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Abstract

Historical time series of asset returns are commonly used to derive fore-
casts of risk, such as value at risk (VaR). Provided there is enough data,
this can be done successfully even though asset returns are typically heavy-
tailed, heteroskedastic, and serially dependent. We describe how the histori-
cal data can first be GARCH filtered and then used to calibrate parameters of
the heavy-tailed skewed t distribution. Sufficient recent data is available if
the forecasting horizon is short enough, for example for daily VaR forecasts.
When the horizon is weekly or monthly, however, a sufficiently long weekly
or monthly returns series extends too far into the past to be practical.

To address this we introduce a multiple timescale approach, where risk
forecasts at a longer timescale, such as weekly or monthly, can be made
with the more abundant data available at a shorter timescale, such as daily
or weekly. The method is analyzed both theoretically and empirically using
the last few decades of daily S&P500 returns. Since this method is not tied
to a particular timescale, it can be used as well for intraday data; we illustrate
with a set of 1-minute bond index futures returns.

The advantages of this multiscale approach are that it is more adaptable
to longer horizons, it increases the quality of forecasts by virtue of increas-
ing the number of recent observations that can be used, and it makes risk
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forecasts more quickly reactive to recent events that occur late in the most
recent period.
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1 Introduction
This article is about forecasting risk. The vague word “risk” refers to the degree
of future variability of a quantity of interest, such as price return. A risk model
is a quantitative approach to making a numerical risk forecast based on observed
data, and such models are central to the practice of investing.

The classical risk forecast, as developed by Markowitz (1952) and Sharpe
(1964), is a forecast of the standard deviation (StD) of portfolio return at a fixed
time horizon, but there are several other measures of risk in common use, such as
value-at-risk (VaR), expected shortfall (ES), and others (see Artzner et al. (1999);
Rockafellar and Uryasev (2002)). Each of these is a kind of measure of the width
of a probability density function describing the future return. Ultimately, the real
underlying risk forecast is a forecast of the full probability distribution of returns,
from which any numerical risk measure is determined.

The historical emphasis on a single number to measure risk has tended to hide
the fact that most risk models in fact implicitly generate the forecast of a full
distribution, and therefore represent an implicit choice of a family of distributions
from which the forecast is to be made. This choice is difficult to avoid, even if it
is not explicit.

For example, given a historical time series of monthly returns for a stock index,
one could compute the sample standard deviation over the history and use that as
a forecast for the coming month. However, this is approximately equivalent to
a maximum likelihood fitting of the data to a Normal distribution, and therefore
implicitly uses a Normal model for the returns distribution forecast.

It is now well-acknowledged that financial retums are poorly described by
Normal distributions, even in one dimension, because of the prevalence of ex-
treme outcomes (fat tails of the probability density function). What other choices
do we have? The empirical distribution defined by the data is usually a poor
choice because it has inadequate tail behavior. However, there are heavy-tailed
parametric families in common use now, such as Variance Gamma, Hyperbolic,
Student t, skewed t, and Normal Inverse Gaussian. (These will be defined later.)
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See Hu and Kercheval (2007, 2008, 2010); Hu (2005); McNeil et al. (2005); Aas
and Hobaek Haff (2006); Keel and Geering (2006).

Two questions immediately arise for these more complicated distributions.
Does it matter for practical risk management? And, is it computationally prac-
tical to use these families?

The answer to both questions is yes. For example, the composition of port-
folios on the efficient frontier, whether risk is measured via StD, VaR, or ES,
depends on the choice of distribution family. Moreover, the use of these heavier-
tailed distributions leads to much better fit of the returns data, and has become
practical with the application of the EM algorithm (described below) to the maxi-
mum likelihood problem.

The method of Hu and Kercheval (2007), in brief, is to use a GARCH filter
to remove serial dependence in a financial returns series, fit the filtered returns to
a heavy-tailed distribution family using the EM algorithm, and then de-filter the
resulting pdf to get a risk forecast conditional on current information.

This works well, but a drawback of this method is that a relatively large
amount of data is required for numerical stability of the estimate – in our ex-
periments, around 750 to 1000 observations are required for reliable results. This
is fine for daily returns, but impractical for a monthly risk forecast. Here we ad-
dress this difficulty by introducing a way to use higher frequency data, which is in
more plentiful supply, to estimate risk on a lower frequency horizon. In this way,
weekly or monthly risk forecasts can be made with daily or weekly data. The
method we describe applies to any frequency, so we also illustrate it briefly with
intraday data at high frequency.

The article is organized as follows. In Section 2 we define a useful general
class of probability distributions called the Generalized Hyperbolic (GH) distri-
butions. These include as special cases the Variance Gamma, Hyperbolic, Normal
Inverse Gaussian, Student t, and skewed t distributions; we focus primarily on
the last of these in the remainder of the article. We discuss in detail how the
distribution parameters can be estimated from data using the EM algorithm.

Section 3 describes the GARCH filter and how it can be used to forecast risk
on a fixed timescale, with a specific emphasis on VaR (though the methods ap-
ply equally well to StD, ES, or any other common risk measure). In Section 4
we introduce a method for using high frequency data to forecast risk on a lower
frequency horizon, using the GARCH methodology. The method proves viable
through backtesting in Section 5, which includes multiple-day and monthly VaR
forecasts as well as some experiments with high frequency intra-day data. Sec-
tion 6 provides some further discussion of the long term behavior of the GARCH
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process, along with additional analysis of the comparison between the multiscale
approach and the fixed scale approach.

2 The Skewed t Distributions
The Generalized Hyperbolic (GH) distributions are becoming well-used to de-
scribe financial data. This family of probability distributions was introduced in
Barndorff-Nielson (1977, 1978) and further explored in Barndorff-Nielson and
Blæsild (1981). See also McNeil et al. (2005). It includes as subfamilies or limit-
ing subfamilies many of the popular distributions in current modeling use, includ-
ing Gaussian, Student t, skewed t, Variance Gamma, Normal Inverse Gaussian,
and Hyperbolic distributions. Our primary interest is in the skewed t distribution
because of its efficient fitting of equity returns data (see Hu and Kercheval (2007,
2010)). We first describe the GH distributions and some of their properties, and
then specialize to the skewed t distributions. A detailed description of parameter
estimation using the EM algorithm follows.

2.1 Normal Mean-Variance Mixture Distributions

Definition 2.1. The random vector X is said to have a (multivariate) normal
mean-variance mixture distribution if

X
d
= µ+Wγ +

√
WAZ, (2.1)

where

(i) Z ∼ Nk(0, Ik), the standard k-dimensional normal distribution;

(ii) W ≥ 0 is a nonnegative, scalar-valued random variable (r.v.) independent
of Z;

(iii) A ∈ Rd×k is a matrix of constants, and

(iv) µ ∈ Rd and γ ∈ Rd are vectors of constants.
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From the definition, we can see that

X|W ∼ Nd(µ+Wγ,WΣ), (2.2)

where Σ = AA′, the covariance of N(0, AZ). This is also why the distribution is
called a normal mean-variance mixture. Simple calculation yields the following
moment formulas

E(X) = E(E(X|W )) = µ+ E(W )γ, (2.3)
cov(X) = E(cov(X|W )) + cov(E(X|W )) = E(W )Σ + var(W )γγ ′. (2.4)

In the context of modeling risk-factor returns, the mixing variable W can be in-
terpreted as a shock that arises from new information and impacts the mean and
volatility of stocks.

2.2 Skewed t: A Special Case of GH Distributions

Definition 2.2. Modified Bessel Function of the Third Kind. The modified
Bessel function of the third kind with index λ is defined by the integral

Kλ(x) =
1

2

∫ ∞
0

yλ−1e−
x
2

(y+y−1)dy, x > 0. (2.5)

When λ < 0, the following asymptotic property of the Bessel function is
useful for computing the limiting density of GIG and GH,

Kλ(x) ∼ Γ(−λ)2−λ−1xλ as x→ 0+. (2.6)

Definition 2.3. The Generalized Inverse Gaussian Distribution (GIG). The
random variable X has a generalized inverse Gaussian (GIG) distribution, writ-
ten X ∼ N−(λ, χ, ψ), if its density is

h(x;λ, χ, ψ) =
χ−λ(

√
χψ)λ

2Kλ(
√
χψ)

xλ−1 exp
(
− 1

2
(χx−1 + ψx)

)
, x > 0, (2.7)

where Kλ is a modified Bessel function of the third kind with index λ and the
parameters satisfy 

χ > 0, ψ ≥ 0 if λ < 0;

χ > 0, ψ > 0 if λ = 0;

χ ≥ 0, ψ > 0 if λ > 0.
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The following formulas for a GIG distributed r.v. X will be used later,

E(Xα) =

(
χ

ψ

)α/2
Kλ+α(

√
χψ)

Kλ(
√
χψ)

(2.8)

and

E(logX) =
dE(Xα)

dα
|α=0 , (2.9)

where (2.9) needs to be evaluated numerically. More details on the properties of
GIG can be found in Jørgensen (1982).

Theorem 2.4. The Generalized Hyperbolic Distribution (GH). If a random
vector X has a normal mean-variance mixture distribution X d

= µ + Wγ +√
WAZ and the mixing variableW ∼ N−(λ, χ, ψ), thenX is said to have a gen-

eralized hyperbolic (GH) distribution, denoted by X ∼ GHd(λ, χ, ψ,µ,Σ,γ).
Its density is given by

f(x) = c
Kλ− d

2

(√
[χ+ (x− µ)′Σ−1(x− µ)](ψ + γ ′Σ−1γ)

)
e(x−µ)′Σ−1γ(√

[χ+ (x− µ)′Σ−1(x− µ)](ψ + γ ′Σ−1γ)
) d

2
−λ

,

(2.10)
where the normalizing constant c is

c =
(
√
χψ)−λψλ(ψ + γ ′Σ−1γ)

d
2
−λ

(2π)
d
2 |Σ| 12Kλ(

√
χψ)

and | · | denotes the determinant.

Proof. From the definition of the normal mean-variance mixture distribution, the
density ofX is given by

f(x) =

∫ ∞
0

fX|W (x|w)h(w)dw

=

∫ ∞
0

1

(2π)
d
2 |Σ| 12w d

2

exp

{
−(x− µ− wγ)′(wΣ)−1(x− µ− wγ)

2

}
h(w)dw,

where h(w) is the density of W .

7



f(x) can be rewritten as

f(x) =

∫ ∞
0

e(x−µ)′Σ−1γ

(2π)
d
2 |Σ| 12w d

2

exp

{
−(x− µ)′Σ−1(x− µ)

2w
− γ

′Σ−1γ

2/w

}
h(w)dw.

(2.11)
Using (2.7) and some rearrangements, we get

f(x) =
(
√
χψ)−λψλe(x−µ)′Σ−1γ

(2π)
d
2 |Σ| 12Kλ(

√
χψ)

×

1

2

∫ ∞
0

wλ−
d
2
−1 exp

{
−(x− µ)′Σ−1(x− µ) + χ

2w
− γ

′Σ−1γ + ψ

2/w

}
dw.

By setting

y = w

√
ψ + γ ′Σ−1γ√

χ+ (x− µ)′Σ−1(x− µ)
(2.12)

and further rearrangements, we obtain

f(x) = c
e(x−µ)′Σ−1γ(√

(χ+ (x− µ)′Σ−1(x− µ))(ψ + γ ′Σ−1γ)
) d

2

×

1

2

∫ ∞
0

yλ−
d
2
−1 exp

{
−1

2

√
(χ+ (x− µ)′Σ−1(x− µ))(ψ + γ ′Σ−1γ)

[
1

y
+ y

]}
dy.

By (2.5), we can get the density of GH distributions.

For a d-dimensional normal random variableX ∼ Nd(µ,Σ), it is well known
that its characteristic function is

φX(t) = E(eit
′X) = exp(it′µ− t

′Σt

2
). (2.13)

From the mean-variance mixture definition, we obtain the characteristic func-
tion of the GH random variableX ∼ GHd(λ, χ, ψ,µ,Σ,γ):

φX(t) = E(E(exp(it′X)|W )) = E(exp(it′µ+W t′γ − 1

2
W t′Σt))

= exp(it′µ)Ĥ(t′Σt/2− it′γ),

where Ĥ(θ) = E(e−θW ) is the Laplace transform of the density function h of W .
With the help of the characteristic function, we can show that GH distributions

are closed under linear transformations.
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Proposition 2.5. If X ∼ GHd(λ, χ, ψ,µ,Σ,γ) and Y = BX + b, where B ∈
Rk×d and b ∈ Rk, then Y ∼ GHk(λ, χ, ψ,Bµ+ b, BΣB′, Bγ).

Proof.

φY (t) = E(eit
′(BX+b)) = eit

′bφX(B′t) = eit
′(Bµ+b)Ĥ(t′BΣB′t/2− it′Bγ).

This proposition shows that linear transformations of GH distributions remain in
the class of GH distributions generated by the same GIG distributionN−(λ, χ, ψ),
which is a useful property in portfolio management.

Corollary 2.6. If B = ω′ = (ω1, . . . , ωd)
′ and b = 0, then y = ω′X is a one

dimensional GH distribution, and

y ∼ GH1(λ, χ, ψ,ω′µ,ω′Σω,ω′γ).

More specifically, the margins ofX is

Xi ∼ GH1(λ, χ, ψ, µi,Σii, γi).

This corollary shows that the method used in portfolio risk management based on
multivariate normal distribution is also applicable to GH distributions.

When ψ = 0 and λ < 0, a GIG distribution becomes the so-called inverse
gamma distribution and the corresponding limiting case of the GH distribution is
known as the skewed t distribution. Using the GH density and the asymptotic
formula in (2.6), we can get the density of the skewed t distribution.

Definition 2.7. Skewed t Distribution. IfX ∼ GHd(λ, χ, ψ,µ,Σ,γ), λ = −1
2
ν,

χ = ν and ψ = 0, X is of skewed t distribution, denoted as SkewT(ν,µ,γ,σ). Its
density is given by

f(x) = c
K ν+d

2

(√
(ν + ρx)(γ ′Σ−1γ)

)
e(x−µ)′Σ−1γ(√

(ν + ρx)(γ ′Σ−1γ)
) ν+d

2
(1 + ρx

v
)
ν+d
2

, (2.14)
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where the normalizing constant c is

c =
21− ν+d

2

Γ(ν
2
)(πν)

d
2 |Σ| 12

(2.15)

and
ρx = (x− µ)′Σ−1(x− µ). (2.16)

The mean and covariance of a skewed t distributed random variableX are

E(X) = µ+ γ
ν

ν − 2
, (2.17)

cov(X) =
ν

ν − 2
Σ + γγ ′

2ν2

(ν − 2)2(ν − 4)
, (2.18)

where the covariance matrix is only defined when ν > 4.
Moreover, when γ = 0, the skewed t distribution degenerates into the Student

t distribution.
As implied by its name, an inverse gamma random variable is the inverse of a

gamma random variable. Together with the mean-variance mixture definition, we
can generate a skewed t random variable accordingly.

Algorithm 2.8. Simulation of the Skewed t Distribution.

1. Generate Y from a Gamma(ν
2
, ν

2
) distribution.

2. Set W = Y −1. By definition, W ∼ InverseGamma(ν
2
, ν

2
).

3. Generate a d-dimensional normal random vector Z ∼ Nd(0, Id)

4. Let
X = µ+Wγ +

√
WAZ.

Then X ∼ SkewT (ν,µ,Σ,γ).

Other subfamilies of the GH distribution include:
Hyperbolic Distributions:

If λ = (d + 1)/2, we refer to the distribution as a d-dimensional hyperbolic
distribution.

If λ = 1, we get the multivariate distribution whose univariate margins are
one-dimensional hyperbolic distributions.
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Normal Inverse Gaussian Distributions (NIG):
If λ = −1/2, GIG becomes the inverse Gaussian distribution. The corre-

sponding GH distribution is known as the normal inverse Gaussian (NIG) distri-
bution.
Variance Gamma Distributions (VG):

If λ > 0 and χ = 0, GIG becomes the gamma distribution. The corresponding
GH limiting distribution is known as the variance gamma (VG) distribution.

2.3 The EM Algorithm
GH distributions can be fitted with an iterative procedure know as the EM (expectation-
maximization) algorithm. To illustrate the idea behind it, we’ll present a compact
derivation of the formulas used in the EM algorithm for the skewed t distribu-
tion. Further details and an array of formulas for other subfamilies of the GH
distributions can be found in Hu (2005).

Definition 2.9. Likelihood Function. Let f(x|θ1, . . . , θk) denote the probability
density function (pdf) or the probability mass function (pmf, the discrete version
of a pdf) of an i.i.d. sample X1, . . . , Xn, with parameters θ = (θ1, . . . , θk). Given
an observation x = {x1, . . . , xn}, the function of θ defined by

L(θ|x) =
n∏
i=1

f(xi|θ1, . . . , θk)

is called the likelihood function.

Definition 2.10. Maximum Likelihood Estimator (MLE). For each sample point
x, let θ̂(x) be a parameter value at which L(θ|x) attains its maximum as a function
of θ, with x held fixed. Then θ̂(x) is called a maximum likelihood estimator of the
parameter θ based on a sample X.

Assume we have i.i.d. data x1, . . . ,xn ∈ Rd and want to fit a skewed t dis-
tribution. Summarize the parameters by θ = (ν,µ,Σ,γ) and the problem is to
maximize the log likelihood

logL(θ;x1, . . . ,xn) =
n∑
i=1

log fX(xi;θ), (2.19)
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where fX(·;θ) denotes the skewed t density function.
The problem looks formidable at first glance due to the number of parameters

and the necessity of maximizing over covariance matrices Σ. However, if the
latent mixing variables W1, . . . ,Wn were observable, the optimization would be
much easier. The joint density of any pairXi and Wi is given by

fX,W (x, w;θ) = fX|W (x|w;µ,Σ,γ)hW (w; ν), (2.20)

where hW (·; ν) is the density of InverseGamma(ν/2, ν/2). We could then con-
struct the augmented log-likelihood

log L̃(θ;x1, . . . ,xn, w1, . . . , wn) =
n∑
i=1

log fX(xi, wi;θ)

=
n∑
i=1

log fX|W (xi|wi;µ,Σ,γ) +
n∑
i=1

hW (wi; ν) (2.21)

=L1(µ,Σ,γ;x1, . . . ,xn|w1, . . . , wn) + L2(ν;w1, . . . , wn),

where fX|W (·|wi;µ,Σ,γ) is the density of the condition normalN(µ+wγ, wΣ).
L1 and L2 could be maximized separately if the latent mixing variables were ob-
servable.

To overcome such latency, we maximize the expected value of the augmented-
likelihood log L̃ conditional on the observed data and a guess for the parameters
θ. Such conditioning is necessary because the distribution of W depends on the
parameters. Maximizing the expectation of log L̃ produces an updated guess for
θ, which we then use to repeat the procedure until convergence.

This can be summarized as an iterated two-step process consisting of an E-step
and an M-step.
E-step: Compute an objective function

Q(θ;θ[k]) = E
(

log L̃(θ;x1, . . . ,xn,W1, . . . ,Wn)
∣∣∣x1, . . . ,xn;θ[k]

)
, (2.22)

where θ[k] denotes the parameter estimate after the kth step.
M-step: Maximize Q with respect to θ to get the updated estimate θ[k+1]. Repeat.

Now we will derive the formulas necessary for the implementation of the EM
algorithm.
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Similar to (2.11), the density of the conditional normal distribution can be
written as

fX|W (x|w) =
1

(2π)
d
2 |Σ| 12w d

2

e(x−µ)′Σ−1γ− ρ
2w
−w

2
γ′Σ−1γ , (2.23)

where ρ is the quadratic form defined in (2.16).
Therefore,

L1(µ,Σ,γ;x1, . . . ,xn|w1, . . . , wn) =

− n

2
log |Σ| − d

2

n∑
i=1

logwi +
n∑
i=1

(xi − µ)′Σ−1γ

− 1

2

n∑
i=1

ρi
wi
− 1

2
γ ′Σ−1γ

n∑
i=1

wi.

(2.24)

From (2.6) and (2.7),

L2(ν;w1, . . . , wn) =

− (
ν

2
− 1)

n∑
i=1

logwi −
ν

2

n∑
i=1

w−1
i − n log Γ

(ν
2

)
+
nν

2
log

ν

2

(2.25)

From (2.24) and (2.25), it can be seen that computing the objective function
Q(θ;θ[k]) requires formulas for three types of quantities:

E(Wi|xi;θ[k]), E(W−1
i |xi;θ[k]) and E(logWi|xi;θ[k]).

To calculate these conditional expectations, we compute the following condi-
tional density function of W

fW |X(w|x;θ) =
fX|W (x|w;θ)hW (w)

fX(x;θ)
. (2.26)

By some algebra and (2.7), we can get

Wi|Xi ∼ N−(−d+ ν

2
, ρi + ν,γ ′Σ−1γ). (2.27)

For convenience, we’ll use a standard notation of Liu and Rubin (1994), Pro-
tassov (2004) and McNeil et al. (2005).

δ
[·]
i = E(W−1

i |xi;θ[·]), η
[·]
i = E(Wi|xi;θ[·]), ξ

[·]
i = E(logWi|xi;θ[·]),

(2.28)
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and

δ̄ =
1

n

n∑
i=1

δi, η̄ =
1

n

n∑
i=1

ηi, ξ̄ =
1

n

n∑
i=1

ξi (2.29)

Using (2.8) and (2.9), we get

δ
[k]
i =

(
A[k]

B[k]

)− 1
2 K ν+d+2

2

(√
A[k]B[k]

)
K ν+d

2

(√
A[k]B[k]

) , (2.30)

η
[k]
i =

(
A[k]

B[k]

) 1
2 K ν+d−2

2

(√
A[k]B[k]

)
K ν+d

2

(√
A[k]B[k]

) , (2.31)

ξ
[k]
i =

1

2
log

(
A[k]

B[k]

) ∂K
− ν+d2 +α

(
√
A[k]B[k])

∂α
|α=0

K ν+d
2

(√
A[k]B[k]

) , (2.32)

where
A[k] = ρ

[k]
i + ν [k] and B[k] = γ [k]′Σ[k]−1

γ [k].

In the M-step, L1 can be maximized by taking its partial derivative with respect
to µ, Σ and γ, and set

∂L

∂µ
= 0,

∂L

∂Σ
= 0 and

∂L

∂γ
= 0. (2.33)

Solving the above equation array, we get the following estimates:

γ =
n−1

∑n
i=1w

−1
i (x̄− xi)

n−2(
∑n

i=1 wi)(
∑n

i=1w
−1
i )− 1

, (2.34)

µ =
n−1

∑n
i=1w

−1
i xi − γ

n−1
∑n

i=1 w
−1
i

, (2.35)

Σ =
1

n

n∑
i=1

w−1
i (xi − µ)(xi − µ)′ − 1

n

n∑
i=1

wiγγ
′. (2.36)

Setting ∂L2

∂ν
= 0, we get the following equation:

−
Γ′
(
ν
2

)
Γ
(
ν
2

) + log
(ν

2

)
+ 1− 1

n

n∑
i=1

w−1
i −

1

n

n∑
i=1

logwi = 0, (2.37)
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which can be solved numerically to get the estimate of ν.
Applying the δ, η, ξ notation to (2.34), (2.35), (2.36) and (2.37), we get the

detailed algorithm.

Algortihm 2.11. EM Alogrithm for Skewed t Distributions.

1. Set the iteration counter k=1 and select starting values for θ[1]. Reasonable
starting values for µ, Σ and γ are the sample mean, the sample covariance
matrix and the zero vector respectively.

2. Compute δ[k]
i , η[k]

i and ξ[k]
i and their averages δ̄[k], η̄[k] and ξ̄[k] using (2.30),

(2.31) and (2.32).

3. Update γ, µ and Σ according to

γ [k+1] =
n−1

∑n
i=1 δ

[k]
i (x̄− xi)

δ̄[k]η̄[k] − 1
, (2.38)

µ[k+1] =
n−1

∑n
i=1 δ

[k]
i xi − γ [k+1]

δ̄[k]
, (2.39)

Σ[k+1] =
1

n

n∑
i=1

δ
[k]
i (xi − µ[k+1])(xi − µ[k+1])′ − η̄[k]γ [k+1]γ [k+1]′ . (2.40)

4. Compute ν [k+1] by numerically solving the equation

−
Γ′
(
ν
2

)
Γ
(
ν
2

) + log
(ν

2

)
+ 1− ξ̄[k] − δ̄[k] = 0. (2.41)

5. Set counter k=k+1 and go back to step 2 unless the relative increment of
log likelihood is below a given tolerance.

3 Risk Forecasts on a Fixed Timescale
In this section we describe the GARCH method for filtering time series data and
for forecasting risk in the simplest case of a fixed timescale, such as is discussed
in Hu and Kercheval (2010, 2007). The method allows us to forecast the full pdf
of the returns distribution, but for simplicity and concreteness we focus here on
forecasting VaR; other kinds of risk forecasts will be similar.
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3.1 Value at Risk

Definition 3.1. Value at Risk (VaR). Given α ∈ (0, 1), the value-at-risk at con-
fidence level α for loss L of a security or a portfolio is defined as

V aRα(L) = inf{l ∈ R : FL(l) ≥ α},

where FL is the cumulative distribution function of L.

In probabilistic terms, VaR is a quantile of the loss distribution. Typical values
for α are between 0.95 and 0.995. VaR can also be based on returns instead of
losses, in which case α are small values like 0.05 or 0.01.

For example, intuitively, a 95% value at risk, V aR0.95, is a level L such that a
loss exceeding L has only a 5% chance of occurring.

3.2 Data and Stylized Facts
Given a set of daily closing prices for some index, we first convert them into
negative log returns and then would like to calibrate a skewed t distribution with
the EM algorithm. However, there’s another complication: financial data are not
i.i.d. and the maximum likelihood method is not yet applicable.

Financial time series, such as log-returns on equities, indexes, exchange rates
and commodity prices, are studied extensively and a collection of deeply en-
trenched empirical observations and inferences have been established. Some of
these so called “stylized facts” include:

(1) Returns series are not i.i.d. though they show little serial correlation.

(2) Series of absolute or squared returns show profound serial correlation.

(3) Conditional expected returns are close to zero.

(4) Volatility appears to vary over time and is clustered.

(5) Returns series are leptokurtic and skewed.

These facts persist on all time intervals ranging from intraday returns to weekly
or monthly returns.

In this paper our primary data set consists of daily returns of the S&P500
index (based on adjusted daily closing prices) from January 1, 1991 to December
31, 2009, about 4750 observations.
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Fact (1) and (2) can be illustrated through Figure 1.
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Figure 1: ACF for Unfiltered S&P500 Daily Returns Data, 1991-2009.

3.3 GARCH Filter
A GARCH (generalized autoregressive conditionally heteroskedastic) model can
be used to filter the negative log returns into an approximately i.i.d. series. We
provide some of the essentials of the classical time series analysis that are most
relevant to the GARCH model. A more comprehensive summary based on stan-
dard texts like Brockwell and Davis (2002) can be found in McNeil et al. (2005).
In the following, Z denotes either the positive integers or the non-negative inte-
gers.

Definition 3.2. Covariance Stationarity. A sequence of r.v.’s (Xt)t∈Z is covari-
ance stationary if the first two moments exist and satisfy

E(Xt) = µ, t ∈ Z,

E(XtXs) = E(Xt+kXs+k), t, s, k ∈ Z.

Definition 3.3. Strict White Noise. (Xt)t∈Z is a strict white noise process if it
is a sequence of i.i.d. r.v.’s with finite variance. A strict white noise process with
mean 0 and variance σ2 is denoted as SWN(0, σ2).
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Definition 3.4. Martingale Difference. (Xt)t∈Z is a martingale difference se-
quence with respect to the filtration {Ft}t∈Z if E|Xt| < ∞, Xt is Ft-measurable
and

E(Xt|Ft−1) = 0, ∀t ∈ Z.

The unconditional mean of such a process is also zero:

E(Xt) = E(E(Xt|Ft−1)) = 0.

Moreover, if E(X2
t ) <∞, then autocovariances satisfy

E(XtXs) =

{
E(E(XtXs|Fs−1)) = E(XtE(Xs|Fs−1)) = 0, t < s,
E(E(XtXs|Ft−1)) = E(XsE(Xt|Ft−1)) = 0, t > s.

(3.1)

Thus a finite-variance martingale-difference process has zero mean and zero co-
variance. If the variance is constant for all t, the process is covariance stationary.

Definition 3.5. GARCH(p,q) Process. Let (Zt)t∈Z be SWN(0, 1). The process
(Xt)t∈Z is a GARCH(p,q) process if it satisfies the following equations:

Xt = σtZt, (3.2)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j, (3.3)

where α0 > 0, αi ≥ 0, i = 1, . . . , p and βj ≥ 0, j = 1, . . . , q, are constants, and
Zt is independent of (Xs)s<t for each t. The r.v.’s Zt are called the innovations.

Let Ft = σ{Xs : s ≤ t} denote the sigma algebra representing the history
of the process up to time t so that {Ft}t∈Z is the natural filtration. It can be
easily verified that the GARCH process has the martingale-difference property
with respect to {Ft}t∈Z. Zero covariance implies zero autocorrelation, which suits
stylized fact (1). We’ll further show that it has constant variance and is therefore
covariance stationary.

In practice, low-order GARCH models are most widely used and their mathe-
matical analysis is relatively straightforward. We’ll concentrate on the GARCH(1,1)
process.

It follows from (3.2) and (3.3) that for a GARCH(1,1) process we have

σ2
t = α0 + α1X

2
t−1 + βσ2

t−1 = α0 + (α1Z
2
t−1 + β)σ2

t−1. (3.4)
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This is a stochastic recurrence equation (SRE) of the form Yt = AtYt−1 + Bt,
where (At)t∈Z and (Bt)t∈Z are i.i.d. r.v.’s. As shown by Brandt (1986), sufficient
conditions for a solution are that

E(max{0, log |Bt|}) <∞ and E(log |At|) < 0. (3.5)

The unique solution is given by

Yt = Bt +
∞∑
i=1

Bt−i

i−1∏
j=0

At−j, (3.6)

where the sum converges absolutely, almost surely.
We’ll use these facts about SREs to derive the sufficient and necessary condi-

tion for the covariance stationarity of the GARCH(1,1) process.

Proposition 3.6. The GARCH(1,1) process is a covariance-stationary process if
and only if α1 +β < 1. The variance of the covariance-stationary process is given
by α0/(1− α1 − β).

Proof. Assuming covariance stationarity, it follows from (3.4) and E(Z2
t ) = 1

that

σ2 = E(σ2
t ) = α0 + (α1E(Z2

t ) + β)E(σ2
t−1) = α0 + (α1 + β)σ2.

As a result, σ2 = α0/(1− α1 − β) and we must have α1 + β < 1 since α0 > 0.
Since Zt is independent of (Xs)s<t, σt and Zt are independent immediately

from (3.4). By (3.2) and such independence,

var(Xt) = E(X2
t ) = E(σ2

t )E(Z2
t ) = σ2 · 1 = α0/(1− α1 − β).

Conversely, if α1 + β < 1, by Jensen’s inequality

E(log((α1Z
2
t−1 + β)σ2

t−1)) < log(E((α1Z
2
t−1 + β)σ2

t−1)) = log(α1 + β) < 0.

On the other hand, since α0 is a constant,

E(max{0, log |α0|}) <∞.
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Now that both two sufficient conditions in (3.5) are satisfied, by (3.6), the solution
to (3.4) is

σ2
t = α0 + α0

∞∑
i=1

i−1∏
j=0

(α1Z
2
t−j + β). (3.7)

Take expectation, then by E(Z2
t ) = 1,

E(σ2
t ) = α0 + α0

∞∑
i=1

i−1∏
j=0

(α1E(Z2
t−j) + β)

= α0 + α0

∞∑
i=1

i−1∏
j=0

(α1 + β)

= α0

∞∑
i=0

(α1 + β)i = α0/(1− α1 − β).

While the GARCH(1,1) process has constant variance, its conditional variance
is given by

var(Xt|Ft−1) = E(σ2
tZ

2
t |Ft−1) = σ2

tE(Z2
t ) = σ2

t = α0 + α1X
2
t−1 + βσ2

t−1.

In other words, its conditional standard deviation σt, or volatility, is a continually
changing function of both |Xt−1| and σt−1. If one or both are particularly large,
then Xt is effectively drawn from a distribution with large variance and more
likely to be large itself. In this way, the model generates volatility clusters as
described by stylized fact (4).

Assuming a GARCH(1,1) process has a fourth moment, we can calculate the
kurtosis of Xt. Square both sides of (3.7), take expectations and by stationarity,

E(σ4
t ) = α2

0 + (α2
1κZ + β2 + 2α1β)E(σ4

t ) + 2α0(α1 + β)E(σ2
t ),

where κZ = E(Z4
t )/(E(Z2

t ))2 = E(Z4
t ) denotes the kurtosis of the innovations.

Solve for E(σ4
t ) and using E(σ2

t ) = E(X2
t ) = α0/(1− α1 − β), we’ll get

E(X4
t ) = κZE(σ4

t ) =
α2

0κZ(1− (α1 + β)2)

(1− α1 − β)2(1− α2
1κZ − β2 − 2α1β)

,
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from which it follows that

κX =
κZ(1− (α1 + β)2)

1− α2
1κZ − β2 − 2α1β

.

It can be seen that whenever κZ > 1, the kurtosis of Xt is inflated in comparison
with that of Zt. Therefore, the stationary distribution of the GARCH process is
leptokurtic (i.e., κX > 3) for Gaussian or Student t innovations, capturing stylized
fact (5).

Higher-order GARCH models have the same general behavior as GARCH(1,1).
The necessary and sufficient condition for covariance stationarity is

∑p
i=1 αi +∑q

j=1 βj < 1 and the constant variance is α0/(1−
∑p

i=1 αi−
∑q

j=1 βj). For more
details, see Bougerol and Picard (1992).

There are many variants on and extensions of the basic GARCH model, such
as the following:

Definition 3.7. ARMA Process with GARCH Errors. Let (Zt)t∈Z be SWN(0, 1).
The process (Xt)t∈Z is an ARMA(p1, q1) process with GARCH(p2, q2) errors if it
is covariance stationary and satisfies the equations:

Xt = µt + σtZt, (3.8)

µt = µ0 +

p1∑
i=1

φi(Xi − µ) +

q1∑
j=1

θj(Xt−j − µt−j), (3.9)

σ2
t = α0 +

p2∑
i=1

αi(Xt−i − µt−i)2 +

q2∑
j=1

βjσ
2
t−j, (3.10)

where
∑p2

i=1 αi +
∑q2

j=1 βj < 1, α0 > 0, αi ≥ 0, i = 1, . . . , p2 and βj ≥ 0,
j = 1, . . . , q2, and the innovation Zt is independent of (Xs)s<t for all t.

Since return series show little serial correlation, the ARMA component is un-
necessary, i.e., we choose p1 = q1 = 0. On the other hand, stylized fact (3) states
that conditional expected returns are close but not equal to zero. Therefore, we
retain the constant µ0 in (3.9). We’ll use such a standard GARCH(1,1) model
with a constant non-zero mean to filter the negative log return process and get an
approximately i.i.d. series. Hu and Kercheval (2007) demonstrated in this context
that the traditional normal distribution is a poor candidate for the distribution of
the filtered returns due to its thin tails. We adopt the more heavy-tailed skewed
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t distribution, which has shown good results in comparison to common heavy-
tailed alternatives. For the same reason, we choose Student t innovations when
calibrating GARCH. Correlograms of the filtered series (Figure 2) are included to
show the performance of the GARCH filter.
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Figure 2: ACF for Filtered S&P500 Daily Returns Data, 1991 - 2009

In Figure 3, we plot {σt} of the fitted GARCH process to illustrate stylized
fact (4).
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Figure 3: GARCH Volatility for S&P500 Daily Returns Data, 1991-2009
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3.4 VaR Forecasting
Once the distribution of the filtered data is calibrated with the EM algorithm, VaR
forecasts can be immediately derived via de-filtering. At time T , since σT+1 isFT -
measurable and ZT+1 independent of {Xt}t≤T+1 and thereby FT , the conditional
VaR for time T + 1 will be

V aRα(XT+1|FT ) = V aRα(σT+1ZT+1+µ0|FT ) = σT+1V aRα(ZT+1)+µ0 = σT+1qα+µ0,

where qα is the α-quantile of the calibrated skewed t distribution.

3.5 Drawbacks of the Fixed Frequency Approach
The EM algorithm uses a maximum likelihood method, which requires a sufficient
amount of input data for accuracy. Therefore, as the time horizon grows, data
availability can become an issue of major concern.

To investigate to what extent the EM algorithm depends on the sample size,
we generate skewed t random variables with ν = 6.4, µ = −0.14, γ = 0.12 and
σ = 0.651, and apply the EM algorithm to samples of different sizes. The calibra-
tion of each sample size is repeated 20 times and the performance is recorded in
Table 1.A and 1.B.

Table 1.A: Dependance of EM Algorithm on Sample Size Part I

Sample ν µ γ σ

Size Mean Std Mean Std Mean Std Mean Std
100 25.80 23.58 -0.536 0.977 0.491 0.947 0.650 0.118
250 10.45 7.64 -0.210 0.218 0.191 0.198 0.662 0.108
500 7.07 2.08 -0.134 0.147 0.116 0.111 0.641 0.064
750 7.14 2.01 -0.161 0.137 0.132 0.104 0.668 0.050

1000 7.15 1.44 -0.171 0.085 0.148 0.077 0.656 0.040
5000 6.55 0.50 -0.161 0.046 0.136 0.034 0.650 0.018

1These values are the long-term averages from calibrating historical data.
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Table 1.B: Dependance of EM Algorithm on Sample Size Part II

Sample Perfomance Number of Iterations
Size Blowup Success Mean Std
100 10 10 65 157.85
250 4 16 82 120.41
500 1 19 76 44.76
750 1 19 73 45.65

1000 0 20 73 37.76
5000 0 20 62 16.42
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Figure 4.A: Theoretical pdf vs Sample pdfs, Sample Size=100
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Figure 4.B: Theoretical pdf vs Sample pdfs, Sample Size=250
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Figure 4.C: Theoretical pdf vs Sample pdfs, Sample Size=500

25



When the sample size is small, the means of calibrated parameters differ
greatly from the exact values and standard deviations are huge. In other words,
calibration results are highly unstable between different groups of simulated ran-
dom variables. An overly small sample size implies a high probability of encoun-
tering intractable samples whose empirical distribution is far from representative
of the underlying skewed t density (Figure 4.A, 4.B and 4.C are included to illus-
trate such situations). The algorithm struggles to handle such samples, as reflected
by high ratios of blowup2 and a large standard deviation of the number of itera-
tions. As the sample size increases, notably after after reaching 750 or 1000, all
these anomalies disappear and calibration results are much improved.

Calibrating GARCH parameters3 to non-i.i.d. data uses the same idea of max-
imum likelihood estimation. To ensure effective filtering, we also need a reason-
ably large sample.

We simulate a GARCH(1,1) process with µ0 = 8.71×10−4, α0 = 4.26×10−6,
α1 = 0.0486 and β1 = 0.91614, then filter the simulated processes of different
lengths with GARCH repeatedly (100 times each). Similar to our earlier experi-
ment, Table 2 indicates that we need at least 750-1000 samples to approximately
retrieve exact parameters.

A minimum of 750 observations is equivalent to about 750/52≈14 years of
weekly data. This may already exceed the entire history for certain stocks (e.g.,
emerging markets). When it comes to monthly forecasts, a commonly used time
horizon for portfolio management, the figure will further grow to 750/12≈62
years, making it all but impossible to implement the entire framework.5

Even if enough data are documented, changes at all market levels (e.g., the in-
tegration of global markets, the increasing use of financial derivatives, an industry
changed fundamentally by new technology, a firm after merger and acquisition)
can still render historical data outdated or irrelevant. As a result, the validity of
forecasts will be dubious.

2When the maximum iteration number (usually between 250 and 300) is reached while the
relative increment is still above the tolerance (usually set as 10-5 or 10-6).

3We use the GARCH Toolbox in Matlab.
4Again, to make results more relevant to the application we have in mind, these parameters

come from historical data
5Daily data of major indexes like DOW and SP500 date back only to the 1950s.
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Table 2: Dependence of GARCH Calibration on Sample Size

Sample µ0 α0 α1 β1

Size Mean Std Mean Std Mean Std Mean Std
100 8.05E-04 9.31E-04 7.31E-05 3.03E-04 0.095 0.134 0.539 0.383
250 8.61E-04 5.49E-04 1.79E-05 2.25E-05 0.066 0.068 0.747 0.297
500 8.78E-04 3.83E-04 1.03E-05 1.48E-05 0.054 0.033 0.853 0.155
750 8.65E-04 2.95E-04 9.09E-06 1.63E-05 0.054 0.026 0.863 0.186

1000 8.81E-04 2.79E-04 7.07E-06 9.74E-06 0.051 0.021 0.881 0.139
5000 8.66E-04 1.21E-04 4.26E-06 9.63E-07 0.048 0.007 0.917 0.013

4 Multiple Timescale Forecasts
To overcome the aforementioned drawbacks, we’ll introduce a high-low frequency
approach. Given an n-day time horizon, instead of basing calibration and fore-
casts on the low-frequency n-day return data, we’ll use high-frequency data (e.g.,
daily returns) to calibrate the return distribution, then switch back to the lower
frequency and make forecasts on the n-day timescale. If this approach can be
implemented successfully, the restrictions imposed by the scarcity of weekly and
monthly historical data will be substantially reduced.

Now we’ll describe the procedure for this high-low frequency approach.

Algorithm 4.1. High-Low Frequency VaR Forecast.

1. Choose a conversion factor K based on the amount of available historical
data and/or the time range considered most relevant. When the time horizon
is n days, K can be any factor of n except 1. For simplicity’s sake, we’ll
assume K = n, i.e., n-day is the low frequency, daily is the high frequency.

2. Filter daily data with GARCH(1,1) to get an approximately i.i.d. sequence.

3. Calibrate the skewed t distribution to the filtered data. Denote the corre-
sponding parameter set as (ν, µ, γ, σ).
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4. At time T , forecast n days into the future using the GARCH(1,1) mecha-
nism6:

For t = T + 1, ..., T + n

Xt = µ0 + σtZt,

σ2
t = α0 + α1(Xt−1 − µ0)2 + β1σ

2
t−1,

where innovations Zt ∼ SkewT(ν, µ, γ, σ) and µ0, α0, α1, β1 are GARCH
parameters from Step.27.

5. Make n-day V aR forecasts based on the distributions of XT+1, ..., XT+n.

4.1 Simulation of the GARCH Sum
When this high-low frequency approach is used, VaR estimates must be based
on a sequence of n forecasts XT+1, ..., XT+n. Further, since VaR is not even
subadditive, we must consider their sum. Expanding this sum according to (3.8),
we get

n∑
i=1

XT+i = nµ0 + σT+1ZT+1 + ...+ σT+nZT+n. (4.1)

Except for σT+1
8, all volatility coefficients are themselves r.v.’s. And by the very

nature of GARCH, they are serially correlated.
Since it’s extremely difficult to analytically determine the distribution of this

GARCH sum, we’ll compute VaR estimates by Monte Carlo simulation of the
GARCH sum distribution:

• For each of M independent simulations, generate n i.i.d. SkewT (ν, µ, γ, σ)
random variables by Alogrithm 2.8. Compute XT+1, ..., XT+n one by one
according to GARCH, then add them up to get the n-day negative log re-
turns L1, ..., LM (i.e., losses).

6We’ll justify using multiple steps of GARCH later in Section 5
7Since Zt ∼ SkewT (ν, µ, γ, σ) instead of SWN(0,1), strictly speaking, these forecasts are no

longer a GARCH process.
8σT+1 is solely determined by observed data, thus constant.
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• Let F̂L,M(x) denote the empirical distribution of losses based on M simu-
lations,

F̂L,M(x) =
1

M

M∑
i=1

1{Li≤x}.

Estimate V aRα by the empirical quantile x̂α

V̂ aRα(
n∑
i=1

XT+i|FT ) = x̂α = F̂−1
L,M(α),

where the inverse of the piecewise constant function F̂L,M is defined as

F̂−1
L,M(u) = inf{u : F̂L,M(x) ≥ u}.

4.2 Confidence Intervals for the Forecasts
The empirical quantile x̂α converges to the true quantile xα with probability 1 as
M → ∞. Assuming that L has a strictly positive density f in the neighborhood
of xα, a central limit theorem, as shown in Serfling (1980), states that

√
M(x̂α − xα) ∼

√
α(1− α)

f(xα)
N(0, 1).

This provides the basis for a large-sample 1− p confidence interval9 for xα of the
form

x̂α ± zp/2
√
α(1− α)

f(xα)
√
M

,

where zp/2 is the p/2-quantile of standard normal distribution. Since the density
f is unknown, we can divide the sample of M simulations into batches, compute
an estimate x̂α for each batch, and form a confidence interval based on the sample
standard deviation of the estimates across batches.

Glasserman (2003) proposed an alternative way without computing the sam-
ple standard deviation. Using the fact that the number of samples exceeding xα
has binomial distribution with parameters M and α, we can form the confidence
interval without relying on a central limit theorem. Let

L(1) ≤ L(2) ≤ ... ≤ L(M)

9Later we’ll use confidence intervals to see if the difference between high-low frequency and
fixed frequency forecasts is statistically significant.
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denote the order statistics of the losses. An interval of the form [L(r), L(s)), r < s,
covers xα with probability

P (L(r) ≤ xα < L(s)) =
s−1∑
i=r

(
M

i

)
(1− α)iαM−i.

Choose r, s so that this probability is close to the desired confidence level.

5 Backtesting
GARCH plays dual roles in the high-low frequency approach. First, it removes
serial dependence in historical data so that the maximum likelihood method is
applicable for distribution fitting. Later, it’s used to mimic the return process n
days into the future to enable the switch from the high frequency back to the low
frequency. Being an effective filter10 does not necessarily ensures being a good
simulation mechanism. We must justify its validity through backtests.

5.1 Independence of Violation Indicators
Define indicator variables

Iαt+1 = 1{∑n
i=1Xt+i>V aRα(

∑n
i=1Xt+i|Ft)},

which indicates whether the actual losses over the next n days exceeds the condi-
tional VaR forecasted at time t.

Recall that,

n∑
i=1

Xt+i = nµ0 + σt+1Zt+1 + ...+ σt+nZt+n.

Since σt+2, ..., σt+n are actually determined by σt+1, Zt+1, ..., Zt+n−1, we can sum-
marize this sum as

n∑
i=1

Xt+i = f(µ0, σt+1, Zt+1, ..., Zt+n).

10As illustrated by Figure 1 and 2. Hu and Kercheval (2007) also provided favorable evidence.
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Similarly, the conditional VaR can be expressed as

V aRα(
n∑
i=1

Xt+i|Ft) = g(µ0, σt+1, Z
(1), ..., Z(n)).11

Noticing that µ0 and the distribution of Z(1), ..., Z(n) hold constant throughout the
GARCH process, we can further reduce the above notation to

V aRα(
n∑
i=1

Xt+i|Ft) = g(σt+1).

Now consider two indicator variables

Iαt+1 = 1{f(µ0,σt+1,Zt+1,...,Zt+n)>g(σt+1)}

and
Iαt+j+1 = 1{f(µ0,σt+j+1,Zt+j+1,...,Zt+j+n)>g(σt+j+1)}.

Among the variables, µ0 is a constant. Both σt+1 and σt+j+1 are Ft+j-measurable,
so they are deterministic at time t + j. Therefore, as long as Zt+1, ..., Zt+n and
Zt+j+1, ..., Zt+j+n don’t overlap, i.e., j ≥ n, these i.i.d. innovations will ensure
that Iαt+1 and Iαt+j+1 are independent.

5.2 Backtest Algorithm
Given a data set of N daily negative log returns {X1, ..., XN}, suppose our target
time horizon is n days and the sample size for skewed t calibration is C. Use the
following algorithm for backtest.

Algorithm 5.1. Backtest. For t = C,C + n,C + 2n, ..., C + kn, ...

1. Apply GARCH filter to {Xt−C+1, ..., Xt} and calibrate the skewed t distri-
bution.

2. Compute V̂ aRα(
∑n

i=1Xt+i|Ft), the estimate for conditional V aRα, for
α = 0.95, 0.975, 0.99 and 0.995 with Monte Carlo simulation.

11VaR is based on the distribution of
∑n

i=1Xt+i, not the actual values of Zt+1, ..., Zt+n. Dis-
tinguishing Z’s with a time index is no longer necessary. It suffices to use Z(1), ..., Z(n), i.e., n
i.i.d. skewed t r.v.’s.
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3. Compare the sum of next n observations with V̂ aRα. Violation is counted
by Iαt+1 = 1{∑n

i=1Xt+i>V̂ aRα(
∑n
i=1Xt+i|Ft)}

.

5.3 Statistical Tests

Definition 5.2. Bernoulli(p) Distribution. A random variableX has a Bernoulli(p)
distribution if

X =

{
1 with probability p
0 with probability 1− p,

0 ≤ p ≤ 1.

If the estimates of conditional VaR are successful, the violation indicators
should behave like i.i.d. Bernoulli(1− α) trials.

Proposition 5.3. Bernoulli MLE. LetX1, . . . , Xn be i.i.d. Bernoulli(p). The like-
lihood function is

L(p|x) =
n∏
i=1

pxi(1− p)1−xi = py(1− p)n−y,

where y =
∑n

i=1 xi. The MLE of p is
∑n

i=1Xi/n.

Proof. L(p|x) = py(1 − p)n−y follows immediately from the definition of like-
lihood functions and the pmf of Bernoulli(p). L(p|x) = py(1 − p)n−y is not too
hard to differentiate, but it is easier to differentiate the log likelihood

logL(p|x) = y log p+ (n− y) log(1− p).

If 0 < y < n, differentiating logL(p|x) and setting the result equal to 0 yields
the solution p̂ = y/n. It can be easily verified that y/n is the global maximum.
If y = 0 or y = 1, it is again straightforward to verify that p̂ = y/n. Thus,∑n

i=1Xi/n is the MLE of p.

Definition 5.4. Likelihood Ratio Test Statistic. Let Θ denote the entire parame-
ter space, and Θ0 some parameter subset. The likelihood ratio test (LRT) statistic
for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc

0 is

λ(x) =
supΘ0

L(θ|x)

supΘ L(θ|x)
.
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To understand the rationale behind the LRT, consider a sample of discrete
random variables, in which case the likelihood function is the product of pmf’s
(i.e., discrete probabilities). The numerator of λ(x) is the maximum probability,
computed over parameters in the null hypothesis, of the observed sample. The de-
nominator is the maximum probability over all possible parameters. The ratio of
these two maxima is small if there are parameter points in the alternative hypoth-
esis for which the observed sample is much more likely than for any parameter
point in the null hypothesis. In that case, the LRT criterion concludes H0 should
be rejected.

Proposition 5.5. Bernoulli LRT. Let X1, . . . , Xn be a random sample from a
Bernoulli(p) population. Consider testing H0 : p = p0 versus H1 : p 6= p0. The
LRT statistic is

λ(x) =
py0(1− p0)n−y(
y
n

)y
(1− y

n
)n−y

.

Proof. Since there is only one value specified by H0, the numerator of λ(x) is
L(p0|x). The MLE of p is y/n by Proposition 5.3, so the denominator is L( y

n
|x).

Together, the LRT statistic is

λ(x) =
L(p0|x)

L( y
n
|x)

=
py0(1− p0)n−y(
y
n

)y
(1− y

n
)n−y

.

Theorem 5.6. Asymptotic Distribution of the LRT. For testing H0 : θ = θ0

versus H1 : θ 6= θ0, suppose X1, . . . , Xn are i.i.d. with pdf or pmf f(x|θ), θ̂ is the
MLE of θ, and f(x|θ) satisfies certain regularity conditions. Then under H0, as
n→∞,

−2 log λ(x)→ χ2(1) in distribution .

Proof. See Casella and Berger (2002).

Recall that we did a sequence of backtests by counting VaR violations. Sup-
pose there are altogether Y tests and let y denote the number of total violations.
The actual violation frequency is y/Y , which is the MLE of a Bernoulli distribu-
tion, while the expected violation probability, q, should be 0.05, 0.025, 0.01 and
0.005.
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We then evaluate the backtest results with the likelihood ratio test12 based on
Theorem 5.6: {

H0 : The expected violation ratio = q
H1 : The expected violation ratio 6= q

Under the null hypothesis, the test statistic is

−2[(Y − y) log(1− q) + y log(q)] + 2[(Y − y) log(1− y/Y ) + y log(y/Y )],

which is asymptotically χ2(1) distributed.
The stepsize of the backtest algorithm is set as n to ensure the independence

of violation indicators. As a result, the number of tests that can be done on a fixed
amount of daily data will shrink substantially when the time horizon increases.
To extract more information about the violations, we can implement the backtest
algorithm n times, each with a different starting point in the time index (i.e., t =
C,C+1, ..., C+n−1). Each of the n backtests will contain the same total number
of tests Y , but a different number of violations: y1, ..., yn.

5.4 n-Day Horizon
We list the actual violation ratios and the corresponding p-values of the LRT in
Table 3.A through 3.J. All VaR backtesting is based on S&P500 daily close prices
from 1991/1/1 to 2009/12/31. 1000 samples are used to calibrate each skewed
t distribution. Depending on the length of the time horizon, the total number of
backtests ranges between 500 to 1900. For an n-day horizon, we have n groups
of results representing different starting points in the time index.

From a 2-day to a 10-day horizon, altogether (2+10)×9×4/2=216 likelihood
ratio tests are done, among which the five p-values lower than 0.0513 are sparsely
distributed. Setting the confidence level of the LRT to be 95% implies that even if
the model is perfect, we’ll still have a 5% chance of observing LRT failures (i.e.,
Type I errors). Since the failure ratio of the backtests 5/216≈2.3% is much lower
than 5%, we consider our model performance’s satisfactory.

Still, the high-low frequency method does have its limits. As shown in Table
3.J, when the time horizon is extended to 15-day, 9 failures are observed in 60
LRT. This is not surprising. As the time horizon stretches we are ignoring more
and more new information, leading to deteriorating GARCH performance.

12Since the sum of i.i.d. Bernoulli random variable is a binomial random variable, another al-
ternative is a standard two-sided binomial test, as described by Casella and Berger (2002).

13We reject the null hypothesis when the p-value is less than 0.05.
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Table 3.A: Backtest Results: 2-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.059 0.026 0.010 0.005 0.076 0.809 0.827 0.864
Group 2 0.050 0.027 0.010 0.007 0.975 0.596 0.827 0.277

Table 3.B: Backtest Results: 3-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.057 0.027 0.012 0.008 0.260 0.663 0.513 0.175
Group 2 0.054 0.032 0.013 0.009 0.532 0.143 0.239 0.091
Group 3 0.052 0.025 0.012 0.007 0.807 0.921 0.513 0.313

Table 3.C: Backtest Results: 4-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.055 0.025 0.012 0.004 0.490 0.942 0.624 0.730
Group 2 0.041 0.030 0.013 0.006 0.202 0.378 0.426 0.574
Group 3 0.052 0.023 0.013 0.005 0.801 0.728 0.426 0.902
Group 4 0.053 0.030 0.020 0.008 0.690 0.378 0.006 0.170

35



Table 3.D: Backtest Results: 5-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.045 0.024 0.007 0.005 0.514 0.828 0.317 0.913
Group 2 0.053 0.026 0.012 0.008 0.722 0.804 0.612 0.293
Group 3 0.046 0.029 0.011 0.008 0.630 0.485 0.876 0.293
Group 4 0.052 0.026 0.016 0.011 0.849 0.804 0.136 0.059
Group 5 0.057 0.037 0.012 0.005 0.400 0.048 0.612 0.913

Table 3.E: Backtest Results: 6-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.052 0.019 0.011 0.006 0.785 0.318 0.783 0.645
Group 2 0.049 0.022 0.013 0.008 0.927 0.649 0.514 0.336
Group 3 0.056 0.025 0.011 0.008 0.529 0.949 0.783 0.336
Group 4 0.048 0.021 0.014 0.011 0.782 0.470 0.310 0.061
Group 5 0.057 0.030 0.011 0.006 0.421 0.422 0.783 0.645
Group 6 0.051 0.032 0.011 0.006 0.927 0.298 0.783 0.645
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Table 3.F: Backtest Results: 7-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.043 0.024 0.011 0.007 0.418 0.890 0.799 0.459
Group 2 0.044 0.017 0.013 0.006 0.546 0.187 0.508 0.857
Group 3 0.041 0.033 0.013 0.004 0.308 0.238 0.508 0.654
Group 4 0.044 0.024 0.013 0.006 0.546 0.890 0.508 0.857
Group 5 0.039 0.024 0.019 0.013 0.218 0.890 0.075 0.029
Group 6 0.054 0.020 0.011 0.007 0.696 0.477 0.799 0.459
Group 7 0.059 0.030 0.006 0.006 0.337 0.503 0.257 0.857

Table 3.G: Backtest Results: 8-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.034 0.021 0.013 0.006 0.089 0.586 0.570 0.689
Group 2 0.055 0.023 0.015 0.006 0.618 0.811 0.325 0.689
Group 3 0.047 0.028 0.008 0.004 0.733 0.728 0.732 0.809
Group 4 0.038 0.017 0.015 0.006 0.218 0.235 0.325 0.689
Group 5 0.051 0.030 0.008 0.004 0.933 0.528 0.732 0.809
Group 6 0.053 0.017 0.008 0.006 0.770 0.235 0.732 0.689
Group 7 0.044 0.023 0.015 0.008 0.576 0.811 0.325 0.331
Group 8 0.049 0.023 0.006 0.004 0.899 0.811 0.394 0.809
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Table 3.H: Backtest Results: 9-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.036 0.014 0.007 0.005 0.158 0.127 0.535 0.944
Group 2 0.045 0.024 0.012 0.005 0.649 0.875 0.703 0.944
Group 3 0.043 0.029 0.010 0.005 0.492 0.647 0.921 0.944
Group 4 0.033 0.021 0.010 0.002 0.096 0.631 0.921 0.396
Group 5 0.048 0.024 0.007 0.005 0.822 0.875 0.535 0.944
Group 6 0.057 0.026 0.014 0.010 0.511 0.877 0.407 0.243
Group 7 0.052 0.031 0.017 0.014 0.824 0.451 0.210 0.028
Group 8 0.052 0.024 0.014 0.010 0.824 0.875 0.407 0.243
Group 9 0.040 0.017 0.010 0.002 0.355 0.245 0.921 0.396

Table 3.I: Backtest Results: 10-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.040 0.016 0.011 0.008 0.340 0.224 0.910 0.456
Group 2 0.048 0.026 0.016 0.008 0.831 0.858 0.290 0.456
Group 3 0.048 0.024 0.021 0.016 0.831 0.881 0.058 0.017
Group 4 0.040 0.019 0.013 0.008 0.340 0.398 0.548 0.456
Group 5 0.034 0.016 0.005 0.005 0.141 0.224 0.312 0.937
Group 6 0.032 0.016 0.013 0.008 0.082 0.224 0.548 0.456
Group 7 0.040 0.016 0.008 0.008 0.340 0.224 0.676 0.456
Group 8 0.048 0.026 0.011 0.005 0.831 0.858 0.910 0.937
Group 9 0.042 0.026 0.016 0.008 0.483 0.858 0.290 0.456
Group 10 0.053 0.032 0.011 0.005 0.797 0.420 0.910 0.937
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Table 3.J: Backtest Results: 15-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.046 0.036 0.015 0.010 0.645 0.118 0.230 0.117
Group 2 0.049 0.034 0.014 0.010 0.940 0.184 0.405 0.117
Group 3 0.044 0.029 0.020 0.010 0.512 0.553 0.026 0.117
Group 4 0.058 0.031 0.012 0.007 0.395 0.399 0.652 0.557
Group 5 0.054 0.027 0.015 0.012 0.627 0.735 0.230 0.044
Group 6 0.054 0.031 0.017 0.012 0.627 0.399 0.121 0.044
Group 7 0.054 0.041 0.020 0.007 0.627 0.024 0.026 0.557
Group 8 0.060 0.034 0.019 0.007 0.303 0.184 0.058 0.557
Group 9 0.056 0.037 0.017 0.012 0.504 0.072 0.121 0.044

Group 10 0.056 0.029 0.015 0.012 0.504 0.553 0.230 0.044
Group 11 0.061 0.041 0.014 0.009 0.227 0.024 0.405 0.274
Group 12 0.065 0.032 0.014 0.007 0.119 0.277 0.405 0.557
Group 13 0.056 0.032 0.014 0.009 0.504 0.277 0.405 0.274
Group 14 0.058 0.031 0.014 0.012 0.395 0.399 0.405 0.044
Group 15 0.058 0.029 0.015 0.010 0.395 0.553 0.230 0.117
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5.5 A Variant Backtest: Forecasting a One Day Return, nDays
Ahead

The backtest above evaluates the accuracy of the simulated sum
∑n

i=1Xt+i as a
whole. To further examine each term inside that sum, we can slightly modify the
previous backtest algorithm:

Algorithm 5.7. Alternative Backtest. For t = C,C + n,C + 2n, ..., C + kn, ...

1. Apply GARCH filter to {Xt−C+1, ..., Xt} and calibrate the skewed t distri-
bution.

2. Compute V̂ aRα(Xt+n|Ft), i.e., V aR for Day t+n, for α = 0.95, 0.975, 0.99

and 0.995 with Monte Carlo simulation.

3. Compare the observation on Day t + n with V̂ aRα(Xt+n|Ft). Violation is
counted if Xt+n > V̂ aRα(Xt+n|Ft).

Repeat this alternative version with stepsize from 2 to n days and we’ll get a
day-by-day picture of the performance of GARCH simulation. We list the results
in Table 4.A through 4.I.

Table 4.A: Alternative Backtest Results: 2-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.058 0.030 0.011 0.006 0.165 0.229 0.611 0.595
Group 2 0.048 0.027 0.007 0.004 0.721 0.682 0.276 0.569

Not a single LRT failure is observed up to a 7-day horizon. Successfully
forecasting day-by-day VaR lends further confidence in the high-low frequency
method.
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Table 4.B: Alternative Backtest Results: 3-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.055 0.030 0.010 0.003 0.475 0.326 1.000 0.333
Group 2 0.052 0.027 0.007 0.005 0.773 0.689 0.314 1.000
Group 3 0.054 0.027 0.011 0.006 0.566 0.689 0.754 0.664

Table 4.C: Alternative Backtest Results: 4-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.063 0.033 0.011 0.004 0.125 0.164 0.856 0.687
Group 2 0.043 0.020 0.011 0.003 0.345 0.364 0.856 0.320
Group 3 0.055 0.021 0.008 0.007 0.563 0.510 0.568 0.538
Group 4 0.061 0.033 0.009 0.005 0.168 0.164 0.853 0.898

Table 4.D: Alternative Backtest Results: 5-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.050 0.022 0.005 0.003 1.000 0.593 0.173 0.538
Group 2 0.063 0.028 0.010 0.007 0.149 0.608 1.000 0.582
Group 3 0.057 0.030 0.010 0.007 0.463 0.447 1.000 0.582
Group 4 0.043 0.030 0.012 0.005 0.444 0.447 0.689 1.000
Group 5 0.053 0.028 0.010 0.005 0.711 0.608 1.000 1.000
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Table 4.E: Alternative Backtest Results: 6-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.056 0.034 0.010 0.006 0.546 0.221 1.000 0.759
Group 2 0.050 0.018 0.004 0.004 1.000 0.292 0.125 0.743
Group 3 0.056 0.022 0.008 0.006 0.546 0.661 0.641 0.759
Group 4 0.048 0.030 0.010 0.006 0.836 0.487 1.000 0.759
Group 5 0.060 0.032 0.008 0.006 0.319 0.336 0.641 0.759
Group 6 0.054 0.032 0.012 0.002 0.685 0.336 0.663 0.279

Table 4.F: Alternative Backtest Results: 7-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.056 0.028 0.014 0.009 0.571 0.693 0.431 0.256
Group 2 0.070 0.037 0.007 0.005 0.071 0.126 0.511 0.923
Group 3 0.061 0.023 0.009 0.005 0.323 0.827 0.891 0.923
Group 4 0.051 0.023 0.007 0.005 0.895 0.827 0.511 0.923
Group 5 0.042 0.023 0.009 0.005 0.439 0.827 0.891 0.923
Group 6 0.056 0.026 0.009 0.005 0.571 0.926 0.891 0.923
Group 7 0.051 0.030 0.012 0.009 0.895 0.491 0.733 0.256

42



Table 4.G: Alternative Backtest Results: 8-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.051 0.035 0.008 0.005 0.953 0.257 0.687 0.928
Group 2 0.040 0.024 0.008 0.008 0.358 0.901 0.687 0.449
Group 3 0.059 0.029 0.008 0.005 0.453 0.601 0.687 0.928
Group 4 0.069 0.040 0.011 0.008 0.104 0.087 0.898 0.449
Group 5 0.061 0.035 0.011 0.008 0.330 0.257 0.898 0.449
Group 6 0.051 0.021 0.005 0.000 0.953 0.641 0.319 NaN*

Group 7 0.053 0.021 0.008 0.008 0.769 0.641 0.687 0.449
Group 8 0.056 0.027 0.008 0.005 0.601 0.838 0.687 0.928
*NaN (not a number) arises from log 0 in the likelihood ratio statistic
when violation count is 0.

Table 4.H: Alternative Backtest Results: 9-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.051 0.024 0.009 0.003 0.930 0.909 0.853 0.577
Group 2 0.054 0.021 0.006 0.000 0.737 0.633 0.429 NaN
Group 3 0.075 0.030 0.015 0.006 0.050 0.569 0.392 0.801
Group 4 0.060 0.030 0.009 0.006 0.414 0.569 0.853 0.801
Group 5 0.069 0.036 0.009 0.006 0.130 0.226 0.853 0.801
Group 6 0.045 0.018 0.009 0.009 0.673 0.391 0.853 0.351
Group 7 0.066 0.042 0.018 0.012 0.199 0.069 0.186 0.125
Group 8 0.042 0.024 0.012 0.006 0.494 0.909 0.721 0.801
Group 9 0.039 0.024 0.009 0.003 0.341 0.909 0.853 0.577
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Table 4.I: Alternative Backtest Results: 10-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.047 0.017 0.003 0.000 0.789 0.326 0.178 NaN
Group 2 0.050 0.027 0.003 0.000 1.000 0.855 0.178 NaN
Group 3 0.070 0.030 0.013 0.010 0.133 0.591 0.581 0.280
Group 4 0.043 0.030 0.007 0.007 0.588 0.591 0.537 0.697
Group 5 0.067 0.030 0.007 0.000 0.207 0.591 0.537 NaN
Group 6 0.053 0.030 0.013 0.010 0.793 0.591 0.581 0.280
Group 7 0.070 0.027 0.017 0.010 0.133 0.855 0.290 0.280
Group 8 0.053 0.027 0.010 0.007 0.793 0.855 1.000 0.697
Group 9 0.043 0.030 0.010 0.007 0.588 0.591 1.000 0.697

Group 10 0.070 0.023 0.010 0.007 0.133 0.852 1.000 0.697

5.6 A Note on the Monthly Forecast Horizon
As shown above, when the target horizon is monthly, a daily frequency is no
longer appropriate for the high frequency level. In the high-low frequency ap-
proach, timescales on both levels are evenly spaced. However, physical months
are of varying lengths (in terms of trading days). We must first find some substi-
tute for the monthly horizon.

Not considering occasional national holidays, each year typically has 260 trad-
ing days and thereby 260/12=21.7 days each month on average. We’ll use 20 or 21
days as the monthly horizon, as they are divisible by reasonable conversion fac-
tors.14 LRT results are presented in Table 5.A through 5.D15. Again, the high-low
frequency model passes the backtests.

14Reasonable conversion factors are those that can effectively reduce reliance on data availabil-
ity without going beyond the limits of GARCH forecasting. For example, the conversion factors
for 22-day horizon can be 2, 11 or 22. Using 11 and 22 risks extrapolating much too far into the
future while choosing 2 means you still need 30 years of data.

15To get enough backtests, the data set is expanded to 1971-2009.
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Table 5.A: Backtest Results: 7-Day to 21-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.054 0.021 0.012 0.012 0.747 0.627 0.725 0.126
Group 2 0.051 0.030 0.018 0.006 0.940 0.575 0.188 0.804
Group 3 0.045 0.018 0.012 0.012 0.664 0.386 0.725 0.126

Table 5.B: Backtest Results: 5-Day to 20-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.060 0.032 0.018 0.008 0.340 0.351 0.110 0.389
Group 2 0.052 0.028 0.012 0.008 0.871 0.695 0.677 0.389
Group 3 0.044 0.026 0.012 0.006 0.504 0.910 0.677 0.769
Group 4 0.054 0.028 0.012 0.008 0.716 0.695 0.677 0.389

Table 5.C: Backtest Results: 4-Day to 20-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.045 0.030 0.018 0.008 0.570 0.460 0.100 0.371
Group 2 0.045 0.026 0.012 0.010 0.570 0.853 0.643 0.157
Group 3 0.051 0.028 0.008 0.006 0.951 0.641 0.660 0.744
Group 4 0.053 0.026 0.016 0.010 0.790 0.853 0.204 0.157
Group 5 0.061 0.030 0.014 0.006 0.289 0.460 0.381 0.744
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Table 5.D: Backtest Results: 3-Day to 21-Day

Violation Ratio p-value
q 0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Group 1 0.041 0.021 0.017 0.013 0.335 0.606 0.161 0.045
Group 2 0.043 0.017 0.011 0.011 0.460 0.246 0.883 0.130
Group 3 0.058 0.021 0.013 0.009 0.456 0.606 0.557 0.323
Group 4 0.058 0.032 0.013 0.006 0.456 0.349 0.557 0.679
Group 5 0.064 0.036 0.017 0.017 0.179 0.141 0.161 0.004
Group 6 0.049 0.032 0.011 0.006 0.932 0.349 0.883 0.679
Group 7 0.038 0.024 0.011 0.009 0.233 0.834 0.883 0.323

5.7 Stability of the Likelihood Ratio Test and Algorithm Speed
VaR estimates based on Monte Carlo simulation are inherently random. If we
run a specific backtest more than once, the number of VaR violations will not be a
fixed number. Will such uncertainty affect the conclusion of likelihood ratio tests?

To investigate this problem, we first backtest a daily VaR forecast using the
fixed frequency method. Since VaR is computed using numerical integration and
root finding, the resulting violation numbers are constant and can be used as a
benchmark. We then replace the VaR forecast step with Monte Carlo simulation as
used in the high-low frequency method, repeat the same backtest again and again
and examine the discrepancy between violation numbers and the benchmark.

As shown in Table 6.A through 6.D, all 20 trials, with either 10K or 25K
simulations, lead to the same conclusion for the likelihood ratio tests. As a matter
of fact, over the entire course, the error in violation count never exceeds 6, which
is a tiny fraction of the 8843 tests16 and also minimal when compared with the
acceptable band17 of likelihood ratio tests. Therefore, we can conclude that when
25K18 simulations are used, the randomness of the violation counts is already

16Using 1971-2009 daily returns.
17Kupiec (1995) provided an extensive survey of the performance of LRT in the context of risk

management.
18Although using 25K simulations reduces both relative error and absolute error in VaR by

about one third as compared to 10K, in terms of average discrepancy and maximum discrepancy,
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Table 6.A: Stability of Violation Counts MC=10K

α 95% 97.50% 99% 99.50%
Benchmark 451 238 91 46

Trial 1 455 244 90 50
Trial 2 445 242 89 47
Trial 3 452 243 92 48
Trial 4 447 244 93 50
Trial 5 450 240 93 49
Trial 6 455 244 90 50
Trial 7 445 242 89 47
Trial 8 452 243 92 48
Trial 9 447 244 93 50

Trial 10 450 240 93 49
Avg Error 3.2 4.6 1.6 2.8
Max Error 6 6 2 4
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Table 6.B: Stability of Violation Counts MC=25K

α 95% 97.50% 99% 99.50%
Benchmark 451 238 91 46

Trial 1 451 239 89 48
Trial 2 445 239 88 47
Trial 3 446 244 88 48
Trial 4 449 238 90 45
Trial 5 446 241 88 51
Trial 6 453 243 94 48
Trial 7 451 242 90 49
Trial 8 451 235 91 50
Trial 9 451 237 92 49

Trial 10 446 241 91 47
Avg Error 2.5 2.7 1.7 2.4
Max Error 6 6 3 5

Table 6.C: VaR Error

Mean Absolute Error* Mean Relative Error
α 95% 97.50% 99% 99.50% 95% 97.50% 99% 99.50%

10K 0.00020 0.00029 0.00049 0.00074 1.30% 1.49% 1.95% 2.51%
25K 0.00013 0.00019 0.00031 0.00047 0.83% 0.95% 1.25% 1.62%
*As compared with the forecast made by the fixed frequency method, with absolute
value taken.
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Table 6.D: Acceptable* Band of LRT

α 95% 97.50% 99% 99.50%
Expected Violation 442 221 89 42

Min Acceptable 403 193 71 32
Max Acceptable 482 250 107 57

*So that p-value>0.05.

immaterial and likelihood ratio test results are stable.
In our experience, filtering a sample of 1000 data with GARCH can be finished

within a second or two.19 It then takes the EM algorithm about 2 minutes20 to cal-
ibrate the skewed t distribution. In the forecast step, depending on the conversion
factor, every 10K simulation costs about 1.5-3 seconds. Since the target horizon
for the high-low frequency approach is at least 2-day, the model is quick enough
to produce a single VaR forecast to any desired accuracy level (by increasing the
number of simulations). When 25K simulations are used, the mean absolute error
and relative error for V aR95% are 0.00013 and 0.83%.

5.8 A Quick Look at Intraday Data
As mentioned earlier, financial data behave similarly on all time intervals. The
entire approach can be readily applied to intraday data. However, as the time in-
terval is shortened to minutes or even seconds, data typically get more noisy and
the order of GARCH filter must be increased to get satisfactory results. To illus-
trate this, we examined a time series of 1-minute returns of a US long term bond
index futures contract over the week of 3/16/2009. Auto-correlation of GARCH
filtering at different orders are shown in Figure 5.A through 5.C.

VaR is not traditionally used for time horizons less than one day, but to illu-

there is not much difference. Still, to be cautious, we performed all backtests listed in tables prior
to Table 6.A using 30K simulations.

19We use a laptop with 2.8GHz CPU and 2GB memory. The software is MATLAB R2007b.
20In backtest, the time spent on calibration can be significantly reduced. Since most data are

overlapping, we can use the parameters from calibration results of the previous period as the initial
values and start from scratch only infrequently, say every 200 days, to avoid overestimation.
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Figure 5.A: ACF for Minute Data using GARCH(1,1)
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Figure 5.B: ACF for Minute Data using GARCH(2,2)
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Figure 5.C: ACF for Minute Data using GARCH(3,3)

minate the possibilities for high-frequency applications, we show multiscale VaR
forecast backtest results for two through five minute horizons, based on the same
intraday data, in Tables 6.A through 6.C below.

We see some rejections of the backtest null hypothesis for GARCH(1,1), but
GARCH(2,2) and GARCH(3,3) behave quite reasonably. Therefore, at least for
this high frequency returns series, intraday VaR forecasts are a viable option with
the multiscale GARCH method. Practitioners should test their own data for suit-
ability of this approach for their own use.
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Table 6.A: Backtest Results (p-values) Using GARCH(1,1)

2-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.349 0.344 0.438 0.050
Group 2 0.059 0.510 0.047 0.114

3-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.317 0.513 0.526 0.392
Group 2 0.264 0.406 0.225 0.196
Group 3 0.177 0.631 0.129 0.022

4-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.552 0.571 0.113 0.094
Group 2 0.096 0.867 0.049 0.020
Group 3 0.465 0.441 0.704 0.263
Group 4 0.317 0.441 0.379 0.871

5-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.354 0.024 0.027 NaN
Group 2 0.036 0.453 0.182 0.055
Group 3 0.036 0.453 0.838 0.508
Group 4 0.881 0.081 0.573 0.885
Group 5 0.530 0.744 0.838 0.508
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Table 6.B: Backtest Results (p-values) Using GARCH(2,2)

2-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.157 0.652 0.583 0.380
Group 2 0.089 0.967 0.917 0.050

3-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.317 0.631 0.526 0.655
Group 2 0.444 0.840 0.526 0.196
Group 3 0.217 0.593 0.225 0.078

4-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.851 0.871 0.113 0.095
Group 2 0.053 0.542 0.113 0.095
Group 3 0.961 0.675 0.585 0.536
Group 4 0.460 0.542 0.222 0.095

5-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.744 0.584 0.079 NaN
Group 2 0.888 0.921 0.349 0.509
Group 3 0.744 0.438 0.349 0.509
Group 4 0.864 0.212 0.183 0.055
Group 5 0.631 0.738 0.840 0.216
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Table 6.C: Backtest Results (p-values) Using GARCH(3,3)

2-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.259 0.752 0.583 0.584
Group 2 0.108 0.323 0.438 0.050

3-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.518 0.513 0.932 0.655
Group 2 0.114 0.593 0.661 0.196
Group 3 0.377 0.712 0.526 0.196

4-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.202 0.871 0.380 0.264
Group 2 0.053 0.973 0.222 0.020
Group 3 0.744 0.675 0.821 0.536
Group 4 0.053 0.542 0.113 0.095

5-Minute Horizon
α 95% 97.5% 99% 99.5%

Group 1 0.350 0.584 0.183 NaN
Group 2 0.764 0.584 0.840 0.055
Group 3 0.864 0.585 0.575 0.738
Group 4 0.631 0.212 0.575 0.216
Group 5 0.094 0.921 0.575 0.216
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6 Further Analysis: Long-Term GARCH and Com-
parisons using Simulated Data

6.1 Long-Term Behavior of GARCH
Results in Section 5.4 suggest that the conversion factor of the high-low frequency
approach cannot be set too high. In this section we discuss the long-horizon be-
havior of GARCH forecasts, in particular, the conditional variances var(Xt+n|Ft)
and var(

∑n
i=1 Xt+i|Ft) as n grows, to find some explanation for such restrictions.

We see below that GARCH forecasts begin to degenerate at long horizons, so that
they are bound to lose their usefulness once n grows too large.

When n > 1 and since E(Z2
t ) = 1, we have, by measurability of σt w.r.t. Ft−1

and independence of Zt from {Fs}s<t,

var(Xt+n|Ft) = E(σ2
t+nZ

2
t+n|Ft) = E

[
E(σ2

t+nZ
2
t+n|Ft+n−1)|Ft

]
= E

[
σ2
t+nE(Z2

t+n|Ft+n−1)|Ft
]

= E(σ2
t+n|Ft).

Using similar arguments and (3.4),

E(σ2
t+n|Ft) = E

[
E(σ2

t+n|Ft+n−2)|Ft
]

= E
[
E(α0 + α1σ

2
t+n−1Z

2
t+n−1 + βσ2

t+n−1|Ft+n−2)|Ft
]

= E
[
α0 + α1σ

2
t+n−1E(Z2

t+n−1|Ft+n−2) + βσ2
t+n−1|Ft

]
= E

[
α0 + (α1 + β)σ2

t+n−1|Ft
]

= α0 + (α1 + β)E(σ2
t+n−1|Ft).

E(σ2
t+n|Ft) = α0 + (α1 + β)E(σ2

t+n−1|Ft) can be transformed into

E(σ2
t+n|Ft)−

α0

1− α1 − β
= (α1 + β)

[
E(σ2

t+n−1|Ft)−
α0

1− α1 − β

]
. (6.1)

Since var(Xt+n|Ft) = E(σ2
t+n|Ft), repeating (6.1) and rearranging terms pro-

duces

var(Xt+n|Ft) =
α0

1− α1 − β
+(α1 +β)n−1

[
E(σ2

t+1|Ft)−
α0

1− α1 − β

]
, (6.2)

where
E(σ2

t+1|Ft) = σ2
t+1 = α0 + α1σ

2
tZ

2
t + βσ2

t

as σt and Zt are already observed at time t.
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This shows that the conditional variance will converge to the unconditional
variance α0

1−α1−β as the second term in (6.2) decays geometrically (we have previ-
ously assumed α1 + β < 1 for the sake of covariance stationarity). That is, the
variance forecast is eventually completely insensitive to the current information at
time t.

We next compute the conditional variance var(
∑n

i=1Xt+i|Ft). By similar ar-
guments as in (3.1), it can be shown that cov(Xt+iXt+j|Ft) = 0 when i 6= j.
Therefore,

var(
n∑
i=1

Xt+i|Ft) =
n∑
i=1

var(Xt+i|Ft). (6.3)

Further algebra based on (6.2) yields

var(
n∑
i=1

Xt+i|Ft) =
nα0

1− α1 − β
+

1− (α1 + β)n

1− α1 − β

[
E(σ2

t+1|Ft)−
α0

1− α1 − β

]
,

(6.4)
which implies that when n is large so that (α1 + β)n is close to 0, the conditional
variance will grow linearly in n.

Consider var(
∑n

i=1Xt+i|F [1]
t ) and var(

∑n
i=1Xt+i|F [2]

t ), a pair of conditional
variances with the same GARCH parameter α0, α1 and β but different initial
volatility E(σ2

t+1|F
[1]
t ) = σ

[1]
t+1 and E(σ2

t+1|F
[2]
t ) = σ

[2]
t+1. Their difference is given

by
1− (α1 + β)n

1− α1 − β

[
σ

[1]
t+1 − σ

[2]
t+1

]
, (6.5)

which grows/decays nonlinearly at first but ultimately becomes almost a constant.
A constant gap between var(

∑n
i=1 Xt+i|F [1]

t ) and var(
∑n

i=1 Xt+i|F [2]
t ) means the

power of the difference in the conditioning information σ[1]
t+1 and σ[2]

t+1 to influence
the variance of the sum

∑n
i=1Xt+n has reached its limit.

We expect these results about the variance of sums of high frequency returns
to carry over to similar results about VaR. Since the analysis for VaR is more
difficult, we instead illustrate the results for VaR via simulation. That is, we fix
initial values of σt and Xt, set n = 250, and compute via MC simulation two
sequences of length 250: the conditional variances analyzed above

{var(
n∑
i=1

Xt+i|Ft)}250
n=1,
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and the conditional values-at-risk

{V aR95%(
n∑
i=1

Xt+i|Ft)}250
n=1.

Not surprisingly, we found that they are closely correlated with correlation ρ ≈
0.98 for a variety of choices of initial conditions. This supports our expectation
that the conditional VaR will behave similarly to the conditional variance.

The analog of equation (6.5) for VaR is illustrated by the initially widening
and then almost constant gap between the curves in Figure 6, which plots simu-
lated conditional VaR as a function of n for two different initial values of σt and
Zt

21. The resulting conditional VaR of n-day returns as an asymptotically linear
function of the time horizon n is obviously unrealistic and therefore should fail
backtests with real data for large enough n.
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Figure 6: Comparison of {V aR95%(
∑n

i=1Xt+i|Ft)}250
n=1 via simulation, for two

different initial GARCH volatilities
21µ0 = 0, α0 = 0.00005, α1 = 0.04, β = 0.95; σ[1]

t = 0.08, Z [1]
t = 0.375; σ[2]

t = 0.05,
Z

[2]
t = 0.25.
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Results for general GARCH(p,q) are similar. By similar arguments, the itera-
tive equation for the conditional variance of the GARCH(p,q) process is

E(σ2
t+n|Ft)−

α0

1−
∑p

i=1 αi −
∑q

j=1 βj

=

max(p,q)∑
k=1

(αk + βk)

[
E(σ2

t+n−k|Ft)−
α0

1−
∑p

i=1 αi −
∑q

j=1 βj

]
,

(6.6)

where αk = 0 if k > p and βk = 0 if k > q.
Denote Yk = E(σ2

t+k|Ft) −
∑p

i=1 αi −
∑q

j=1 βj and d = max(p, q), then an
array of iterative equations in the form of (6.6) can be rewritten in matrices: Yn

...
Yn−d+1

 = A

 Yn−1
...

Yn−d

 = · · · = An−d

 Yd
...
Y1

 , (6.7)

where

Aij =


αi + βi if i = j,

1 if i = j + 1,
0 otherwise.

The lower diagonal matrixA can be diagonalized and thenAn−d will be be straight-
forward to compute. Each term in the initial vector can be calculated through the
known observations {σt−i, Zt−i}d−1

i=0 . Again, thanks to the covariance stationar-
ity condition

∑p
i=1 αi +

∑q
j=1 βj < 1, the conditional variance will converge to

α0/(1−
∑p

i=1 αi −
∑q

j=1 βj), the unconditional variance.

6.2 High-Low vs Fixed Frequency with Abundant Data
So far, the high-low frequency approach has been used to reduce reliance on data
availability. What if data is in plentiful supply? Will it still be a worthy alterna-
tive?

Within a fixed time range, the high-low frequency approach utilizes at least
twice as much data as the fixed-frequency approach. Intuitively, this may reveal
information not previously captured.

Suppose we have a sequence of n-day negative log returnsX(L)
1 , ..., X

(L)
T

22 and
the calibrated distribution of the filtered data (i.e., innovations Z(L)

t ) is skewed t
22L stands for low frequency and H stands for high frequency.
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with parameters (ν, µ, γ, σ). SinceX(L)
T+1 = µ0 +σT+1Z

(L)
T+1 and σT+1 is a constant

at time T , by Proposition 2.5:

X
(L)
T+1 ∼ SkewT (ν, µ0 + σT+1µ, σT+1σ, σT+1γ).

On the other hand, if we use the high-low frequency approach based on daily
data on the same period X(H)

1 , ..., X
(H)
nT , the distribution of the next n-day return

can be determined by simulating the sum X
(H)
nT+1 + ...+X

(H)
nT+n.

Since both X(L)
T+1 and X(H)

nT+1 + ... + X
(H)
nT+n denote the negative log return in

the same period, we can compare the fixed and high-low frequency approach by
plotting the skewed t density of X(L)

T+1 and the density function23 of the simulated
X

(H)
nT+1 + ... + X

(H)
nT+n for various values of T in our standard S&P500 data time

series. See Figures 7.A, 7.B, 7.C and 7.D.
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Figure 7.A: Forecast pdf for a 2-Day Negative Log Return on Day 4740 (S&P500
Daily Data)

The difference between fixed-freq density and high-low freq density does not
shown any predictable pattern. The high-low freq density can have higher peaks
and thinner tails (Figure 7.A), but the reverse can also be true (Figure 7.B). Fur-
ther, such reversal can be quite volatile. Figure 7.B happens only 10 days (2
weeks) after Figure 7.A, a tiny lag given the 3750 daily (750 weekly) returns used
for calibration.

23Using a kernel smoothing method.
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Figure 7.B: Forecast pdf for a 2-Day Negative Log Return on Day 4750 (S&P500
Daily Data)
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Figure 7.C: Forecast pdf for a 4-Day Negative Log Return on Day 4740 (S&P500
Daily Data)
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Figure 7.D: Forecast pdf for a 5-Day Negative Log Return on Day 4740 (S&P500
Daily Data)

As time horizon increases, the difference in densities does not widen steadily.
For example, there can be greater deviation under 4-day horizon (Figure 7.C)
than 2-day (Figure 7.A). However, 5-day densities (Figure 7.D) can be hardly
distinguishable.

To further explore their relationship in the long run, we re-examined our S&P500
daily returns series for the years 1971-200924. After a lead-in period of 750 weeks
for fitting the parameters, we made weekly VaR forecasts for the next 1200 weeks,
using both the fixed frequency method with a weekly horizon and the high-low
frequency method based on daily data.

We have the following observations from Table 6 and Figure 8.

• Daily-based forecasts and weekly-based forecasts are closely correlated,
with ρ ≈ 0.92. As a result, their long-term trends are roughly the same.

• Less than 10% of the weekly-based forecasts fall within the 95% confidence
interval of daily-based forecast. So the difference between the two methods
are statistically significant.

24VaR forecasts in this study have to be for non-overlapping weeks to make violation indicators
independent. Therefore, we again expand our data set.
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Table 6: V aRFixed vs V aRHL: Weekly Forecasts, 1971-2009

α 95% 97.5% 99% 99.5%
Violations of V aRFixed 62 34 15 8
Violations of V aRHL 60 32 17 10

Simultaneous Violations 50 25 12 5
V aRFixed outside 95% confidence interval* 1108 1103 1112 1099
V aRFixed inside 95% confidence interval 92 97 88 101

Correlation of V aRFixed and V aRHL 0.918 0.917 0.916 0.913
Variance of V aRFixed 0.0003 0.0004 0.0007 0.001
Variance of V aRHL 0.0005 0.0008 0.0012 0.0016

*Of V aRHL.
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Figure 8: V aRFixed vs V aRHL: Weekly Forecasts for S&P500 returns, 1971-
2009. Week 0 in the figure corresponds to the 750th week after Jan. 1, 1971.
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• Both models have passed the backtest, so unsurprisingly they record ap-
proximately the same number of VaR violations. However, the timings of
these violations are different. More than 85% of V aR95% violations arrived
simultaneously while the rate declines to 60% at the 99.5% level.

• Daily-based forecasts are more volatile, magnifying the fluctuations in weekly-
based forecasts.

When we take the fixed-frequency approach, GARCH is applied on the weekly
scale. Correspondingly, what’s most directly responsible for the VaR forecasts
is the return and volatility of the previous week.25 Similarly, when GARCH is
applied on the daily scale, as in the high-low frequency method, VaR forecasts are
most susceptible to the previous day, not week.

Daily return/volatility and weekly return/volatility are bound to be correlated
and exhibit similar patterns when viewed globally. However, having less time to
smooth out or recover from extreme events, daily data are more volatile and will
give rise to steeper ups and downs as well as forecasts different from the weekly-
based ones.

This last feature makes high-low frequency method a quicker responder to
volatility changes. For example, if volatility starts to rise only in the last week
of a particular month, its severity may be dampened by the first three good or
uneventful weeks. By paying more attention to the most recent week, the high-low
frequency model will have a better chance to detect this signal which is otherwise
masked in a fixed monthly horizon.

Admittedly, the opposite situation can can also happen, especially when the
conversion factor between high and low frequencies is too large. For example,
a daily return/volatility may hardly reflect what’s actually happening in an entire
month. Despite the possibility of false alarms, high-low frequency approach can
at least offer an alternative view of risk. If a risk manager intends to be more
cautious, he may implement both models and pick the VaR forecast that is higher.

25Since the innovation terms in a GARCH process are SWN(0,1), the filtered returns will ap-
proximately have mean 0 and variance 1. Even though the calibration of skewed t distributions pro-
duces different parameters as time evolves, the scale of these distributions will not differ greatly.
As a result, σt+1 in the de-filtering/forecasting equation Xt+1 = µ0 + σt+1Zt+1 is the most
decisive factor for the scale (i.e., variance) of Xt+1 and consequently the size of VaR.

63



6.3 A Simulated Weekly Returns Scenario
To illustrate the potential advantage of the high-low frequency approach, we’ll
compare the two methods using simulated data.26 A weekly returns time series
is simulated using GARCH, the parameters of which are derived from historical
S&P500 weekly returns. The total length of the simulated series is 1950 months.
The first 750 months are used as history to make the first monthly VaR forecast
starting at month 751. We then make a series of 1200 monthly VaR forecasts us-
ing both the fixed frequency (monthly horizon) and high-low frequency (weekly-
monthly) methods.27 Additionally, now that the weekly return process is strictly
GARCH, we can nail down the true values of each monthly VaR, again using MC
simulation.

As pointed out earlier, the size of VaR is closely related to return volatilities
in previous periods, which we’ll measure in four ways:

• Standard deviation of weekly returns in the previous month. (MonthlyStd)

• Sum of absolute values of weekly returns in the previous month. (AbsMonthly)

• Average of weekly volatilities in the previous month. (V olAvg)

• Standard deviation of weekly volatilities in the previous month. (V olStd)

Table 7.A presents correlations between V aRTrue, the true monthly VaR;
V aRHL, the VaR computed using the high-low frequency method; V aRFixed, the
VaR computed using the fixed frequency method; and the four volatility measures.
It shows:

• Among the proposed volatility measures, V olAvg is most closely related to
V aRTrue.

• V aRHL are almost perfectly correlated to both V aRTrue and V olAvg.

• The correlations between V aRFixed and all four volatility measures are
weaker than those of V aRHL.

Table 7.B, 7.C and Figure 9.A study errors and show:

26Direct comparison of model performance in terms of error size is impossible when historical
data is used, as we do not the know the “true” VaR.

27We’ll only examine V aR95% in this section.
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Table 7.A: Comparison using Simulated Weekly Data: Correlations Part I

V aRTrue V aRHL V aRFixed V olAvg V olStd AbsMonthly MonthlyStd

V aRTrue 1 0.9937 0.7887 0.9886 0.4626 0.6098 0.5960
V aRHL 1 0.7867 0.9860 0.4506 0.5968 0.5807
V aRFixed 1 0.7791 0.3683 0.4568 0.4443
V olAvg 1 0.5195 0.6565 0.6386
V olStd 1 0.6424 0.6577

AbsMonthly 1 0.9262
MonthlyStd 1

Table 7.B: Comparison using Simulated Weekly Data: Correlations Part II

V olAvg V olStd AbsMonthly MonthlyStd

Error* of V aRHL 0.1804 0.0358 0.0364 0.0187
Error of V aRFixed -0.4452 -0.1996 -0.3127 -0.3042
*Error = (Estimate-True) / True.

Table 7.C: Comparison using Simulated Weekly Data: Error

Mean of Absolute Error* Std
Error of V aRHL 0.0022 0.0025

Error of V aRFixed 0.0091 0.0128
*With absolute value taken.
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Figure 9.A: Error Comparison of V aRFixed and V aRHL
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Figure 9.B: Error Comparison of V aRFixed and V aRHL (Detail, centered at
month 1025)
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• Relative errors of V aRFixed are negatively correlated to all four volatil-
ity measures. Graphically (Figure 9.A), errors tend to be negative when
V olStd rises and vice versa. In other words, the fixed frequency approach
underestimates VaR when volatility surges and overestimates VaR when
volatility subsides.

• The correlation between relative errors of V aRHL and V olStd,AbsMonthly
is minimal, which shows that the accuracy of the high-low frequency ap-
proach is relatively immune to volatility changes.

• Absolute errors of V aRHL have significantly lower mean and standard de-
viation compared to absolute errors of V aRFixed.

At the 1044th month (see Figure 9.B), V aRtrue for the next month is 22.43%,
almost the global maximum in our entire 1200 simulated months (the global max-
imum V aRtrue is 22.65%). If we zoom in on the time leading to that month (Fig-
ure 9.B), we can see that both V olAvg and V olStd have been increasing since the
1035th month and approaching their respective global maximum as well. During
this “chaotic” period, the gap between V aRfixed−V aRtrue and V aRHL−V aRtrue

is widening steadily. As a result, V aRfixed is merely 14.78%, seriously underes-
timated. In contrast, V aRHL, at 23.22%, is much closer to V aRtrue.

6.4 A Simulated Daily Returns Scenario
It can be argued that the simulated weekly GARCH process has an unfair ad-
vantage in the above comparison, since the weekly simulation frequency matches
the weekly high frequency horizon in our high-low frequency approach. To ad-
dress28 such bias, we’ll simulate a daily GARCH process, aggregate daily re-
turns into weekly returns and then repeat our earlier experiment using the same
weekly/monthly horizons.

As shown by Table 8.A through 8.C, the high-low frequency method still beats
the fixed frequency method by displaying stronger correlation with volatility mea-
sures and lower errors. However, now that the GARCH mechanism operates on
the daily level, filtering the weekly returns with GARCH won’t perfectly capture
the varying volatilities. As a result, correlations between errors of V aRHL and

28Completely eliminating this bias is impossible since you cannot simulate a monthly GARCH
process and then split it into weekly returns for the high-low frequency method to work on.
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Table 8.A: Comparison using Simulated Daily Data: Correlations Part I

V aRTrue V aRHL V aRFixed V olAvg V olStd AbsMonthly MonthlyStd

V aRTrue 1 0.8647 0.6339 0.9475 0.5810 0.7308 0.6848
V aRHL 1 0.7659 0.8746 0.4639 0.8233 0.7752
V aRFixed 1 0.6697 0.3470 0.5419 0.3892
V olAvg 1 0.5318 0.6881 0.6378
V olStd 1 0.3739 0.3590

AbsMonthly 1 0.8938
MonthlyStd 1

Table 8.B: Comparison using Simulated Daily Data: Correlations Part II

V olAvg V olStd AbsMonthly MonthlyStd

Error of V aRHL -0.4029 -0.3368 -0.0750 -0.0659
Error of V aRFixed -0.6181 -0.4151 -0.4516 -0.5116

Table 8.C: Comparison using Simulated Daily Data: Error

Mean of Absolute Error Std
Error of V aRHL 0.0074 0.01

Error of V aRFixed 0.0114 0.0155
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volatility measures turn negative. Still, the magnitude of those negative correla-
tion coefficients are smaller than what the fixed frequency method can offer.

Since the stylized facts pervade all scales of financial data, the high-low fre-
quency approach will always uncover volatility changes ignored by the coarser
fixed frequency method and thus be a quicker responder. These simulated data
studies refer to “weeks” and “months”, but the timescales are in fact arbitrary so
long as they are adequately modeled by a GARCH process. The practitioner need
only take care that the conversion factor between the two time scales not be too
large.

7 Conclusion
Financial returns are fat-tailed, heteroskedastic, and exhibit serial dependence. To
make a risk forecast based on historical returns, we need to remove the serial
dependence and calibrate a fat-tailed distribution to the filtered series. This is ac-
complished using GARCH as a filter, and GH distributions, notably the skewed t
distribution, for calibration. This approach is successful provided we have suffi-
cient data for the calibration.

The focus of the paper has been to examine a way to use higher frequency data
to form a lower frequency risk forecast by using the calibrated GARCH process to
forecast the intermediate time steps. When the ratio between the long horizon and
the short horizon is no more than about ten, this works well in our studies based
on S&P500 daily returns, and for simulated data.

Risk managers making fixed-horizon risk forecasts should consider this mul-
tiscale method because

• by reducing the required lead-in period by at least a factor of two, it makes
forecasts possible for a security with a history otherwise too short to train
the GARCH filter and the skewed t distribution,

• it enables the removal of outdated and thus irrelevant data in earlier periods,

• the greater abundance of higher frequency data makes statistical estimation
more robust and more stable numerically, and

• risk forecasts will be quicker to react to changing conditions, for example
by better reflecting a change in the volatility regime that might occur late in
the previous period.
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All the results reported here pertain to the one-dimensional case of returns of
a single index; naturally it will be important to carry out a similar investigation in
the multi-dimensional case of portfolios ofN assets. In that case, the forecast will
be a forecast of the N -dimensional distribution of the N -vector of all the asset
returns, from which the portfolio return is obtained, as usual, as an inner product
with the vector of portfolio holdings. The full N -dimensional fitted distribution
of returns will be required for typical portfolio optimization applications. This is
the subject of subsequent research.
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