally
independent irrationals.

Question. If f : T 2 → T 2 is a diffeomorphism, h : T 2 → T 2 is a continuous map
homotopic to the identity, and hf = Rα,βh, are there natural geometric conditions
(e.g. smoothness) on f that force h to be a homeomorphism?

We will restrict our attention, in analogy with the S1 theory, to pairs (f, h)
for which h has only countably many nontrivial fibers. Accordingly, we say that
a diffeomorphism has Denjoy type if it is semiconjugate to a minimal translation
by a map h, as above, with the property that the fiber h−1(x) is a singleton for
all but countably many x. This is motivated by and includes the wandering do-
mains problem: can one “blow up” one or more orbits of Rα,β to make a smooth
diffeomorphism with wandering domains?

P. McSwiggen [13] shows the answer to the wandering domains problem is “yes”
if one doesn’t demand too much smoothness: he constructs a C2+α diffeomorphism
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of Denjoy type having a smooth wandering domain. There are no known C2+Z

examples.
In this paper, we show that Denjoy type mappings must, if they exist, possess

abundant geometric distortion in the sense of quasiconformal dilatation on the
(unique) minimal set Γ. There are two main theorems (see below for definitions).

Theorem 1. Let f ∈ QC(T 2) have Denjoy type. Then either
(i) area(Γ) > 0 and the collection {fn|Γ} has unbounded quasiconformal distor-

tion, or
(ii) the collection {fn}, considered as mappings of the ideal boundaries of the

wandering domains, has unbounded quasisymmetric distortion.

The meaning of part (ii) is as follows. Let B denote the unit disk in the com-
plex plane. For every wandering domain ∆ and n ∈ Z, choose any conformal
isomorphism φn : fn(∆) → B. The homeomorphisms gn : φn+1 ◦ f ◦ φ−1

n are
quasiconformal, and so extend to the boundary ∂B and are quasisymmetric there.
The statement is that for every constant C > 0, there exist ∆, n, and k such that
gn+k ◦ · · · ◦ gn|∂B is not C-quasisymmetric.

Theorem 1 is proved by means of a quasiconformal extension operator that re-
spects composition —see Section 3.

Theorem 2. Let f ∈ Diff1(T 2) have Denjoy type, and suppose f preserves a C1+Z

conformal structure on Γ.
Then f cannot be C2+Z .

This has a simple, concrete corollary:

Corollary of Theorem 2. Let f ∈ Diff2+Z(T 2) have Denjoy type, with Γ 6= T 2.
Then the components of T 2 \Γ (i.e. the wandering domains) cannot all be circular
disks.

This Corollary remains true if “circular disks” is replaced, for example, by
“square regions”. More generally, the components of T 2 \ Γ cannot all be ho-
mothetic copies of a single domain D provided that D satisfies the mild condition

{A ∈ SL(2,R) : A(D) is homothetic to D} = SO(2,R).

See section 5.
Theorems 1 and 2 together imply the following (slightly weaker) summary state-

ment:

Theorem 3. Let f ∈ Diff1(T 2) have Denjoy type, with minimal set Γ 6= T 2.
(i) If f preserves a measurable, essentially bounded conformal structure on Γ,

then the collection {fn} (considered as mappings of the ideal boundaries of the
wandering domains) has unbounded quasisymmetric distortion, and

(ii) if f preserves a C1+Z conformal structure on Γ, then f cannot be C2+Z .

Acknowledgement: The first author thanks R. de la Llave, J.A. Velling and R.F.
Williams for helpful conversations.
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1. Definitions and topological facts

Definitions. Diffk(T 2) will denote the space of Ck diffeomorphisms of T 2 =
R2/Z2 that are homotopic to the identity. (When k = 0, this is the space of home-
omorphisms homotopic to the identity.) QC(T 2) will denote the space of quasicon-
formal homeomorphisms of T 2 homotopic to the identity; note that Diff1(T 2) ⊂
QC(T 2) ⊂ Diff0(T 2). The notation f ∈ Cr+H means f ∈ Cr and Drf satisfies a
Hölder condition with exponent less than one; f ∈ Cr+Lip means Drf is Lipschitz,
and f ∈ Cr+Z means Drf is Zygmund. (Recall that f : Rn → Rm is Zygmund if
f is continuous and |f(x+ h) + f(x− h)− 2f(x)| ≤ C|h| for some constant C > 0
and all x, h.) Then for any nonnegative integer r,

Cr+1 ⊂ Cr+Lip ⊂ Cr+Z ⊂ Cr+H ⊂ Cr

and these classes are all distinct.
A trivial value of a map h : T 2 → T 2 is a point y ∈ T 2 such that the fiber h−1(y)

is a single point. The set of nontrivial values of h is denoted Vh.
A set is cellular if it is the monotone intersection of closed topological disks.
We say a homeomorphism f ∈ Diff0(T 2) has Denjoy type if
(1) f is semiconjugate to a minimal translation R (that is, hf = Rh for some

continuous map h homotopic to the identity), but not conjugate to one, and
(2) the semiconjugacy h has only countably many nontrivial values.

Certain topological properties obtain for Denjoy type homeomorphisms; we sum-
marize these below in the following proposition. Our main results are Theorem 1
in section 4 and Theorem 2 in section 5, which are more geometric in nature.

Proposition 1. Let f ∈ Diff0(T 2) have Denjoy type. Then:
(1) f has a unique minimal set Γ. Moreover Γ = T 2 \ ∪{interior(h−1(x)) : x ∈

Vh} = cl(T 2 \ h−1(Vh)), and this set is connected.
(2) If Γ 6= T 2, then Γ is nowhere dense, and each component of T 2 \ Γ is a

wandering simply-connected domain for f .
(3) The map h is monotone. In fact, every h-fiber is cellular.
(4) f is uniquely ergodic.

Proof. The proofs of (1), (2), and (4) appear in [15]. We give here the proof of (3).
Since h is continuous and hf = Rh, h is surjective. Given y ∈ T 2, we show that

the fiber h−1(y) is cellular.
Let C be a small circle in T 2 with center y and disjoint from V . (Since V is

countable, most circles centered at y miss V .)
Let D be the open disk bounded by C, and let C̃ = h−1(C). Since C̃ is compact

and h is injective on C̃, h|C̃ is a homeomorphism of C̃ to C. Hence C̃ is a simple
closed curve. Since C is homotopically trivial and h is homotopic to the identity,
C̃ must also be homotopically trivial, and so bounds a disk D̃.

Claim: D̃ = h−1(D). Hence D̃ is a disk containing the fiber h−1(y).
Assuming the claim, we now complete the proof. Let {Ci} be a sequence of circles

with center y, all disjoint from V , and with diameters tending to zero as i → ∞.
Let Di be the disk bounded by Ci. Then D̃i = h−1(Di) is a disk containing h−1(y).
Since ∩Di = {y}, we must have ∩D̃i = h−1(y), and so h−1(y) is cellular.
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Proof of Claim. Note that h−1(D) is nonempty, open, and disjoint from C̃. An
easy argument shows that ∂h−1(D) ⊂ C̃. Now since h can send no nontrivial loops
into D, the only possibility is that h−1(D) = D̃.

2. Invariant conformal structures

In addition to the (C∞) smooth structure on T 2 = R2/Z2, it is convenient also
to consider various complex analytic structures on T 2 that are compatible with the
original smooth structure. Such a complex structure is determined by an atlas of
charts {(U, φ)} such that each homeomorphism φ : U → C is locally quasiconformal,
and the overlaps φ−1 ◦ψ are complex analytic where defined. (A good reference for
standard material relating to quasiconformal maps and Riemann surfaces is [11].)

A Cr complex structure is one in which the chart mappings are all Cr relative
to the C∞ smooth structure on T 2.

By the Uniformization theorem, any Riemann surface defined this way is confor-
mally equivalent to C/L, where L =< 1, τ > is the two-dimensional (linear) lattice
generated by the complex numbers 1 and τ ∈ H. Hence we may always consider
T 2 to be conformally represented by C/L for some such two-dimensional lattice L.
(Note that any two such representations are smoothly equivalent.) This permits
us to use a global complex coordinate without having to specify a particular com-
plex structure in advance. With respect to this coordinate, a smooth (respectively
conformal, quasiconformal, etc.) mapping of T 2 is represented by a smooth (resp.
conformal, quasiconformal, etc.) mapping of C that commutes with L.

In contrast, we define a conformal structure on a smooth 2-manifold M as follows.
A similarity class on a two dimensional real vector space V is an equivalence class
of positive definite inner products on V , up to scale. A conformal structure is then a
choice c(x) of a similarity class on each tangent space TxM of M . Equivalently, the
class of conformal structures on M , denoted C(M), is the set of equivalence classes
of Riemannian metrics on M , where two metrics are identified if they differ by a
multiplicative scalar function on M . A smooth (or measurable, etc.) conformal
structure is one that comes from a smooth (measurable, etc.) Riemannian metric.

We now claim that the set of similarity classes C(V ) of V is naturally isometric
to the hyperbolic plane with respect to a natural Poincaré metric.

To see this, first choose a basis B for V , which is then identified with R2. Then
every positive definite inner product < ·, · > on R2 is of the form < v,w >= Av·Aw,
where · refers to the Euclidean inner product and A ∈ GL(2, R). The collection of
all positive definite inner products is in this way identified with GL(2, R)/O(2, R),
where O(2, R) acts on the left. Then C(V ) is identified with SL(2, R)/SO(2, R).

Recall SL(2, R) acts naturally on the upper half plane H with the Poincaré
metric as the group of isometries. Since each element of SL(2, R) is determined
up to rotation by the image of i ∈ H, SL(2, R)/SO(2, R) is naturally identified
with H, and so C(V ) is identified with H and inherits its Poincaré metric. This
metric does not depend on the choice of basis: a change of the basis B changes the
identification with SL(2, R)/SO(2, R) by conjugacy with an element of GL(2, R),
which merely acts as an isometry.

Hence we have a natural hyperbolic metric ρx on each fiber C(TxM) of C(M),
and with this metric we will say that the distance between two conformal structures
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c and c′ is given by
ρ(c, c′) = ess sup

x∈M
ρx(c(x), c′(x)).

Given a conformal structure c ∈ C(M), a differentiable mapping f : M → M
acts by pullback: if ξ is a metric representing c, then

f∗ξx(v, w) = ξf(x)(Dxf(v), Dxf(w)),

for v, w ∈ TxM . We then say that c is f -invariant if f∗c = c.
Relative to any Riemannian metric ξ representing c, the dilatation of f at x is

defined to be

dil(f, x) =
maxv |Dxf(v)|
minv |Dxf(v)|

,

where v ranges over the unit circle in TxM , and the norm is the one induced by ξ.
Since this quantity is unchanged by scaling ξ, it depends only on c and not on the
choice of representative.

On C, we have the standard conformal structure c0 induced by the Euclidean
metric. Given any measurable conformal structure c ∈ C(C), we say that c is
essentially bounded if the distance between c and c0 is finite. When this is the case,
the measurable Riemann mapping theorem of Morrey-Bojarski-Ahlfors-Bers says
that there is a quasiconformal homeomorphism φ : C→ C such that φ∗c0 = c.

Hence if c is an essentially bounded f -invariant conformal structure on C then
φfφ−1 leaves c0 invariant —i.e. φfφ−1 is 1-quasiconformal, hence conformal, on
C. The mapping φ is unique up to post-composition by a Möbius transformation
of C.

The importance of the Zygmund class in this connection is that it is preserved
by “integration” of conformal structures: if c is a Ck+Z conformal structure, k =
0, 1, 2, . . . , then the induced quasiconformal mapping φ is Ck+1+Z .

Now consider T 2 = R2/Z2 as a smooth manifold. If c is a measurable conformal
structure on T 2, then c lifts to a conformal structure c̃ on C. If c̃ is essentially
bounded, then by the measurable Riemann mapping theorem there is φ̃ such that
φ̃∗c0 = c̃. Since the action of Z2 preserves c̃, φ̃Z2φ̃−1 must be conformal on C,
and hence is itself a two-dimensional linear lattice L. Hence c induces the (unique)
complex structure C/L on T 2, and φ̃ projects to a global complex coordinate φ :
T 2 → C/L.

Relative to this coordinate, we can compute the Beltrami coefficient of f : T 2 →
T 2:

µf ≡ µφfφ−1 ≡ (φfφ−1)z̄
(φfφ−1)z

.

Then µf = 0 if and only if φfφ−1 is conformal, if and only if f preserves the
conformal structure c. Moreover

dil(f, x) =
1 + |µf (φ(x))|
1− |µf (φ(x))|

.

We will use the following
6



Proposition 2. Let C be a collection of transformations of a Riemannian surface
S which is closed under composition and such that for some K > 0, every member of
C is K-quasiconformal. Then there is a complex analytic structure on S (compatible
with its original quasiconformal structure) such that every member of C becomes
complex analytic [18].

As an application, consider a diffeomorphism f : T 2 → T 2 such that the iterates
{fn} are all K-quasiconformal. Equivalently, we are assuming that the essential
supremum of the dilatation dil(fn, x) is uniformly bounded by K. The main point
of the proof of Proposition 2 is that this is equivalent, by means of a barycenter
construction in the set of similarity structures on the tangent space at each point,
to the existence of a measurable essentially bounded conformal structure invariant
by f .

By the measurable Riemann mapping theorem as before, f is quasiconformally
conjugate to a conformal isomorphism of C/L homotopic to the identity, and hence
a translation.

Summarizing, we have the following

Corollary of Proposition 2. If f : T 2 → T 2 is a diffeomorphism homotopic to
the identity and

sup{dil(fn, x) : x ∈ T 2}

is bounded uniformly in n, then there is a quasiconformal map φ such that φfφ−1

is a (linear) translation.

Uniformly bounded dilatation of iterates is a sufficient but not necessary condi-
tion for topological conjugacy to a translation, as the following example shows.

Example. There exists a real-analytic diffeomorphism F of T 2 such that F is
topologically conjugate to a minimal translation, but has no essentially bounded
invariant conformal structure.

To see this, let F = f×g, where f and g are two Arnol’d examples [3] of analytic
circle diffeomorphisms conjugate to irrational rotations Rα and Rβ via conjugacies φ
and ψ. Here f and g are constructed so that φ and ψ are not absolutely continuous,
and we may choose α and β so that R = Rα ×Rβ is minimal.

Now H−1FH = R, where H = φ×ψ. If F had an essentially bounded invariant
conformal structure, then by the above argument Q−1FQ = R for some qc home-
omorphism Q of T 2. This means (H−1Q)R(H−1Q)−1 = R, and minimality of R
implies that H−1Q is itself a translation. But this implies that H is quasiconformal
and thus absolutely continuous on lines, contrary to our construction.

3. Quasiconformal extension of boundary values

If f : R → R is an orientation preserving homeomorphism, we say that f is
K-quasisymmetric (K − qs) for K ≥ 1 if for all x, t ∈ R,

1/K ≤ f(x+ t)− f(x)
f(x)− f(x− t)

≤ K.

We define qs(f) to be the smallest constant K for which this is true. It is well-
known that any quasiconformal map of H extends to a quasisymmetric boundary
homeomorphism of ∂H = R. Conversely, if f is K − qs, f extends to a K ′(K)-qc
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map f̂ of H. There are many ways to make such an extension, for example the
Ahlfors-Beurling extension.

For dynamical reasons, however, we would like to use an extension operator
that respects composition, but unfortunately no such operator is known. In this
connection we state two open problems and a related theorem.

Notation: For K ≥ 1, denote by QS(K,R) the space of all K-quasisymmetric
homeomorphisms of R, and by QC(K,H) the space of K-quasiconformal homeo-
morphisms of H. Write QS(R) = ∪K>1QS(K,R), and QC(H) = ∪K>1QC(K,H).

Extension problem 1. Is there an extension operator ∧ : QS(R)→ QC(H) such
that the dilatation of f̂ depends only on qs(f), and such that for all f, g ∈ QS(R),

f̂ ◦ g = f̂ ◦ ĝ?

Extension problem 2. Is there an extension operator ∧ : QS(R)→ QC(H) such
that the dilatation of f̂ depends only on qs(f), and such that for any f1, . . . , fn ∈
QS(R),

qs(f1 ◦ · · · ◦ fn) ≤ K =⇒ dil(f̂1 ◦ . . . f̂n) ≤ K ′(K)?

Note that an affirmative answer to 1 also solves 2.
There are some partial results: for example it follows readily from a result of

Hinkkanen [9] that if f ∈ QS(R) and fn is K − qs for all n, then there is an
extension f̂ ∈ QC(H) so that dil(f̂n) ≤ K ′(K) for all n.

We also remark that there is a simple solution of problem 1 in the restricted
category of biLipschitz homeomorphisms: the “triangular extension”

∧ : Lip(R)→ QC(H)

defined by

f̂(x, y) = ((1/2)(f(x+ y) + f(x− y)), (1/2)(f(x+ y)− f(x− y)))

(see figure 1). One can compute that the dilatation of f̂ is controlled by the ratio
K2/K1, where K1|x − y| ≤ |f(x) − f(y)| ≤ K2|x − y|; it is easy to check that
f̂ ◦ g = f̂ ◦ ĝ.

figure 1

For our purposes, it will suffice to solve a weak version of problem 1, applicable
to mappings with disjoint domains, as follows.

Let Hom(R) denote the set of all homeomorphisms of R, and PL(H) denote the
set of locally piecewise affine homeomorphisms of H.

The standard binary grid S on R is defined to be the collection S = {Sk}+∞k=−∞,
where Sk = {p2−k : p ∈ Z}. A general binary grid G = {Gk} is the image
h(S) = {h(Sk)} of S by a homeomorphism h : R → R. The collection of all such
grids is denoted G, and the collection of K-quasistandard grids is defined by

QG(K) = {{h(Sk)} : h ∈ QS(K,R)} ⊂ G.
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A given G = {Gk} ∈ G determines a triangulation of H as follows. Fix k for
the moment and above each element x of Gk erect a vertical line segment in H
whose length is the distance between x and the nearest right hand neighbor to x
in Gk. Then connect the upper endpoint of each such vertical segment to its two
nearest neighbors by two line segments. Repeating this for all k gives a tiling of
H by pentagons, which are then further subdivided into triangles so the picture
is homeomorphic to the standard triangulation, a finite approximation of which is
indicated in figure 2. Note that this triangulation is completely determined by the
grid G.

figure 2

Now we can define an extension operator

E : Hom(R)× G → PL(H)

so that E(f,G) : H→ H is the unique homeomorphism that (a) sends the vertices of
the triangulation determined by G to the corresponding vertices of the triangulation
determined by f(G), and (b) in the interiors of the triangles is the unique affine
map determined by the source and target vertices.

Extension Theorem. (a) The extension operator E respects composition:

E(f, g(G)) ◦ E(g,G) = E(f ◦ g,G).

(b) E sends QS(R) × QG into QC(H), and in fact for every K > 1 there is a
K ′ > 1 such that

E(QS(K,R)×QG(K)) ⊂ QC(K ′,H).

Proof. Part (a) is immediate from the construction.
To see (b), first show by induction on K that (f,G) ∈ QS(K,R)×QG(K) implies

f(G) ∈ QG(KK). Then apply the following

Lemma 1. If f ∈ Hom(R), G1, G2 ∈ QG(K), and f(G1) = G2, then

dil(E(f,G1)) ≤ K ′

for some K ′ depending only on K.

Proof. One can check that all of the triangles in the triangulation of H induced by
any G ∈ QG(K) are K ′′-quasiequilateral in the sense that they are images of an
equilateral triangle by an affine mapping with dilatation at most K ′′ = K ′′(K).

Since E(f,G1) affinely takes G1-triangles to G2-triangles, it must have dilatation
at most K ′ = (K ′′)2 a.e. �

The purpose of the “cocycle property” in part (a) of the Extension Theorem is to
control the qc distortion of a long composition of extensions by the qs distortion of
the corresponding composition of boundary mappings (see section 4). This happens
because

E(fk, fk−1 ◦ · · · ◦ f1(G)) ◦ · · · ◦ E(f1, G) = E(fk ◦ · · · ◦ f1, G).
9



Remark. The virtue of the above technique is that the concrete extension operator E
is geometrically transparent. However, R. de la Llave points out that the same result
can be achieved abstractly as follows. Let E : QS(R) → QC(H) be any suitable
extension operator, for example the Ahlfors-Beurling extension. If {f0, f1, . . . } is a
sequence in QS(R), let Hk = E(fk ◦ · · · ◦ f0) and Fk = Hk ◦ (Hk−1)−1. Then, for
each k, Fk is a quasiconformal extension of fk.

Suppose that all ordered compositions fj ◦ · · · ◦ f0 are K-quasisymmetric, and
for some K ′, E : QS(K,R)→ QC(K ′,C). Then

Fn+k ◦ · · · ◦ Fn = Hn+k ◦ (Hn−1)−1

is (K ′)2-quasiconformal for all n, k > 0.

4. Boundary distortion of wandering disks

Suppose f is a quasiconformal homeomorphism of T 2, and ∆ is a simply con-
nected domain in T 2. By the Riemann mapping theorem, ∆ is conformally equiv-
alent to the upper half plane H by a conformal map φ. Similarly for ∆′ = f(∆)
and a conformal map ψ.

We can choose φ and ψ so that ψ ◦ f ◦ φ−1 takes {∞} to {∞}. Since it is
quasiconformal, it extends as usual to a boundary homeomorphism of ∂H = R.
We call this boundary homeomorphism the ideal boundary mapping of f , denoted
f |∂∆. It is uniquely determined up to pre- and post-composition with Möbius
transformations, which leave the quasisymmetry of the map unaffected. We restate

Theorem 1. Let f ∈ QC(T 2) have Denjoy type. Then either
(i) m(Γ) > 0 and the collection {fn|Γ} has unbounded quasiconformal distortion,

or
(ii) the collection {fn}, considered as mappings of the ideal boundaries of the

wandering domains, has unbounded quasisymmetric distortion.

Proof. If Γ = T 2, then (i) holds by the Corollary of Proposition 2 and our hypothesis
that f is not conjugate to a translation.

Suppose Γ 6= T 2. Assuming that the conclusion of the theorem fails, our tech-
nique is to extend f |Γ to a new mapping f̃ in such a way that dil(f̃n) is bounded
globally. By the Corollary of Proposition 2, this means that f̃ is conjugate to a
translation, contradicting the fact that Γ 6= T 2 is a minimal set for f̃ .

Suppose there exists K > 1 such that qs(fn|∂∆) ≤ K for all n ∈ Z and all
components ∆ of T 2 \ Γ. Fix a particular component ∆0 and let {∆i}+∞i=−∞ be the
orbit of ∆0 and write fi = f |∆i .

Then by choosing appropriate conformal isomorphisms

φi : ∆i → H,

we have φi+1fiφ
−1
i ∈ QC(H) and this map induces a boundary mapping gi ∈

QS(R).
Our assumption means that

qs(gi+j ◦ · · · ◦ gi+1) ≤ K

for some K > 1 and all i ∈ Z, j ∈ Z+.
10



Let G0 be the standard grid S, and define

Gi = gi−1 ◦ gi−2 ◦ · · · ◦ g1 ◦ g0(S)

for i > 0, and
Gi = g−1

i ◦ · · · ◦ g
−1
2 ◦ g−1

1 (S)

for i < 0.
Then gi(Gi) = Gi+1 for all i ∈ Z. By the Extension Theorem, for each i there

is an extension ĝi = E(gi, Gi) of gi to H such that

dil(ĝi+j ◦ · · · ◦ ĝi+1) ≤ K ′(K)

for all i ∈ Z, j ∈ Z+. Pulling back by means of the φi’s, we obtain new maps
f̃i : ∆i → ∆i+1 for which the dilatation of arbitrarily long compositions is bounded
by K ′.

Now we claim that these maps can be glued together with f |Γ to make a home-
omorphism of T 2.

For this we state the

Glueing Lemma. Let f : C → C be quasiconformal, ∆ a bounded simply con-
nected domain. Suppose g : H → H is quasiconformal, and has the same ideal
boundary values as f |∆; i.e. for some conformal equivalences φ : ∆ → H and
ψ : f(∆)→ H, ψfφ−1|R = g|R.

Then the map h : C→ C, defined by

h(x) =

{
f(x) for x ∈ C \∆

ψ−1gφ for x ∈ ∆,

is a quasiconformal homeomorphism.

Proof. Consider the map

Θ =

{
id off ∆

f−1(ψ−1gφ) on ∆.

On H,
φΘφ−1 = φf−1(ψ−1gφ)φ−1 = (ψfφ−1)−1g

and by our hypothesis this is qc and extends to the identity on R = ∂H.
By Lemma 2 below, this map moves points a bounded distance in the Poincaré

metric on H. Hence Θ moves points of ∆ a bounded distance in the Poincaré metric
on ∆.

However, since the ratio of the Euclidean metric to the Poincaré metric tends
to zero at ∂∆, this means that Θ is continuous at ∂∆. Therefore it is a homeo-
morphism. By Bers’ Lemma, stated below, Θ is quasiconformal. Hence h = fΘ is
quasiconformal. �
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Lemma 2. If g : H→ H is K-quasiconformal and g|R = id, then g moves points
of H by a uniformly bounded amount with respect to the Poincaré metric.

Proof. By conjugating with a Möbius transformation, it is enough to show that the
image of the point i must lie in some compact set depending only on K. But this is
clear since the set of K-quasiconformal homeomorphisms of H that fix three points
on the boundary form a compact family in the compact-open topology.

Bers’ Lemma [1]. Let U be an open set in the plane, g a plane homeomorphism
such that g|U is qc and g = id off U . The g is qc (and has no dilatation off U).

The result of the Glueing Lemma is that we obtain, by glueing one disk at a
time and passing to a limit, a new quasiconformal map f̃ that agrees with f on Γ.
Off Γ, there is a uniform bound on the dilatation of arbitrarily long iterates of f̃ .
On Γ, the dilatation of f̃n must agree with that of fn. �

Corollary of Theorem 1. Let f ∈ QC(T 2) have Denjoy type with Γ 6= T 2. If
the components of T 2 \ Γ are all K-quasidisks, then the collection {fn}, consid-
ered as mappings of the ideal boundaries of the wandering domains, has unbounded
quasisymmetric distortion.

Proof. Since every point of Γ is a limit of components of T 2\Γ and f is differentiable
a.e., the hypothesis implies that dil(fn, x) ≤ K2 for all n, and a.e. x ∈ Γ. Now
apply theorem 1. �

5. Invariant conformal structures on Γ

If S ⊂ T 2 is an invariant set for f , then by an f-invariant conformal structure
on S we mean a measurable, essentially bounded choice c(x) of similarity class on
Tx(T 2) for each x ∈ S, such that (f∗c)(x) = c(x) for all x ∈ S.

Remark. The proof of Proposition 2 shows that a differentiable mapping f has an
invariant conformal structure on S if and only if the family of iterates of f has
uniformly bounded dilatation on S.

Given an f -invariant conformal structure on S, we can arbitrarily extend to
a measurable, essentially bounded structure on all of T 2. Via the measurable
Riemann mapping theorem, this determines a complex structure C/L with global
coordinate φ. In this coordinate system, f is pointwise conformal on S —that is,
φfφ−1 is pointwise conformal on φ(S) a.e.

Recall that the integral of a Cr+Z conformal structure on C is a Cr+1+Z qua-
siconformal mapping. Hence f preserves a Cr+Z conformal structure on S if and
only if f is pointwise conformal on S relative to a Cr+1+Z complex structure on
T 2.

Theorem 2. Let f ∈ Diff1(T 2) have Denjoy type, and suppose f preserves a C1+Z

conformal structure on Γ.
Then f cannot be C2+Z .

Equivalently, Theorem 2 says that if f is of class C2+Z then f cannot be pointwise
conformal on Γ relative to any complex structure on T 2 with the same underlying
C2+Z smooth structure.
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Corollary 1. Let f ∈ Diff2+Z(T 2) have Denjoy type. Then T 2 \ Γ cannot be a
union of pairwise disjoint circular disks.

Proof. If T 2 \ Γ were a union of round circular disks, then each point p ∈ Γ would
be a limit of arbitrarily small such disks. Since f preserves the family of such disks,
this means that Dfp must be a conformal linear map relative to the C∞ conformal
structure induced by the metric. Now apply Theorem 2. �

This argument actually proves more, for which we need the following terminology.
Two bounded domains in R2 are similar if one can be taken to the other by a
Euclidean similarity, i.e. a composition of a dilation, rotation, and translation.
Clearly, similarity is an equivalence relation on the collection of all bounded domains
in R2. We call the equivalence classes shapes.

A shape is generic if the only elements of SL(2,R) preserving it are the ele-
ments of SO(2,R). A little thought should convince the reader that most shapes
are generic, including circular and square shapes. However, other elliptical and
rectangular shapes are not generic.

Corollary 2. Let f ∈ Diff2+Z(T 2) have Denjoy type, with Γ 6= T 2. Then the
components of T 2 \ Γ (i.e. the wandering domains of f) cannot all have the same
generic shape.

Proof. If they did all have the same generic shape, f would be pointwise conformal
on Γ as before. �

Proof of Theorem 2. Assume the contrary: that f ∈ C2+Z preserves a C1+Z con-
formal structure c on Γ. Extend c to a C1+Z structure on all of T 2, and let
φ : T 2 → C/L be an induced global coordinate. Then g = φfφ−1 is pointwise
conformal on Γ′ ≡ φ(Γ) ⊂ C/L, and g ∈ C2+Z .

Now µg ∈ C1+Z , and conformality on Γ′ means µg = 0 on Γ′. By the topology
of Γ′ (c. f. Propostion 1), we must have Dµg = 0 on Γ′ also. Hence the same is
true of a lift g̃ : C → C of g. By Proposition 3 below, dil(g̃n, x) is bounded by a
constant independent of n ∈ Z or x ∈ C. Therefore {gn} has bounded dilatation
on C/L, and by the Corollary of Proposition 2, this means that g, hence f , is
quasiconformally conjugate to a translation. This contradicts our hypothesis that
f has Denjoy type. �

Proposition 3. Let f be a C2+Z orientation preserving diffeomorphism of C, and
U an open subset of C. Let V =

⋃
n∈Z f

n(U). Suppose
(a) A ≡

∑
n∈Z area(fn(U)) < +∞,

(b) |µf | ≤ δ < 1 on V , and
(c) µf and Dµf are zero on ∪fn(∂U).
Then dil(fn|V ) is bounded by a constant depending only on A, the Zygmund

constant of Dµf , and δ.

The proof of Proposition 3 requires two lemmas.

Lemma 3. If f : [a, b] → R is C-Zygmund and f(a) = f(b) = 0, then, for all
x ∈ [a, b],

|f(x)| ≤ (C/2)|b− a|.

Proof. We are supposing that for all x, h ∈ R with x, x+ h, x− h ∈ [a, b],

|f(x+ h) + f(x− h)− 2f(x)| ≤ C|h|.
13



If I is a subinterval with endpoints y and z and midpoint x, this implies that

(1) |f(x)| ≤ C|I|/4 + (|f(y)|+ |f(z)|)/2.

Let L = |b − a|. For k = 0, 1, 2, . . . , consider the collection Ck of closed dyadic
subintervals of [a, b], i.e. intervals with endpoints a + (p/2k)(b − a) and a + ((p +
1)/2k)(b− a), where p is an integer between 0 and 2k − 1.

Define B0 = {a, b}, and for k = 1, 2, 3, . . . , define Bk to be the finite set of points
x in [a, b] such that x is an endpoint of an interval of Ck but is an endpoint of no
interval of Cj for any j < k. (Bk is the set of endpoints that “arise at stage k”.)

Claim: For all x ∈ Bk, |f(x)| ≤ CL(1− 2−k)/2.
We prove the claim below, but first note that this implies |f(x)| ≤ CL/2 for all

x in the dense set ∪kBk. Since f is continuous, this yields the conclusion of Lemma
3.

The claim is proved by simple induction. The case k = 0 is simply our hypothesis
that f(a) = f(b) = 0. Let k > 0 and suppose that for j = 0, 1, 2, . . . , k − 1,

|f(y)| ≤ CL(1− 2−j)/2 for all y ∈ Bj .

Take x ∈ Bk. Then x is the midpoint of some dyadic interval of length L2−(k−1),
with endpoints, say, x′ and x′′. By (1) above,

|f(x)| ≤ CL/2−(k+1) + (|f(x′)|+ |f(x′′)|)/2.

By induction, since x′ and x′′ must appear at some stage before the kth, |f(x′)|
and |f(x′′)| are no more than CL(1− 2−(k−1))/2. Therefore

|f(x)| ≤ CL/2−(k+1) + CL(1− 2−(k−1))/2

= CL(1− 2−k)/2.

�

Definition. A chord of an open set U ⊂ C is a connected component of L ∩ U ,
where L is a line in C.

Lemma 4. Let U ⊂ C be open, and for y ∈ U denote by l(y) the length of the
shortest chord of U through y.

Then for every y ∈ U , (l(y))2 ≤ (4/π)area(U).

Proof. Fix y ∈ U . By translation if necessary, assume that y = 0.
Let L(θ) denote the chord of U through 0 inclined at angle θ from the positive

x-axis, 0 < θ < π. Let l1(θ) and l2(θ) be the lengths of L(θ) ∩ {z : Im(z) > 0} and
L(θ) ∩ {z : Im(z) < 0}, respectively.

Then
area(U) ≥ (1/2)

∫ π

0

l1(θ)2 + l2(θ)2dθ.

However, l1(θ) + l2(θ) ≥ l(y), and hence l1(θ)2 + l2(θ)2 ≥ (1/2)l(y)2. Therefore

area(U) ≥ (1/2)
∫ π

0

(1/2)l(y)2dθ = (π/4)l(y)2.
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�

Proof of Proposition 3 (finite area argument).
Write ν = µf . Choose y ∈ U . Let σ be the shortest chord of U through y. By

applying Lemma 3 to Dν along σ and then integrating, we obtain

|ν(y)| ≤ (C/2)|σ|2,

where C is the Zygmund constant for Dν. By Lemma 4, this quantity is less than
or equal to Carea(U).

Now let {yn} be an f -orbit in V , with yn ∈ fn(U). By applying the above
inequality to fn(U) and summing, we find that Σ|ν(yn)| ≤ CA.

Therefore
∏

(1 + |ν(yn)|) <∞ and
∏

(1− |ν(yn)|) > 0. This means

∏
dil(f, yn) =

∏(
1 + |ν(yn)|
1− |ν(yn)|

)
< M <∞,

where M depends only on CA and δ. However, the dilatation is submultiplicative
along orbits:

dil(fn, y0) ≤
n−1∏
i=0

dil(f, yi).

Hence we have dil(fn, y) is controlled by a constant as claimed. �

Open Questions. The primary question is: can any f ∈ Diff2+Z(T 2) have Denjoy
type? Theorem 2 above says any such map cannot preserve a C1+Z conformal
structure on Γ. Can this be improved to the statement that any such map cannot
preserve a measurable, bounded conformal structure on Γ?
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