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Abstract. The classical Morse-Sard Theorem says that the set of critical values

of f : Rn+k → Rn has Lebesgue measure zero if f ∈ Ck+1. We show the Ck+1

smoothness requirement can be weakened to Ck+Zygmund. This is corollary to the

following theorem: For integers n > m > r > 0, let s = (n− r)/(m− r); if f : Rn →
Rm belongs to the Lipschitz class Λs and E is a set of rank r for f , then f(E) has
measure zero.

0. Introduction

Let f : Rn → Rm be a differentiable function. Must the set of critical values of f
have measure zero? The answer is “yes” provided that f is sufficiently smooth, and
the classical theorem in this regard is the Morse-Sard theorem (often called simply
“Sard’s theorem” — A.P. Morse [6] proved the theorem in 1939 for the real-valued
case; A. Sard [10] then extended that result to the vector-valued case.)

To state the theorem, we need some terminology. For f as above, a point x ∈ Rn

is called a critical point if the linear mapping Df(x) is not surjective; a critical value
is the image under f of a critical point. The set of all critical values is a subset of
the target space Rm.

The Morse-Sard Theorem. [6,10]. Let f : Rn → Rm be of class Ck.
If k ≥ max{n−m+1, 1}, then the set of critical values of f has Lebesgue measure

zero.

We henceforth restrict our attention to the case n > m; smoothness is not an
issue when n ≤ m. (In fact even measurability is not required if n ≤ m. See
Varberg [12].)

Prior to Morse’s work, H. Whitney had established in a famous paper [13] that
some differentiability requirement is necessary by constructing an example of a
C1 function f : R2 → R not constant on a connected set of critical points (and
hence having a nontrivial interval of critical values). This example, and related
ones in higher dimensions, shows that the smoothness hypothesis of the Morse-
Sard theorem is sharp to the extent that one cannot replace the integer n−m+ 1
by any smaller integer. In fact, more is true: for every n,m with n > m > 0 there
is a function f ∈

⋂
α<1 Cn−m,α(Rn,Rm) whose critical value set contains an open

set [2,8].
(Notation: for α ∈ [0, 1), k a nonnegative integer, we say f ∈ Ck,α(Rn,Rm) if

f : Rn → Rm is of class Ck and the kth derivative Dkf locally satisfies a Hölder
condition with exponent α. We say f ∈ Ck,1(Rn,Rm) if the kth derivative is locally
Lipschitz.)
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2 ALEC NORTON

This paper addresses the question of whether the Morse-Sard theorem holds true
for any natural smoothness class weaker than Cn−m+1. Because of the examples
mentioned above, there is very little room for improvement. Nevertheless, S. Bates
[1] has recently improved the statement to

The Lipschitz Morse-Sard Theorem (Bates). Let n,m be positive integers
with n > m. If f ∈ Cn−m,1(Rn,Rm) then the set of critical values of f has
Lebesgue measure zero.

Even weaker than the Lipschitz class is the so-called Zygmund class, defined as
follows. We say that f : Rn → Rm is Zygmund if it is continuous and for every
compact set K ⊂ Rn, there is a constant C such that if x, x+ h, and x− h belong
to K, then

|f(x+ h) + f(x− h)− 2f(x)| ≤ C|h|.
We say that f ∈ Ck,Z(Rn,Rm) if f is Ck and all of the kth partial derivatives

of f are Zygmund.
For basic properties of the Zygmund class, see [5] or [11]. This class is very well

known in harmonic analysis, and in fact there is a strong case (see [5]) that for
many purposes in analysis the class Ck,Z is more natural than the classical class
Ck+1. This class also arises naturally in certain dynamical systems settings, e.g.
[9].

It will be slightly more convenient for us to use the “Lipschitz spaces” Λs of
harmonic analysis, defined as follows.

If 0 < s < 1, then f ∈ Λs(Rn,Rm) if f : Rn → Rm is continuous and

||f ||s ≡ sup
x∈Rn

|f(x)|+ sup
x,h∈Rn

|f(x+ h)− f(x)|/|h|s <∞.

We say f ∈ Λ1 if f is continuous and

||f ||1 ≡ sup
x∈Rn

|f(x)|+ sup
x,h∈Rn

|f(x+ h) + f(x− h)− 2f(x)|/|h| <∞.

Inductively, for s > 1, we say f ∈ Λs(Rn,Rm) if f ∈ Ck(Rn,Rm), where k is
the largest integer less than s, and

||f ||s ≡ ||f ||s−1 +
n∑
j=1

|| ∂f
∂xj
||s−1 <∞.

Note that the space Ck,Z is locally equivalent to Λk+1 in the sense that any
function in one of these spaces agrees on any bounded neighborhood with a function
in the other. Similarly for the spaces Ck,α and Λk+α. Since the Morse-Sard theorem
is a local theorem, we are free to use either class. (The Lipschitz classes are more
convenient for Theorem 2 since they free us from having to state the integer and
noninteger cases separately.)

For any positive integer k, and 0 < α < β < 1, the following inclusions are
well-known:

Ck+1
$ Ck,1

$ Ck,Z $
⋂
γ<1

Ck,γ $ Ck,β $ Ck,α $ Ck.

In terms of the Lipschitz classes, if 0 < s < t, then

Λt $ Λs.

The object of this paper is to prove
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Theorem 1 (Zygmund Morse-Sard Theorem). Let n,m be positive integers
with n > m. If f ∈ Cn−m,Z(Rn,Rm) then the set of critical values of f has
Lebesgue measure zero.

This implies both the classical and Lipschitz Morse-Sard theorems.
In 1953, Dubovickii [3] proved that if f : Rn → Rm is (n − m + 1)-times

differentiable, then the set of its critical values has measure zero. Since differentiable
functions need not be Zygmund, this is neither weaker nor stronger than theorem
1. However we note that a Zygmund function can be nowhere differentiable — e.g.
the Weierstrass function f(x) =

∑
2−k sin(2kx).

Definition. A subset E of Rn is a set of rank r for f if rankDf(x) ≤ r for all
x ∈ E.

Theorem 1 is an immediate consequence of

Theorem 2. Let n,m, and r be nonnegative integers and suppose n > m > r. Let
E be a set of rank r for f : Rn → Rm, and set s = (n− r)/(m− r).

If f ∈ Λs, then f(E) has measure zero.

Remarks.
1. Theorem 1 follows from Theorem 2 by setting r = m− 1.
2. Bates [1] proved theorem 2 in the case when s is not an integer, making use of

a slightly weaker version of the noninteger case in [7].
3. The simple form of theorem 2 is further evidence that the Lipschitz spaces Λs

are more natural than the smoothness classes Cs for geometric analysis.
The idea of approach to Theorem 2 in the case when s is an integer will be to

follow the path of Morse and Sard within the Zygmund class. The key geometric
lemma, stated below, permits us to obtain the same estimates as in the Lipschitz
case. Then applying an idea of Bates to promote a “big oh” estimate to a “little
oh” estimate will complete the proof.

Geometric Lemma. If f : Rn → Rm is Zygmund with Zygmund constant C > 0,
and f(a) = f(b) = 0, then for all points x belonging to the line segment joining a
to b,

|f(x)| ≤ (C/2)|b− a|.
In Section 1 we present basic facts about the class Ck,Z needed in the sequel

(relegating the proof of a sharp Composition Theorem to Section 5). Section 2
contains the fundamental Morse Criticality Theorem for the spaces Λs. This is
used in Section 3 to prove Theorem 2 in the special case of rank r = 0. Then in
Section 4 we use induction and Fubini’s Theorem to arrive at the general case.

Acknowledgement. The author thanks S. Bates, P. Jones, S. Krantz, and D. Sullivan
for helpful comments.

1. Basic properties of the Zygmund class

This section contains proofs of basic facts about the class Ck,Z that we will need
in proving a Zygmund version of the Vanishing Lemma (see Section 2).

We will frequently use the fact that every Zygmund function f has at least a
|t| log(1/|t|) modulus of continuity (e.g. [5]): for every compact set K, there is a
constant C > 0 such that for all x ∈ K, |f(x+ t)− f(x)| ≤ C|t| log(1/|t|) for all t
such that 0 < |t| < 1. Consequently a Zygmund function is always α-Hölder for all
α < 1.
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Product Lemma. If f, g : Rn → R are of class Ck,Z , k ≥ 0, then so is the
product fg.

Proof. First let k = 0. For t ∈ Rn and i = 1, 2, define the first and second difference
operators

∆i
t : C0(Rn,R)→ C0(Rn,R)

by ∆1
tf(x) = f(x + t) − f(x − t), and ∆2

tf(x) ≡ ∆1
t∆

1
tf(x) = f(x + 2t) + f(x −

2t)− 2f(x). Note that f is Zygmund if and only if ∆2
tf = O(|t|) as |t| → 0.

Fix t and let T±(x) = x± t.
One can check that

∆1
t (fg) = (∆1

tf)(g ◦ T−) + (∆1
t g)(f ◦ T+)

and

∆2
t (fg) = f(∆2

t g) + g(∆2
tf) + [(∆1

tf)(∆1
t g)] ◦ T+ + [(∆1

tf)(∆1
t g)] ◦ T−.

Now if f and g are Zygmund, the first two terms are O(|t|), and the third term
is also O(|t|) because it is a product of two factors, each of which is O(|t|α) for
α > 1/2.

This completes the proof for k = 0. The statement follows for k > 0 by induction
from the product rule for differentiation. �

The classes C0,Z and Λ1 are unfortunately not closed under composition. In
fact, even the composition of a Zygmund function with a C1 function need not be
Zygmund (see Section 5). However, if C1 is strengthened to C1,α, we obtain the
following statement, sufficient for the purposes of this paper:

Composition Lemma. For every m,n, p ∈ Z+ and α ∈ (0, 1),
(a) C0,Z(Rn,Rm) ◦ C1,α(Rp,Rn) ⊂ C0,Z(Rp,Rm), and
(b) for every k ∈ Z+, Ck,Z(Rn,Rm) ◦ Ck,Z(Rp,Rn) ⊂ Ck,Z(Rp,Rm).

Proof.
(a) This is an immediate corollary of the sharper Composition Theorem of Sec-

tion 5.
(b) This follows by induction using the chain rule, part (a), and the Product

Lemma above.

Dennis Sullivan pointed out to the author that if f is Zygmund and g is C1,
then f ◦ g is Zygmund provided only that Dg satisfies a 1/ log(1/t) modulus of
continuity, and this is sharp in the sense that no weaker modulus of continuity
suffices. Discussion of these technicalities and the statement and proof of a sharp
Composition Theorem are relegated to Section 5.

Zygmund Inverse Function Theorem. If f ∈ Ck,Z(Rn,Rn), k ≥ 1, x ∈ Rn,
and Dfx is a linear isomorphism, then f is invertible in a neighborhood of x and
f−1 is of class Ck,Z .

Proof. The standard proof shows that f−1 exists near f(x), is Ck, and satisfies

D(f−1) = Inv ◦Df ◦ f−1,
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where Inv denotes the inverse operator on GL(n). In fact, for any α ∈ (0, 1), f−1

is Ck+α by the Ck+α Inverse Function Theorem [7]. Therefore, since Inv is C∞,
Df is Ck−1,Z , and f−1 is Ck+α, the Composition Lemma implies that D(f−1) is
Ck−1,Z . �

Combining this with the Ck+α Inverse Function Theorem [7], we obtain the
general

Λs Inverse Function Theorem. If f ∈ Λs(Rn,Rn), s > 1, x ∈ Rn, and Dfx
is a linear isomorphism, then f is invertible in a neighborhood of x and f−1 is of
class Λs.

Many standard arguments now go through easily in the Zygmund class, e.g. the

Zygmund Preimage Theorem. If k ≥ 1, f ∈ Ck,Z(Rn,R), x ∈ Rn, f(x) = 0,
and Df(x) 6= 0, then there is a neighborhood N of x in Rn and a Ck,Z (n − 1)-
submanifold S ⊂ Rn such that

f−1(0) ∩N ⊂ S.

Proof. Use the standard argument (e.g. [4]) with the Zygmund Inverse Function
Theorem.

To finish this section, we restate and prove the

Geometric Lemma. If f : Rn → Rm is Zygmund with Zygmund constant C > 0,
a, b ∈ Rn, and f(a) = f(b) = 0, then for all points x belonging to the line segment
[a, b] joining a to b,

|f(x)| ≤ (C/2)|b− a|.

Proof. We are supposing that for all x, h ∈ Rn,

|f(x+ h) + f(x− h)− 2f(x)| ≤ C|h|.

If I is a line segment with endpoints y and z and midpoint x, this implies that

(1) |f(x)| ≤ C|I|/4 + (|f(y)|+ |f(z)|)/2.

Let L = |b − a|. For k = 0, 1, 2, . . . , consider the collection Ck of closed dyadic
subintervals of [a, b], i.e. intervals with endpoints a + (p/2k)(b − a) and a + ((p +
1)/2k)(b− a), where p is an integer between 0 and 2k − 1.

Define B0 = {a, b}, and for k = 1, 2, 3, . . . , define Bk to be the finite set of points
x in [a, b] such that x is an endpoint of an interval of Ck but is an endpoint of no
interval of Cj for any j < k. (Bk is the set of endpoints that “arise at stage k”.)

Claim: For all x ∈ Bk, |f(x)| ≤ CL(1− 2−k)/2.
We prove the claim below, but first note that this implies |f(x)| ≤ CL/2 for all

x in the dense set ∪kBk. Since f is continuous, this yields the conclusion of the
Geometric Lemma.

The claim is proved by simple induction. The case k = 0 is simply our hypothesis
that f(a) = f(b) = 0. Let k > 0 and suppose that for j = 0, 1, 2, . . . , k − 1,

|f(y)| ≤ CL(1− 2−j)/2 for all y ∈ Bj .
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Take x ∈ Bk. Then x is the midpoint of some dyadic interval of length L2−(k−1),
with endpoints, say, x′ and x′′. By (1) above,

|f(x)| ≤ CL/2k+1 + (|f(x′)|+ |f(x′′)|)/2.

By induction, since x′ and x′′ must appear at some stage before the kth, |f(x′)|
and |f(x′′)| are no more than CL(1− 2−(k−1))/2. Therefore

|f(x)| ≤ CL/2k+1 + CL(1− 2−(k−1))/2

= CL(1− 2−k)/2.

�

2. A Zygmund version of the Morse Criticality Lemma

In this section we take the fundamental step in the proof of Theorem 2 by proving
the

Morse Criticality Theorem. Let s ≥ 1 be a real number, n ∈ Z+, A ⊂ Rn.
Then there is a countable collection {Ai} of bounded subsets of A such that

(i) A = ∪Ai, and
(ii) for every f ∈ C1 ∩Λs(Rn,R) critical on A, and every i, there is a constant

ci > 0 such that

for every x, y ∈ Ai, |f(x)− f(y)| ≤ ci|x− y|s.

In case s = 1 or s /∈ Z+, this theorem appears in [7]. The only remaining case is
the

Zygmund Morse Criticality Lemma. Let n, k be positive integers and A a
subset of Rn. Then there is a countable collection {Ai} of bounded subsets of A
such that

(i) A = ∪Ai, and
(ii) for every f ∈ Ck,Z(Rn,R) critical on A and every i, there is a constant

ci > 0 such that

for every x, y ∈ Ai, |f(x)− f(y)| ≤ ci|x− y|k+1.

This will be a direct consequence of the following lemma.

Definitions. We will say that the pair (B,φ) is a C1 parametrized disk in Rn if
for some integer p, 1 ≤ p ≤ n, φ is a C1 embedding of Rp into Rn and φ(∆) = B,
where ∆ is the closed unit ball in Rp.

Given such a parametrized disk (B,φ), and two points x, y ∈ B, the parametric
segment in B from x to y is defined to be the image under φ of the line segment
joining φ−1(x) to φ−1(y).
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Zygmund Morse Vanishing Lemma. Let n be a positive integer, k a non-
negative integer, and A a subset of Rn. Then there exists a countable set A0, a
countable collection {Ai}∞i=1 of bounded subsets of Rn, and a countable collection
{(Bi, φi)}∞i=1 of C1 parametrized disks in Rn such that

(i) A = ∪∞i=0Ai,
(ii) for each i ∈ Z+, Ai ⊂ Bi, and
(iii) For every f ∈ Ck,Z(Rn,R) vanishing on A, and every i ∈ Z+, there is a

positive constant ci such that

|f(z)| ≤ ci|x− z|k|x− y|

whenever x, y ∈ Ai and z lies on the parametric segment in Bi from x to y.

We will call such a collection {Ai} for a set A a Morse decomposition of A.

Proof.
The proof is by double induction on n and k. Let 〈n, k〉 stand for the statement

of the theorem for Rn and Ck,Z . We will prove (a) 〈n, 0〉 for all n, (b) 〈1, k〉 for all
k, and (c) 〈n− 1, k〉 and 〈n, k − 1〉 imply 〈n, k〉.

(a) Proof of 〈n, 0〉 for all n.
If A ⊂ Rn, let A0 = ∅, Bi be the closed ball in Rn with center 0 and radius i,

φi be the linear expansion x 7→ ix on Rn, and Ai = A ∩Bi.
Given f ∈ Ck,Z(Rn,R) vanishing on A, for each i take ci to be the Zygmund

constant of f for the compact set Bi. The conclusion follows immediately from the
Geometric Lemma of Section 1.

(b) Proof of 〈1, k〉 for all k.
Let A be a subset of R. Denote by A∗ the set of condensation points of A; that

is, A∗ is the set of points x in A such that every neighborhood of x meets A in
uncountably many points. It is easy to show that A0 ≡ A \A∗ is countable.

Now for i > 0 let Ai = A∗ ∩ (−i, i), Bi = [−i, i], and φi be the linear expansion
by factor i. Given f ∈ Ck,Z(R,R), let c′i be the Zygmund constant of Dkf for the
compact set Bi.

Since every point of Ai is a limit point of Ai, and f ∈ C1 vanishes on Ai, Df
must vanish at every point of Ai. Similarly, D2f,D3f, . . . , Dkf all vanish on Ai.

By the Geometric Lemma applied to Dkf on Bi, if x, y ∈ Ai and x < t < y,
then

|Dkf(t)| ≤ c′i|x− y|.

Hence, for any z between x and y, by integrating Df(t) k times from x to z we
obtain,

|f(z)| = |
∫ z

x

∫ tk

x

· · ·
∫ t2

x

Dkf(t1)dt1dt2 . . . dtk|

≤
∫ z

x

∫ tk

x

· · ·
∫ t2

x

c′i|x− y|dt1dt2 . . . dtk

= ci|x− z|k|x− y|,

where ci = c′i/k! .

(c) Induction step: we assume 〈n− 1, k〉 and 〈n, k − 1〉, and prove 〈n, k〉.
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Define

U = {x ∈ A : for every g ∈ Ck,Z(Rn,R) vanishing on A, Dg(x) = 0}, and

V = A \ U.

Since the union of two Morse decompositions is again a Morse decomposition, it
suffices to prove the result for U and V separately.

We first address U . By our 〈n, k−1〉 hypothesis, there are subsets U0, U1, U2, . . .
of U and C1 parametrized disks (Bi, φi) such that U0 is countable, U = ∪Ui, and
Ui ⊂ Bi for i ≥ 1.

Moreover for any h ∈ Ck−1,Z(Rn,R) vanishing on V , there are constants ci > 0
such that

|h(t)| ≤ ci|x− t|k−1|x− y|

whenever x, y ∈ Ui and t lies on the parametric segment [x, y]Bi in Bi from x to y.
Now suppose f ∈ Ck(Rn,R) vanishes on U . By definition of U , f must be critical

on U , so Djf ≡ ∂f/∂xj vanishes on U for j = 1, . . . , n. Since these functions lie
in Ck−1(Rn,R), by above we know there exist constants ci,j , i = 1, 2, 3, . . . ; j =
1, 2, . . . , n, so that

|Djf(t)| ≤ ci,j |x− t|k−1|x− y|,

hence

(2) ||Df(t)|| ≤ (max
j
ci,j)|x− t|k−1|x− y|,

whenever x, y ∈ Ui and t lies on the parametric segment [x, y]Bi .
Now we need the following lemma, whose proof is straightforward and omitted:

Lemma 1. If ∆ denotes the closed unit ball in Rp and φ is a C1 embedding of ∆
into Rn, then there is a constant κ, depending on φ, such that

(1/κ)|a− b| ≤ |φ(a)− φ(b)| ≤ κ|a− b|

for all a, b ∈ ∆.

Applying Lemma 1 to φi and Bi, we obtain a constant ki satisfying the conclusion
of Lemma 1, so that for all x, z ∈ Bi and t ∈ [x, z]Bi , we have

|x− t| ≤ ki|φ−1
i (x)− φ−1

i (t)|
≤ ki|φ−1

i (x)− φ−1
i (z)|

≤ k2
i |x− z|.

Therefore, letting c′i = (maxj ci,j)k
2(k−1)
i , and fixing z on [x, y]Bi , (2) yields

||Df(t)|| ≤ c′i|x− z|k−1|x− y|

for all t ∈ [x, z]Bi .
Now integrating Df along [x, y]Bi from x to z, we obtain

|f(z)| ≤ c′i|x− z|k−1|x− y|L(x, z),
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where L(x, z) denotes the length of the parametric segment [x, z]Bi .
It follows from Lemma 1 that there is a constant bi > 0 such that L(x, z) ≤

bi|x− z| for all x, z ∈ Bi. Therefore we may let ci = c′idi and deduce that

|f(z)| ≤ ci|x− z|k|x− y|

whenever x, y ∈ Ui and z lies on the parametric segment from x to y in Bi. This is
our desired conclusion for U .

Turning now to V , note first that it suffices to show that V satisfies the conclusion
locally, i.e. in a neigborhood of each of its points. This is because a countable union
of Morse decompositions is again a Morse decomposition.

So given x ∈ V , we show that, for some neighborhood N of x in Rn, V ∩N has
an appropriate Morse decomposition.

Since x ∈ V , some g ∈ Ck,Z(Rn,R) vanishing on A is not critical at x. By the
Zygmund Preimage Theorem, there exists a neighborhood N of x such that A∩N ,
and hence V ∩N , is contained in a Ck,Z (n − 1)-submanifold S (namely, S is the
local zero set for g).

We can choose S and an embedding ψ ∈ Ck,Z(Rn−1,Rn) so that

V ∩N ⊂ S = ψ(∆),

where ∆ denotes the closed unit ball in Rn−1.
Writing W = ψ−1(V ∩N), we now have, by our 〈n− 1, k〉 hypothesis:
(i) a collection {Wi}∞i=0 of subsets of W , with W0 countable and W = ∪Wi,
(ii) a collection {(Di, ηi)} of C1 parametrized disks in Rn−1 so that Wi ⊂ Di

for all i ≥ 1, and
(iii) for every h ∈ Ck,Z(Rn−1,R) vanishing on W , and every i ∈ Z+, a positive

constant di such that
|h(z)| ≤ di|x− z|k|x− y|

whenever x, y ∈ Wi and z lies on the parametric segment [x, y]Di in Di joining x
to y.

Now define, for all i,

Vi = ψ(Wi), Bi = ψ(Di), and φi = ψ ◦ ηi.

Then the following facts are immediate:
(i’) V0 is countable and ∪Vi = V ∩N , and
(ii’) each pair (Bi, φi) is a C1 parametrized disk in Rn with Vi ⊂ Bi for all i ≥ 1.
Moreover,
(iii’) if f ∈ Ck,Z(Rn,R) vanishes on V ∩N , then f ◦ψ ∈ Ck,Z(Rn−1,R) vanishes

on W .
If we pick an arbitrary x′, y′ ∈ Vi and z′ on the parametric segment [x′, y′]Bi ,

then there are points x, y, z in Di such that ψ(x) = x′, ψ(y) = y′, ψ(z) = z′,
x, y ∈Wi, and z ∈ [x, y]Di .

Hence, by (iii) above, there exist constants di, depending on f but independent
of x, y, z, such that

|f ◦ ψ(z)| ≤ di|x− z|k|x− y|.
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Applying Lemma 1 to the embedding ψ, we obtain a constant ki > 0 such that

|a− b| ≤ ki|ψ(a)− ψ(b)|

for all a, b ∈ ∆. In particular, |x− z| ≤ ki|x′ − z′| and |x− y| ≤ ki|x′ − y′|, so that

|f(z′)| ≤ dikk+1
i |x′ − z′|k|x′ − y′|.

This completes the inductive step, and the proof. �

Proof of Zygmund Morse Criticality Lemma.
Let {A′i} be the Morse decomposition given by the Morse Vanishing Lemma for

the pair 〈n, k− 1〉. Let {(Bi, φi)} be the corresponding C1 parametrized disks. We
check (ii).

Given f ∈ Ck,Z(Rn,R) critical on A, this means that for each j = 1, . . . , n, Djf
lies in Ck−1,Z and vanishes on A.

The Morse Vanishing Lemma now guarantees us constants ci,j > 0 such that

|Djf(z)| ≤ ci,j |x− z|k−1|x− y|

whenever x, y ∈ A′i and z ∈ [x, y]Bi .
By Lemma 1, as in the preceding argument, there is a constant ki > 0 such that

|x − z| ≤ k2
i |x − y| so long as x, y ∈ A′i and z ∈ [x, y]Bi . Therefore |Df(z)| is

controlled by a constant times |x − y|k. Integrating Df along [x, y]Bi from x to z
gives, as in the proof of the Vanishing Lemma, a constant ci > 0, depending only
on f and i, such that

|f(x)− f(y)| ≤ ci|x− y|k+1

whenever x, y ∈ A′i.
We now have a collection {A′i}∞i=1 satisfying the desired conclusions, except that

the union ∪A′i omits the countable subset A′0 of A. Let {Ai} = {A′i} ∪ {{x} :
x ∈ A′0}. This countable collection now suffices, since when Ai is a singleton, the
condition (ii) is trivially true. �

3. The Rank Zero Lemmas

The following lemmas will establish the rank zero case of Theorem 2. In section
4 we repeat the argument in [7] and [10] deducing the general case from this one.

First Rank Zero Lemma. Let n > m, f ∈ Λn/m(Rn,Rm), and A ⊂ Rn be a
set of rank zero for f . If A has measure zero, then f(A) has measure zero.

Proof. By the Morse Criticality Theorem, there is a Morse decomposition A = ∪Ai
such that every component of f , and therefore f itself, satisfies

(2) |f(x)− f(y)| ≤ ci|x− y|n/m

for some ci > 0 and every x, y ∈ Ai, i > 0.
Fix j and write B = Aj and c = cj ; we show that f(B) has measure zero. Let

ε > 0 be given. Since B has measure zero, it is contained in the union ∪Bi of balls
in Rn chosen such that

∑
|Bi|n < ε/cm, where |Bi| denotes the diameter of Bi.



THE ZYGMUND MORSE-SARD THEOREM 11

By (2), for each i,
|f(B ∩Bi)| ≤ c|B ∩Bi|n/m.

Letting lm denote m-dimensional Lebesgue measure, we therefore have

lm(f(B)) ≤
∑

lm(f(B ∩Bi)) ≤
∑
|f(B ∩Bi)|m

≤
∑

(c|B ∩Bi|n/m)m

≤ cm
∑
|Bi|n < ε.

Hence lm(f(B)) = 0. �

In the next lemma we invoke an argument of Bates [1] to remove the requirement
in the First Rank Zero Lemma that A have measure zero.

Second Rank Zero Lemma. Let n > m, f ∈ Λn/m(Rn,Rm), and A ⊂ Rn be a
set of rank zero for f .

Then f(A) has measure zero.

Proof. Let {Ai} be a Morse decomposition for A as provided by the Morse Criti-
cality Lemma. (Without loss of generality, we assume that ln(Ai) <∞ for each i.)
Fix j ≥ 1 and write B = Aj ; our job is to show that lm(f(B)) = 0.

By the Morse Criticality Lemma applied to each component of f , there is a
constant c > 0 such that

(3) |f(x)− f(y)| ≤ c|x− y|n/m

for all x, y ∈ B.
We may assume that B is measurable, since replacing B by its closure preserves

condition (3). Hence, by the Lebesgue Density Theorem, almost every point of
B is a density point. That is, we can write B = D ∪ E, where ln(E) = 0 and
every point of D is a density point of D. The First Rank Zero Lemma shows that
lm(f(E)) = 0; it remains to show that lm(f(D)) = 0.

The following lemma is convenient:

Lemma 2. If n ≥ 1, P ≥ 2 are integers, D ⊂ Rn is measurable, and Q is a cube
in Rn satisfying

(4)
ln(D ∩Q)
ln(Q)

≥ 1− P−n,

then for every x, y ∈ D ∩Q, there is a sequence x0, . . . , xP of points in D ∩Q such
that x0 = x, xP = y, and

|xi − xi+1| < 2|Q|/P

for i = 0, . . . , P − 1.

Lemma 2 is proved below, but first we finish the proof of the Second Rank Zero
Lemma. First choose an arbitrary P ≥ 2. Since every point of D is a density point,
there is a positive function δ : D → R so that any cube Q(x, δ) with center x and
side length δ < δ(x) satisfies (4).
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Let Q be any such cube. Then for every x, y ∈ D ∩Q,

|f(x)− f(y)| ≤ |f(x0)− f(x1)|+ · · ·+ |f(xP−1)− f(xP )|

≤ c|x0 − x1|n/m + · · ·+ c|xP−1 − xP |n/m ( by (3))

≤ cP (2|Q|/P )n/m

= c2n/mP 1−(n/m)|Q|n/m.

This means that |f(D ∩Q)| ≤ c2n/mP 1−(n/m)|Q|n/m, so

lm(f(D ∩Q)) ≤ |f(D ∩Q)|m ≤ cm2nPm−n|Q|n

≤ cm22nPm−nln(Q).

Since {Q(x, δ) : x ∈ D, δ < δ(x)} is a Vitali family for D, there is a countable
subcollection {Qi} such that ln(D \∪Qi) = 0 and

∑
ln(Qi) < 2ln(D). (ln(D) <∞

since D is bounded.) By the First Rank Zero Lemma, lm(f(D \ ∪Qi)) = 0.
Hence

lm(f(D)) ≤
∑

lm(f(Qi))

≤
∑

cm22nPm−nln(Qi)

< 22n+1cmPm−nln(D).

Since P is arbitrary, lm(f(D)) must vanish, and this completes the proof. �

Proof of Lemma 2. Assume (4) and x, y ∈ D∩Q. Clearly the line segment L joining
x to y can be covered by at most P subcubes of Q of diameter |Q|/P . By (4), each
of these subcubes must contain a point of D∩Q, so choosing a point in each yields
the desired sequence. �

4. Proof of Theorem 2

For nonnegative integers n > m > r, let s = (n − r)/(m − r). We assume
f ∈ Λs(Rn,Rm) and E ⊂ Rn is a set of rank r for f .

For i = 0, 1, 2, . . . , r, define Ri = {x ∈ E : rankDf(x) = i}. We need to show
that lm(f(Ri)) = 0 for each i.

The case i = 0 is covered by the Second Rank Zero Theorem of the previous
section, so we now fix i ≥ 1. It will suffice to find, for every p ∈ Ri, a neighborhood
U of p such that lm(f(U ∩Ri)) = 0.

By means of a standard argument (e.g. as in [4]) using the Λs Inverse Function
Theorem, we can find coordinates in some neighborhood U of p so that

f(x1, . . . , xn) = (x1, . . . , xi, g(x1, . . . , xn)),

where g ∈ Λs(Rn,Rm−i).
In these coordinates,

Df(x) =
(
Idi 0
∗ D(g[x1, . . . , xi])

)
,
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where x = (x1, . . . , xn), Idi is the i × i identity matrix, and g[x1, . . . , xi] denotes
the function Rn−i → Rm−i defined by

g[x1, . . . , xi] : (xi+1, . . . , xn) 7→ g(x1, . . . , xn).

By definition of Ri, if x ∈ U ∩Ri, then rankD(g[x1, . . . , xi]) = 0.
Define the “cross-section” of a set A ⊂ Rn at (x1, . . . , xi) ∈ Ri by

A[x1, . . . , xi] = {(xi+1, . . . , xn) ∈ Rn−i : (x1, . . . , xn) ∈ A}.

In these terms, it is easy to check that, for x ∈ U ∩Ri, g[x1, . . . , xi] maps the rank
0 set (U ∩Ri)[x1, . . . , xi] ⊂ Rm−i onto the set (f(U ∩Ri))[x1, . . . , xi] ⊂ Rm−i.

Now, because (n− i)/(m− i) ≤ (n− r)/(m− r) = s, we have

g[x1, . . . , xi] ∈ Λs(Rn−i,Rm−i) ⊂ Λ(n−i)/(m−i)(R
n−i,Rm−i).

Therefore, by the Second Rank Zero Lemma applied to g[x1, . . . , xi] on (U ∩
Ri)[x1, . . . , xi], we obtain

lm−i((f(U ∩Ri))[x1, . . . , xi]) = 0.

Since this holds for every x ∈ U ∩ Ri, we may apply Fubini’s Theorem for Rm =
Ri ×Rm−i to deduce

lm(f(U ∩Ri)) = 0.

�

5. Moduli of Continuity and a Composition Theorem

In this section we discuss, as promised in Section 1, the question of how smooth
a function g must be so that f ◦ g is guaranteed to be Zygmund if f is Zygmund.
For this we need to discuss moduli of continuity.

Definition. If (X, d), (Y, d′) are metric spaces and f : X → Y is continuous, the
modulus of continuity mf of f is defined to be the function

mf (t) = sup{d′(f(x), f(y)) : d(x, y) ≤ t}

for t ≥ 0. (This function might in general be infinite for some or all t > 0.)
A function α : [0,∞)→ [0,∞] is called a modulus of continuity if α is monotone,

continuous, and α(0) = 0.

These definitions are consistent because of the fact (whose proof we omit) that
for every modulus of continuity α, there is a (possibly infinite-dimensional) metric
space (X, d) and a continuous function f : X → R such that mf = α.

We now restrict attention to functions defined on Euclidean spaces. Since we
are interested in local smoothness properties, we are free to confine our attention
to continuous functions f : Rn → Rm with compact support (i.e. locally constant
outside a compact set). Such functions always have a finite modulus of continuity.
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Definition. A function f is majorized by a modulus of continuity α if mf ≤ α.
Equivalently,

|f(x)− f(y)| ≤ α(|x− y|)

for all x, y.

Example. If f is majorized by α(t) = ct, then f is Lipschitz; if by α(t) = cts,
then f is s-Hölder.

Only certain functions α can arise as moduli of continuity for functions f : Rn →
Rm of compact support —these are the subadditive functions, i.e. those satisfying

α(s+ t) ≤ α(s) + α(t)

for all s, t ∈ [0,∞).
It is easy to check that for any such f , mf is subadditive and has compact sup-

port; conversely, if α is a subadditive modulus of continuity with compact support,
then α = mf for some f —namely, f(t) = α(t) for t ≥ 0, f(t) = 0 otherwise.

Definition. For k = 0, 1, 2, . . . and α a modulus of continuity, we say that

f ∈ Ck,α

if f ∈ Ck and Dkf is locally majorized by a multiple of α. If f also has compact
support, we write

f ∈ Ck,αc .

Suppose α and β are moduli of continuity, and for some C > 1 and all t > 0,

1/C ≤ α(t)
β(t)

≤ C.

We then think of α and β as equivalent because Ck,α = Ck,β . This defines an
equivalence relation ∼ on the set of all moduli of continuity. There is a natural
partial order 4:

α 4 β if α ∼ β or α ≺ β,

where
α ≺ β means α(t)/β(t)→∞ as t→ 0+.

Clearly, if α 4 β, then Ck,βc ⊂ Ck,αc .
Now we can state the

Composition Theorem. Let

λ(t) =

{
1

log(1/t) for 0 < t ≤ e−2

1/2 for t ≥ e−2

and λ(0) = 0.
Then λ is a subadditive modulus of continuity. Moreover,
(a) If f ∈ C0,Z(Rn,Rm) and g ∈ C1,λ(Rp,Rn), then f ◦ g ∈ C0,Z , and
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(b) There exists f ∈ CZ(R,R) such that for every subadditive modulus of conti-
nuity α ≺ λ, there is a function g ∈ C1,α

c (R,R) such that f ◦ g /∈ CZ .

Proof. One easily checks that λ is continuous, monotone, and concave, hence sub-
additive.

Proof of (a). Given f ∈ CZ , g ∈ C1+λ, we show that the composition f ◦ g is
Zygmund by a straightforward estimate of the second difference.

Fix a convex compact set K in Rp. Denote by A the Zygmund constant of f on
g(K), and choose B so that |Dg(x)−Dg(y)| ≤ Bλ(|x−y|) for x, y ∈ K. Recall that
f must satisfy a t log(1/t) modulus of continuity. That is, if we let β(t) = t log(1/t)
for 0 < t < 1/2, and β(t) = (log 2)/2 otherwise, then there exists L > 0 such that
|f(x)− f(y)| ≤ Lβ(|x− y|) for all x, y ∈ K.

Applying Taylor’s theorem to the components gi of g, we find that

gi(x+ t) = gi(x) +Dgi(ξi)t,

where ξi is some point on the line segment [x, x+ t], x, x+ t ∈ K.
Hence

|g(x+ t)− g(x)−Dg(x)t| ≤
∑
i

|gi(x+ t)− gi(x)−Dgi(x)t|

≤
∑
|Dgi(ξi)t−Dgi(x)t|

≤ nBλ(|t|)|t|.

Now we estimate:

|f ◦ g(x+ t) + f ◦ g(x− t)− 2f ◦ g(x)|
≤ |f(g(x) +Dg(x)t) + f(g(x)−Dg(x)t)− 2f(g(x))|

+ |f(g(x) +Dg(x)t)− f(g(x+ t))|+ |f(g(x)−Dg(x)t)− f(g(x− t))|
≤ A‖Dg(x)‖|t|+ Lβ(|g(x+ t)− g(x)−Dg(x)t|)

+ Lβ(|g(x− t)− g(x)−Dg(x)(−t)|)
≤ A‖Dg(x)‖|t|+ 2Lβ(nBλ(|t|)|t|).

The first term on the right is O(|t|) as |t| → 0 since ‖Dg‖ is bounded on K. That the
second term is also O(|t|), with constants depending only on K,A,B and L, is easily
verified using the definitions of β and λ, and the fact that (log(C/(− log |t|)))/ log |t|
tends to zero as |t| → 0.

Proof of (b). Let f(x) =
∑∞
k=0 2−k sin(2kx).

It is known that f is Zygmund (e.g. [5]), and we use the fact that there exists
C > 0 such that

f(x) ≥ Cx log(1/x)

for 0 < x < e−2.
Given the subadditive modulus of continuity α, extend α to all of R by letting

it have value zero on R−. Construct α̂ by reflection in the line x = 1:

α̂(t) =
{
α(t) for t ≤ 1
α(1− t) for t > 1.
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Now define g(x) =
∫ x

0
α̂(t) dt. Evidently g has compact support since α̂ is zero

outside of [0,2]. To show that g ∈ C1,α, we need only show that α̂ is majorized by
α.

Case 1: 0 ≤ x < y ≤ 1. Then

|α̂(x)− α̂(y)| = |α(x)− α(y)| = |α(x)− α(x+ (y − x))| ≤ α(y − x)

by subadditivity.
Case 2: 1 ≤ x < y. Similar.
Case 3: x < 1 < y. Suppose x is closer to 1 than y (otherwise argue similarly).

Then
|α̂(x)− α̂(y)| ≤ |α̂(1)− α̂(y)| ≤ α(|1− y|)

as before, and by monotonicity this is at most α(|x− y|).

It now remains to establish that f ◦ g is not Zygmund. Choose a positive integer
N . Since α ≺ λ, there is ε = ε(N) < e−2 such that 0 < x < ε implies α(t) ≥ Nλ(t).

For such x,

|f(g(x)) + f(g(−x))− 2f(g(0))| = |f(g(x))|
≥ Cg(x) log(1/g(x))

≥ C(
∫ x

0

Nλ(t)dt)(− log
∫ x

0

Nλ(t)dt)

since the function t log(1/t) is monotone on (0, e−2),

= CN(
∫ x

0

λ(t)dt)[− logN − log
∫ x

0

λ(t)dt].

If we choose ε′ ≤ ε so small that x < ε′ implies∫ x

0

λ(t)dt < 1/N2,

then
− log

∫ x

0

λ(t)dt > 2 logN,

and so
f(g(x)) ≥ (CN/2)(

∫ x

0

λ(t)dt)(− log
∫ x

0

λ(t)dt).

Now denote by λ̄(x) the average value (1/x)
∫ x

0
λ(t)dt of λ on the interval [0, x].

We now obtain

f(g(x))/x ≥ (CN/2){λ̄(x)[− log λ̄(x) + log(1/x)]}
= (CN/2){λ̄(x) log(1/λ̄(x)) + λ̄(x) log(1/x)}.

The first term on the right tends to zero as x tends to zero. The second term is∫ x
0
λ(t)dt
xλ(x)

.
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One easily checks, using L’Hopital’s rule and the definition of λ, that this tends to
one as x tends to zero.

Hence, for x sufficiently small,

∆2
(x/2)f(0) = f(g(x)) ≥ (CN/4)x.

Since N was chosen arbitrarily, this means that f(g(x))/x → +∞ as x → 0+, so
f ◦ g is not Zygmund.
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