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Abstract

We study a simple model based upon the Lucas framework where heterogeneous

agents behave rationally in a fully intertemporal setting but do not know other

investors’ personal preferences, wealth or investment portfolios. As a conse-

quence, agents initially do not know the equilibrium asset pricing function and

must make guesses which they update via adaptive learning with constant gain.

We demonstrate that even in this simple environment the economy can,

depending on parameters, exhibit either stable convergence to equilibrium, or

chaotic dynamical behavior of asset prices and trading volume without converg-

ing to the rational expectations equilibrium of the Lucas model. This contradicts

the assertion that the Lucas model is stable in the face of modest deviations

from the strong assumptions required to compute the equilibrium.
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1. Introduction

During the fall of 2007, financial markets in the United States began to

unwind. In the coming year markets would plummet by over fifty percent and

then fall an additional twenty-five percent by March 2009; record numbers of

banks would fail; Bear Stearns, Merrill Lynch and Lehman Brothers would

vanish. “We were seeing things that were 25-standard deviation moves, several

days in a row,” said Goldman Sachs’s chief financial o�cer David Viniar [1].1

In the ensuing search for guilty parties, fingers pointed toward the complex,

equilibrium-based, mathematical models used by Wall Street quants.2

The equilibrium asset pricing model in question is based upon the asset

pricing theory of 1995 Nobel Prize winner Robert Lucas of Chicago [5]3 and

is motivated by the rational expectations theory of John Muth [7] and the

e�cient markets theory of Fama [8]. Although the quants on Wall Street may

not be particularly concerned with the esoteric details of this theory, Farmer

and Geanakoplos [9] note that the asset pricing equations that the quants use

are largely based upon this framework.

In the Lucas model there are many investors who may buy and sell some

set of securities in order to maximize their expected life-time utility. The in-

vestors are forward-looking and rational, meaning that they try to implement

an investment strategy that will optimize their long-term welfare in the face of

an uncertain future, and they know that asset prices should be determined by

market fundamentals such as the stream of future earnings and the risks asso-

ciated with those earnings. Furthermore, each investor believes that all of the

other investors in the market are also rational and that those investors, in turn,

1See [2] for an entertaining discussion of just how rare a 25-sigma event is.
2See, for example, The Economist [3] for critiques of equilibrium models and the response

[4] by Robert Lucas.
3The Lucas [5] paper is one one the most cited economics papers of the past four decades

[6].
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believe the same. In order to determine their optimal portfolio and the market

equilibrium, investors must compute future aggregate demands for assets, the

future wealth distribution of all other investors, and the transition dynamics

of these future wealth distributions [10]. Consequently, the state space of each

investor is a very complicated object requiring an enormous amount of infor-

mation to construct—more information than is available to the econometrician

modeling the the system (see [11]).4

In fact, Lucas never intended his model to be a description of investor behav-

ior. Rather, he argued that the outcome of the market can be described “as if”

the investors were using the model. Lucas writes that the rational expectations

assumption

. . . is not “behavioral”: it does not describe the way agents think

about their environment, how they learn, process information, and

so forth. It is rather a property likely to be (approximately) pos-

sessed by the outcome of this unspecified process of learning and

adapting. One would feel more comfortable, then, with rational ex-

pectations equilibria if these equilibria were accompanied by some

form of “stability theory” which illuminated the forces which move

an economy toward equilibrium. [5, pg. 1429]

Lucas asks, “will an economy with agents armed with “sensible” rules-of-thumb,

revising these rules from time to time so as to claim observed rents, tend as time

passes to behave as described. . . [5, pg. 1437]?” Lucas concludes, “A relatively

crude use of hindsight, applied in a reasonably stationary physical environment,

will lead to behavior well-approximated by rational expectations [5, pg. 1444].”

4The problem is greatly simplified if we assume, as did Lucas [5], that all investors are

identical. In this homogeneous investor case the wealth distribution becomes degenerate and

stationary so that the state space and the asset pricing equations for the market equilibrium

can easily be computed by the representative agent.
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It is this conclusion that we investigate here: that the market equilibrium

described by the Lucas model is a local stable attractor and that reasonable

investors in a reasonably functioning market are at least approximately well

described by the model. On the contrary, we show that, when the model is

populated with heterogeneous investors facing reasonable restrictions in their

information set and using sensible rules-of-thumb learning rules, unstable and

chaotic asset market dynamics can arise that are inconsistent with the rational

expectations equilibrium of the Lucas model.5

We make no e↵ort to build a model realistic enough to correctly forecast

real market quantities, nor to understand phenomena like bubbles and crashes

as in the recent work [14]. On the contrary, we study the simplest case of two

agents to show how chaos can emerge robustly from the basic model structure.

If chaos can emerge in a two-agent economy, we should expect larger models

with similar structure to display at least as much complexity.

2. Related Literature

Our model falls into the broad category of heterogeneous agent learning

models reviewed by [15]. More specifically, we are interested in the stability of

markets when investors lack perfect foresight but otherwise behave “rationally”

and market prices are determined endogenously through market clearing. Our

approach is related to [16], who provide review of the relevant literature, but

our model structure is quite di↵erent.

We use a version of the Lucas model with a single risky asset and hetero-

geneous investors with di↵ering degrees of risk aversion. All investors are fully

rational in terms of their optimizing behavior but are boundedly rational in the

sense that no investor knows the private information, such as risk aversion and

5Also relevant but beyond the scope of this paper are the issues of computability raised by

[12] and [13].
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wealth, of other investors. With this restricted state space investors are unable

to derive the aggregate asset pricing equation and must base their optimal in-

vestment strategy upon their best informed guess about the behavior of future

asset prices. Given a hypothesized aggregate pricing function, each agent solves

the dynamic optimization problem for that agent’s conditional consumption and

asset demand equations. None of our investors are “noise traders” (see, for ex-

ample, [17, 18, 19]) nor do they ignore any observable information about market

fundamentals such as the known distribution of dividend payments or market

clearing prices.

Market clearing prices are computed using the conditional demand equa-

tions. As the market evolves the investors learn how well their aggregate pricing

function performs and they adapt their guesses to be more consistent with ob-

served market outcomes. Each investor solves their fully intertemporal dynamic

stochastic control problem using the best information that they have in hand

at the time and they update that solution continuously as markets evolve. This

extends the work of [20] in that our model is fully intertemporal and market

prices are fully endogenous.

We define a correct expectations equilibrium to be when the market clearing

price is consistent with the aggregate pricing function used in common by all

investors and at those prices all agents behave optimally. Our definition is most

closely related to that of internally rational expectations equilibrium used by

[21] and to the consistent expectations equilibrium used by [22] who require that

the autocorrelation function of the aggregate pricing function be consistent with

the observed market data.

We will prove that our definition implies the existence of a no trade equi-

librium that is consistent with the rational expectations hypothesis. Like [22],

we use a constant gain learning mechanism, and find that investors may or may

not be able to learn this equilibrium. For a range of risk aversion (� > 1), any

constant gain parameter turns out to lead to stable convergence to equilibrium.
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This contradicts the “E-stability principle” of Evans and Honkapohja [23], be-

cause our framework di↵ers from theirs in that our market prices are being

determined endogenously via market clearing, rather than via a price process

with exogenous shocks.

For other parameter choices, when the gain parameter is not too small, we

find the economy converges to a variety of stable, non-equilibria, including cycli-

cal or fully chaotic dynamics. (Deterministic models exhibiting this behavior

include [24] and [25].) Our results are consistent with [26] who demonstrates

that slow learning can stabilize the market.

We conclude that our model represents a version of the Lucas model where

investors use a strategy at least as good as a “relatively crude use of hindsight”

but does not always “lead to behavior well-approximated by rational expecta-

tions”.

3. A Lucas Model Framework

We begin with a discrete-time market with N traders, or agents, and a total

of one share of a single risky, infinitely-lived, dividend-paying asset. The ex-

dividend price of the asset is denoted pt at time t = 1, 2, . . . , and the dividend

is dt. Agent i can hold at time t a fraction si,t 2 [0, 1] of the asset (no short

sales), and therefore at the end of period t has total wealth si,t(pt + dt), which

must be allocated to consumption ci,t and reinvestment for next period si,t+1pt.

This is summarized by the budget constraints

ci,t + si,t+1pt = (pt + dt)si,t and si,t+1 � 0, ci,t � 0 (1)

which must hold at each time t and for each agent i = 1, . . . , N . Furthermore,

the stock market must clear in each period, meaning for all t:

NX

i=1

si,t = 1 which implies, from (1),
NX

i=1

ci,t = dt. (2)
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The dividend is determined by an exogenous i.i.d. process zt via

dt+1 = dtzt+1, t = 0, 1, 2, . . . , (3)

where d0 is a known positive initial value, initial portfolios si,1 are known, and zt

has some fixed known positive distribution. The investment share si,t+1 is agent

i’s choice variable, with the budget constraint (1) then determining consumption

ci,t.

3.1. Order of Events in each Period

At the beginning of each period t � 1, the dividend dt is announced and agent

i knows how many shares si,t of stock she holds, but not yet the market price pt.

Each agent determines an optimal investment policy function si,t+1 = si,t(pt)

that is a monotone decreasing function of market price pt. The market price is

then determined by the unique solution of the market clearing condition

NX

i=1

si,t(pt) = 1 (4)

which can be thought of as the outcome of a price auction among the agents.

With the market clearing price now announced, agents know their wealth wi,t =

si,t(pt + dt) and proceed to trade to the position si,t+1 = si,t(pt) and consume

ci,t = wi,t � si,t+1pt. Here the period t ends and t+ 1 can begin.

3.2. The Problem of Limited Information

Everything depends on how the agents determine their “optimal” invest-

ment/consumption policies. This is a delicate matter that turns on exactly

what the agents know. In contrast to the setting of rational expectations, our

agents have limited information: they observe the dividend (and know the prob-

ability distribution of the dividend shocks zt) and the current market price, but

do not know the holdings or preferences of the other agents, and hence do not

know the probability distribution of tomorrow’s market price. For the agents,

“optimal” will be defined only in terms of the available information.
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Agents wish to maximize a time-separable lifetime expected discounted util-

ity of consumption of the form

Ui = E

" 1X

t=1

�t�1ui(ci,t)

#
(5)

where 0 < � < 1 is a common discount factor and ui is a single-period increasing

concave utility function for agent i. We take ui to be a CRRA (Constant

Relative Risk Aversion) utility,

ui(c) =
c1��i

1� �i
, (�i 6= 1) (6)

where �i > 0 is a risk-aversion parameter (that can vary by agent). When �i = 1

we use

ui(c) = log c. (7)

Unfortunately, our agents cannot directly maximize (5) because the expecta-

tion cannot be computed: the distribution of future prices, hence consumption,

depends on future actions of the other agents, and hence is unknown.

Instead, agents will maximize a conditional utility, conditional on the choice

of a pricing function giving the market price as a function of dividend. Agents

can then determine a conditional optimal policy. If all agents choose the same

pricing function, which in addition correctly forecasts the market clearing price

in each period, then the economy will be in equilibrium. If not, agents may

update their pricing function each period according to some learning rule, and

the economy becomes a dynamical system whose dynamics we can investigate,

and we will see that equilibrium is not always stable. These topics are addressed

in the following sections.

3.3. Defining the Agents’ Optimization Problem and Market Equilibrium

We assume all agents know the distribution of the exogenous i.i.d. shocks zt,

t = 1, 2, 3, . . . . Thus, at time t, the history of dividends d1, d2, . . . , dt is known,

and so is the distribution of each future dividend

dt+s = dtzt+1 · · · zt+s. (8)
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This defines a natural probability measure Q on the space ⌦ of infinite

sequences of dividends. Let Ft denote the �-field generated by d1, . . . , dt, and

define the �-field F =
S
Ft and the filtration F = {Ft : t = 1, 2, 3, . . . }. We can

describe the entire setting by a filtered probability space (⌦,F , F,Q) associated

to the dividends process. Note that this space does not represent a complete

description of the states of our economy, because the preferences and choices of

the agents are required to determine the asset price process.

Now we focus on a single agent i, and temporarily drop the subscript i.

The agent can observe her holdings st and the dividend dt at the beginning of

period t, and the asset price pt once the market clears. It is convenient to use

the agent’s wealth wt as a state variable, given by

wt = (pt + dt)st = ct + ptst+1. (9)

Since ci,t and hence ui(ci,t) are not F -adapted, agents have no choice but

to conditionally maximize U under additional assumptions about the hidden

variables.

As we will show, an optimal consumption and investment policy can be de-

rived from a pricing function that describes the agent’s view of the distribution

of market clearing prices in future periods. Since the true equilibrium price de-

pends on unobserved quantities, our agents must hypothesize a pricing function

that only depends, at most, on the history of observed prices and dividends.

(The derived consumption and investment policies will then depend on these

and the agent’s current stock holding.) At a no-trading equilibrium, with all

agents holdings fixed and for a given initial stock price, we expect the market

clearing price to depend only on the history of dividends.

In this paper we choose the simplest form p : D ! R+, p(d) = vd for

the agent’s forecast of future market price (D is the set of possible dividends).

This is justified because it is the form of the equilibrium price in the simple

homogenous agent case, and also is shown in Theorem 3 to be an equilibrium

pricing function for the heterogeneous 2-agent case.
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In e↵ect, we presume that agents are aware of Theorem 3 and derive their

one-time-step optimal policy conditional on a guessed equilibrium pricing func-

tion of this form. Later, we will provide agents with a learning rule that allows

them to update their pricing function forecast based on the market outcome. In

many cases, this will result in a market that converges to a stable equilibrium

with agents agreeing on a pricing function p(d) = v⇤d that correctly forecasts

the market clearing price, and so this learning strategy will be successful. The

convergence to equilibrium also justifies, after the fact, the reasonable use of the

form p(d) = vd in the agents forecast. However, we will see that success depends

on the choice of parameters. In certain cases of low risk aversion, the same as-

sumption leads to behavior that fails to converge to equilibrium in interesting

ways, as we describe in section 6.

If we denote by W the set of possible values of wealth (non-negative reals),

then we define a consumption policy to be a function c : W ! R+, and an

investment policy a function s : W ! R+. At the beginning of period t, since

st and dt are known, wealth is then a function of market price pt via (9).

At the beginning of period t, for a pricing function p(·), and admissible policy

function c, define the conditional wealth w̄t+s for s � 0 recursively by

w̄t+s = (w̄t+s�1 � c(w̄t+s�1))
p(dt+s) + dt+s

p(dt+s�1)
for s � 1, (10)

and, when s = 0,

w̄t = (wt�1 � c(wt�1))
p(dt) + dt

pt�1
. (11)

Then we define the conditional utility functional by

U(t, c, p(·)) = E

" 1X

s=0

�su(c(w̄t+s))|Ft

#
. (12)

Conditional on p(·) and c, the process w̄t is adapted to the filtration F , so

the conditional utility U(t, c, p(·)) is well-defined.

Denote by C the set of admissible consumption policies, satisfying 0  c(w) 

w. The optimal utility is then given by the supremum over all admissible con-
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sumption policies of the infinite-horizon expected utility, conditional on the

pricing function p(·),

U⇤(t, p(·)) = sup
c2C

U(t, c, p(·)). (13)

The solution of this problem will be an optimal consumption policy c⇤, and

the corresponding optimal investment policy

s⇤(wt) =
wt � c⇤(wt)

pt
. (14)

An agent’s actual time-t wealth and consumption are still not known until

the market clearing price pt is revealed. We now reintroduce the subscript i

indicating the ith agent, wt = wi,t.

The market clearing price pt for time t is determined by interpreting these

policy functions (for each agent) as functions of p and applying the market-

clearing constraint

1 =
X

i

si,t+1 =
X

i

(p+ dt)si,t � c⇤i ((p+ dt)si,t)

p
(15)

to solve for p = pt. The agents now know their actual wealth wi,t = (pt+dt)si,t,

consume c⇤i (wi,t), and invest in s⇤i (wi,t) shares, ending the period.

If the market is at equilibrium, this market clearing price pt will agree with

the value p(dt) of the pricing function used in common by each agent, and for

each i we will have w̄i,t = wi,t. We formalize this in a definition.

Definition 1. A correct expectations equilibrium (CEE) consists of an aggre-

gate stock pricing function p(d) and consumption and investment policy func-

tions for each agent, ci(w) and si(w), such that

1. For each i, ci solves agent i’s optimization problem (13) conditional on

p(·),

2. For each i, and t, the consumption and investment policy functions satisfy

ci(wt) + p(dt)si(wi,t) = si(wi,t�1)(p(dt) + dt), (16)
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3. p(dt) is the correct market clearing price resulting from the policies of all

the agents, and

4. the stock and consumption markets clear:
P

i si,t = 1 and
P

ci,t = dt for

each t.

A few comments about this definition are in order. The reason for introduc-

ing the CEE in place of the more familiar rational expections equilibrium (REE)

is that for an REE all agents have complete information about the economy,

so that the equilibrium pricing and policy functions could depend on variables,

such as the aggregate wealth distribution, that are not visible to our boundedly

rational agents. Agents cannot evaluate functions that depend on unobserved

variables, but our agents can evaluate the policy and pricing functions of a CEE.

If the economy has arrived at a CEE, then this also qualifies as an REE in

which the optimal pricing and policy functions do not depend on the unobserv-

able variables (e.g., those variables are constant in time). However, there may

be REEs that do not qualify as CEEs.

4. Solving the Single Period Optimal Policy

Again we consider the problem faced by a single agent i in our market, and

drop the subscript i for ease of notation.

The agent’s objective function at time t is

U⇤(t, p(·)) = sup
c2C

U(t, c, p(·)). (17)

In outline, the infinite-horizon objective function is given by the solution of a

recursive value function equation, and the corresponding optimal consumption

policy is a solution to a stochastic Euler equation. For CRRA utility with � > 0

and i.i.d. dividend growth, as in our model, a result of Du�e [27] (see also [28])

gives us a particularly easy solution at equilibrium: the optimal consumption

policy is c(wt) = �wt for a known constant �, and the equilibrium pricing
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function takes the form p(dt) = vdt for some constant v, the price-dividend

ratio. The agent’s problem for one time step is solved, and the only open

question for the agents is how to adjust the constant v so that p = vd agrees

with the observed market clearing price, and hence find a market equilibrium.

Here is the story in more detail, with full proofs relegated to [28].

The recursive version of the optimization problem is known as the value

function equation, or Bellman’s equation, equation (18) below. In the recursive

formulation, we use w, d, c to denote today’s values (time t) of the state and

choice variables, and w0, d0, c0 to denote tomorrow’s values (time t+ 1).

Theorem 1 (see [28]). Fix a pricing function p(d) and a time t.

1. Suppose V ⇤(w) is a function satisfying the Bellman equation

V (w) = max
c2[0,w]

{u(c) + �E[V (w0)|Ft]} (18)

where w0 = (w � c)p(d
0)+d0

p(d) and suppose

lim
⌧!1

E�⌧V ⇤(w⌧ ) = 0. (19)

Then there is a unique continuous policy function c⇤(w) such that

• V ⇤ = U⇤, the optimal utility function, and

• c⇤(w) is the optimal policy, attaining the supremum in the definition

of U⇤, and satisfying

V ⇤(w) = u(c⇤(w)) + �E[V ⇤(w0)|Ft] (20)

2. Moreover, the Bellman equation has a unique solution V ⇤ within the class

of continuous functions that tend to infinity no faster than u. Also, the

function V ⇤ is continuous, concave and di↵erentiable and

dV ⇤(w)

dw
= u0(c⇤(w)). (21)
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3. The optimal policy c⇤ satisfies the first order (Euler) equation

u0(c⇤)� �E


r0
dV

dw
(w0)|Ft

�
= 0 (22)

where w0 = r0(w � c⇤) defines the return r0.

Equivalently,

u0(c⇤) = �E[r0u0(c⇤0)|Ft]. (23)

Equation (23) is the familiar form of the Euler equation, which can be used

to solve for the optimal policy at each time step.

4.1. The Homogeneous Lucas Model

For comparison, consider the simpler problem when all agents are assumed

identical and know it. There can be no trading, so each of the N agents holds

1/N shares of the stock, and in each period consumes d/N , where d is the current

dividend. The problem of deriving the optimal policy is therefore immediately

solved, the market is automatically at equilibrium, and the Euler equation can

now be used to derive the equilibrium pricing function.

From (23) and the definition of return, we can rewrite the Euler equation

for the generic case � 6= 1 as

pt
dt

= �E

"✓
1 +

pt+1

dt+1

◆✓
dt+1

dt

◆1��
#

(24)

A pricing function of the form pt = vdt for a constant v (the price-dividend

ratio) solves this equation. If we write zt+1 = dt+1/dt, then recall that zt is an

i.i.d. sequence with known positive distribution. We obtain

v = (1 + v)�E[z1��
t+1 ] (25)

where the conditional expectation is replaced by an unconditional expectation

due to the independence of zt+1, and the easy solution of this equation is

v =
�E[z1�� ]

1� �E[z1�� ]
. (26)

The equilibrium pricing function is pt = vdt for this constant v.
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4.2. The Heterogeneous Lucas Model

In this case it becomes a nontrival problem to find the consumption pol-

icy optimizing the objective function in (13) because the wealth distribution

becomes part of the state space (see, [10]). However, a theorem of Du�e [27]

comes to the rescue.

Assuming that the equilibrium pricing function takes the form p(d) = vd for

some constant v, the one period return becomes

rt =
vdt+1 + dt+1

vdt
=

✓
v + 1

v

◆
dt+1

dt
, (27)

so the returns rt are themselves i.i.d. In this case, the following theorem provides

the optimal consumption policy for the agent:

Theorem 2 (Du�e [27], see also [28]). Consider the optimization problem

(13).

1. Suppose

� 2 (0, 1) [ (1,1), u(ct) =
c1��
t

1� �
, ct 2 [0, wt] (28)

and suppose the returns rt are i.i.d. Define ⇢ = �E[r1��
t ] and � = 1� ⇢

1
� .

If ⇢ < 1, then the policy c(w) = �w is optimal at equilibrium.

2. Suppose again i.i.d. returns rt but

� = 1, u(ct) = log ct. (29)

Define � = 1� �.

If E[log rt] < 1, then the policy c(w) = �w is optimal at equilibrium.

Since our agents have no knowledge of the preferences or holdings of the

other agents, but still wish to behave optimally, we suppose our agents follow

this strategy:

1. Guess a market clearing pricing function pi(dt) = vidt for some constant

vi.
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2. Conditional on this guess, solve the infinite horizon optimization prob-

lem (13) according to Theorem 2 to obtain consumption and investment

policies ci and si.

3. Observe the resulting market-clearing price pm(t), which is announced to

the market as the unique solution of the market-clearing equation

1 =
NX

i=1

si,t(wi,t) =
NX

i=1

(1� �i,t)wi,t

pm(t)
=

✓
1 +

dt
pm(t)

◆ NX

i=1

(1��i,t)si,t (30)

where �i,t is the consumption policy constant for agent i in time t coming

from Theorem 2, and si,t is the beginning-of-period stock holding of agent

i.

4. If pi(t) 6= pm(t), the agent knows the market is out of equilibrium and

employs a learning rule to revise the guess vi to a new value for next

period.

Agents are all trying to learn the market equilibrium when they can only

observe their own private information and the market-clearing price in each

period.

Several questions now arise.

1. Does there exist a CEE equilibrium in this market, and if so, what does

it look like?

2. Are there reasonable learning rules that lead the market to equilibrium?

If the market fails to converge to equilibrium, how can it fail to converge?

Can there be periodic motion? Can there be chaos? Can this mechanism

lead to excess price volatility and excess trading volume?

We answer these questions in the next sections by focusing on the two-agent

(N = 2) case.
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5. Existence of Equilibrium

We henceforth set N = 2. Fix a time t, and for i = 1, 2 let si, wi, s0i, w
0
i

denote the number of shares of stock and total wealth held by agent i at times

t and t+ 1, respectively. Let us investigate whether there is a CEE of the form

p(d) = v⇤d and ci(wi) = �iwi, si(wi) = s0i = wi�ci(wi)
p(d) for some constants v⇤

and �i.

Let z0 = d0/d denote our i.i.d. dividend growth random variable, and define

✓i = E[z1��i ], where �i is the risk aversion parameter for agent i.

If the market clearing price is p(d) = v⇤d, then, as before, the stock return

r0 =
p(d0) + d0

d
=

v⇤ + 1

v⇤
z0

is i.i.d., so by Theorem 2 the optimal consumption policy for agent i is ci(w) =

�iw, where

�i = 1�
h
�E[r0(1��i)]

i1/�i

= 1�
✓
1 +

1

v⇤

◆ 1��i
�i

(�✓i)
1/�i . (31)

The stock holding for agent i is then updated according to

s0i =
wi � ci
p(d)

= (1� �i)

✓
p(d) + d

p(d)

◆
si = (1� �i)

✓
1 +

1

v⇤

◆
si ⌘ Cisi, (32)

where Ci is defined to be the constant (1� �i)(1 +
1
v⇤ ).

Next, we argue that, in equilibrium, unless si = 0, we must have Ci = 1.

Since s0i = Cisi for each time period, if si > 0 then Ci  1 since si,t is bounded

above by one.

The budget constraint in periods t and t+ 1 gives us the equations

s1 + s2 = 1 (33)

C1s1 + C2s2 = 1 (34)

Case 1. s1 > 0 and s2 > 0. Then equations (33, 34) imply C1 = C2 = 1,

and hence there is no trading and �1 = �2. This means either �1 = �2 (so the

17



agents are identical except for holdings), or else

✓
1 +

1

v⇤

◆ 1��i
�i

(�✓i)
1/�i (35)

is independent of i, implying a special relationship between �1, �2, and the

distribution of z (occurring with probability zero).

Case 2. One agent (say agent 2) holds zero shares of stock at equilibrium.

Then s1 = 1, C1 = 1, and there is no trading. This will be the generic case

when �1 6= �2.

Either way, writing � = �1, ✓ = ✓1, the market clearing condition becomes

1 = (1� �)(1 + (1/v⇤)) (36)

or

� = 1� v⇤

v⇤ + 1
. (37)

Combining this with equation (31) and simplifying, we obtain

v⇤ =
�✓

1� �✓
and � = 1� �✓. (38)

These values of v⇤ and � now satisfy the budget constraint, market clearing,

and optimality conditions from the definition of CEE. Comparing notation from

Theorem 2, ⇢ = �E[r1�� ] = �✓(1+(1/v⇤))1�� , it is easy to show that �✓ = ⇢1/�

and so the condition ⇢ < 1 from Theorem 2 is equivalent to �✓ < 1.

We summarize these conclusions in the following theorem.

Theorem 3 (Two-agent CEE). Suppose we have a two-agent economy with

a single dividend-paying stock in unit total supply. Suppose d0 > 0 and in period

t + 1 the stock pays a per-share dividend dt+1 = zt+1dt, where {zt} is an i.i.d.

sequence of positive random variables. The agents have CRRA utility (6, 7)

with risk aversion parameters �i > 0, i = 1, 2.

Let ✓i = E[z1��i ], 0 < � < 1 be a common discount factor, and suppose

�✓i < 1 for i = 1, 2.

Then:

18



1. There exists positive constants v⇤, �1, �2 such that the pricing function

p(d) = v⇤d and the consumption policies ci(w) = �iw form a Correct

Expectation Equilibrium (CEE), in which the consumption policy is opti-

mal for the infinite horizon utility (12) conditional on p(d), and the market

clears in each period at p(d).

2. At equilibrium there is no trading. Either (a) one agent (agent i⇤ 2 {1, 2})

has all the stock, or else (b) �1 = �2, ✓1 = ✓2, and the two agents have the

same optimal policy.

3. Define � = �i⇤ , and ✓ = ✓i⇤ in case (a) above, and � = �1 = �2, ✓ = ✓1 = ✓2

in case (b). Then at equilibrium,

v⇤ =
�✓

1� �✓
(39)

and

� = 1� �✓. (40)

6. Learning, Stability, and Chaos

6.1. Deriving the Dynamical System of the Economy

Our two agents attempt to learn the equilibrium pricing function p(d) =

v⇤d over time by starting with a guess pi(d) = vid, computing optimal policy

conditional on this guess, observing the resulting market clearing price pm, and

then updating their guess.

We specify the learning rule to be

v0i = ⌘ivm + (1� ⌘i)vi (41)

where ⌘i is a learning parameter controlling the learning speed.

The state variables are each agent’s holdings s1, s2, and price-dividend ratio

forecast v1, v2. The dynamical system is determined by how these variables get

updated in the next period (indicated by primes). Since s2 = 1� s1, we have a
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three dimensional dynamical system s01, v
0
1, v

0
2 as a function of s1, v1, v2, which

we now derive.

Recall ✓i = E[z1��i ], and let

↵i = (�✓i)
1/�i . (42)

The conditionally optimal consumption policy is ci = �iwi, where

�i = 1�
✓
1 +

1

vi

◆ 1��i
�i

↵i. (43)

The budget constraint is

ci + pms0i = wi = (pm + d)si (44)

or

s0i = (1� �i)(1 + (1/vm))si. (45)

The market clearing conditions are s01 + s02 = 1 and s1 + s2 = 1, so

(1 + (1/vm))[((1� �1)s1 + (1� �2)s2] = 1, (46)

or

1 + (1/vm) =
1

1� �1s1 � �2(1� s1)
. (47)

Substituting into the expression for s0i gives

s01 =
(1� �1)s1

1� �1s1 � �2(1� s1)
. (48)

To determine vm, we can solve (47) to get

vm =
1� �1s1 � �2(1� s1)

�1s1 + �2(1� s1)
. (49)

Now equations (41), (43), (48), and (49) are the equations defining the dy-

namics of the economy, depending on the parameters �1, �2, ⌘1, ⌘2, and the dis-

tribution of z. We now simplify the situation considerably by choosing �2 = 1,

so that the second agent has log-utility.
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Proposition 1. For a log-utility agent the choice of pricing function, hence the

choice of ⌘, has no e↵ect on the agent’s policy function, and hence no e↵ect on

the market clearing price.

Proof. By Theorem 2, the optimal policy of a log-utility agent is c = �w

where � = 1�� is independent of the state variables, and therefore not influenced

by the pricing function forecast or learning parameters. ⇤

With the state variable v2 eliminated we now have, for s1 6= 0, a two-

dimensional dynamical system in the variables s1, v1, depending on the param-

eters �1, ⌘1, and ↵1. Note

�1 = 1� ↵1

✓
1 +

1

v1

◆ 1��1
�1

, �2 = 1� �. (50)

The investment policy for agent 1 is

s01 = (1� �1)s1

✓
1 +

1

vm

◆
(51)

where, from market clearing,

1 +
1

vm
=

1

(1� �1)s1 + (1� �2)(1� s1)
. (52)

Substituting into equation (51) gives

s01 =
1

1 + 1��2
1��1

1�s1
s1

, (53)

and we obtain the dynamical equation for s1:

s01 =
1

1 + ( �
↵1

)(1 + 1
v1
)1�1/�1

⇣
1�s1
s1

⌘ . (54)

From (51),

1 +
1

vm
=

s01
(1� �1)s1

=
s01

↵1(1 +
1
v1
)

1��1
�1 s1

(55)
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so

vm =
1

s01

↵1s1(1+ 1
v1

)
1��1
�1

� 1
(56)

and hence, from (41),

v01 = (1� ⌘1)v1 + ⌘1

2

4 s01

↵1s1(1 +
1
v1
)

1��1
�1

� 1

3

5
�1

. (57)

Equations (54) and (57) define an explicit two-dimensional dynamical system

(s01, v
0
1) = F (s1, v1) (58)

describing the evolution of our two-agent economy with state variables s1, v1,

agent parameters ⌘1, �1, and depending on � and ↵1 = (�E[z1��1 ])1/�1 =

(�✓1)1/�1 .

6.2. Dynamical Behavior

We now study the dynamics of this two-agent economy as a function of the

first agent’s risk aversion parameter �1 > 0 and the first agent’s learning speed

(or “gain”) parameter ⌘1 2 (0, 1). (Recall that agent 2 is assumed to have log

utility, or �2 = 1.) We need to select a particular family of dividend growth

distributions to define the economy, so we arbitrarily suppose that the dividend

growth z is lognormal, z = eX where X is normal with mean µ > 0 and variance

�2 > 0. (Similar analysis could be applied to other choices of distribution for

z.)

For Theorem 3 to be applicable, we need the condition �✓1 < 1. Since

✓1 ⌘ E[z1��1 ] = exp[(1� �1)µ+
1

2
(1� �1)

2�2], (59)

�✓1 < 1 will be true for all �1 < 1 if we choose the discount factor � < exp(�µ�

�2/2). This is satisfied by reasonable choices of these parameters, for example
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for our simulations we choose the values � = 0.95, µ = 0.01752 , �2 = 0.00123.6

In this section, we rigorously analyze the equilibria for stability, and also

computationally study the global dynamics as a function of the parameters. In

summary, the results for 0 < �1  1 are as follows:

• As �1 ranges between ⌘1/2 and 0, the market dynamics passes through a

period doubling cascade in which it exhibits stable periodic behavior of

successively higher period, enters a region of stable, chaotic behavior, and,

for small enough �1, the system becomes divergent.

• For ⌘1/2 < �1 < 1, the market converges as time tends to infinity to an

asymptotically stable equilibrium in which agent 1 holds all the stock.7

The price-dividend ratio converges to

v⇤ =
�✓1

1� �✓1
. (60)

• For �1 = 1 the two agents are identical and hold their initial share of stock

with no trading. The price-dividend ratio converges to �/(1� �).

For �1 > 1, we find that the required condition �✓1 < 1 is lost when

�1 � �
max

⌘ 1 + µ/�2[1 +
p

1 + 2(�2/µ2) log(1/�)].

Therefore our analysis is limited to �1 < �
max

. For our parameter choices,

6In our simple model of qualitative market behavior, the time scale and market parameters

are largely arbitrary, and could be adjusted to suit the investigator without changing the basic

conclusions. Since unrealistic market parameters would distract attention from our qualitative

conclusions, we chose µ and �2 based on typical values for annual consumption growth in the

US.
7Unlike [29], we do not find that the log utility investor always accumulates all wealth in the

long-run as per the “Kelly rule”. This is because our investors make endogenous consumption

and investment portfolio decisions, as opposed to only making portfolio decisions with fixed

consumption shares. Thus, the Kelly rule is not necessarily evolutionarily stable when agents

must solve both their consumption and savings decisions endogenously.
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this bound is approximately �
max

= 32.3, safely larger than we would normally

consider for a risk aversion parameter.

• For 1 < �1 < 1 + 2µ/�2 (approximately 1 < �1 < 29.5 for our parameter

choices), the market converges as time tends to infinity to an asymptot-

ically stable equilibrium in which agent 2 (the log agent) holds all the

stock. The price-dividend ratio converges to �/(1� �).

• For 1 + 2µ/�2 < �1 < �
max

, the agent 1 equilibrium regains stability.

From a dynamical perspective, we can see that the market converges to a

stable equilibrium for all allowed values of the risk aversion parameter �1 >

⌘1/2. Hence we are especially interested in the situation where the risk aversion

parameter drops below that value ⌘1/2, because this is where we find stable

non-equilibrium dynamics corresponding to a chaotic attractor in which both

agents have stock holdings bounded away from zero for all time, and there is

perpetual trading. Depending on the specific choice of �1, we can also see stable

periodic behavior of any period, on the way to the chaotic regime.8

We now turn to a rigorous analysis of the stability of the equilibria.

First consider the case �1 < 1. By Theorem 3 there is no trading at equilib-

rium, which therefore corresponds to a fixed point of the dynamical system,

s01 = s1 = s⇤1 = 1, v01 = v1 = vm = v⇤1 =
�✓1

1� �✓1
.

The equilibrium point is (s⇤, v⇤) = (1,�✓1/(1� �✓1)). The Jacobian matrix

DF evaluated at this point is

DF(s⇤,v⇤) =

2

4 1/✓1 0

⇤ ⇤ ⇤ 1� ⌘1/�1

3

5 .

8We are not concerned here with calibrating our model to match specific market data so

we do not take a position on what the correct coe�cient of risk aversion should be. Macroe-

conomists typically calibrate their models with risk aversion greater than two while experi-

mentalists commonly find risk aversion to be less than one (see, [30, 31, 32]).
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An asymptotically stable equilibrium point corresponds to all eigenvalues of

this matrix less than one in absolute value, i.e.

✓1 > 1 and |1� ⌘1/�1| < 1. (61)

The first condition follows from �1 < 1 and the definition of ✓1. Since ⌘1 > 0,

the second condition is equivalent to �1 > ⌘1/2, and the stability conditions for

the equilibrium point become

⌘1
2

< �1 < 1 (62)

(independent of the choices of µ � 0 and � > 0).

Over the range �1 > 1,

✓1 = exp[(1� �1)µ+
1

2
(1� �1)

2�2] < 1 (63)

when

�1 < 1 +
2µ

�2
. (64)

Therefore, the stability of the equilibrium point (s⇤, v⇤) = (1,�✓1/(1��✓1))

is lost. However, we see next that the other no-trading equilibrium point

(s⇤, v⇤) = (0,�/(1��)) gains stability. This corresponds to the market equilib-

rium in which agent 2 holds all the stock.

The two dimensional dynamical system F specified in equations (54) and

(57) appears to have a singularity at s = 0; however the limit as s ! 0 exists,

so the singularity is removable and F extends to a continuous function near the

fixed point P = (0,�/(1� �)). Moreover, the partial derivatives can be shown

to have a finite limit as (s, v) ! P , and hence by L’Hopital’s Rule F extends

continuously to a C1 function at the fixed point P , whose stability is determined

by the Jacobian matrix DF evaluated at P , which (after some computation) is

DF(s⇤,v⇤) =

2

4 ✓1/�1

1 0

⇤ ⇤ ⇤ 1� ⌘1

3

5 .
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An asymptotically stable equilibrium point corresponds to all eigenvalues of

this matrix less than one in absolute value, i.e.

✓1/�1

1 < 1 and |1� ⌘1| < 1. (65)

The second condition is automatically satisfied, and the first condition is

equation (64). Thus the stability conditions for this equilibrium point become

1 < �1 < 1 +
2µ

�2
. (66)

In the small range �
max

> �1 > 1 +
2µ

�2
, we again obtain

✓1 = exp[(1� �1)µ+
1

2
(1� �1)

2�2] > 1, (67)

so the equilibrium point (s⇤, v⇤) = (1,�✓1/(1� �✓1)) regains stability.

Notice we have shown that when �1 < ⌘1/2, neither the s = 1 nor s = 0

equilibrium is stable. This indicates the potential likelihood of non-equilibrium

(i.e. non-fixed-point) attractors in the system, which we in fact observe.

To investigate numerically the global dynamics of the economy for various

values of the parameters 0 < �1, ⌘1 < 1, we fix the values of �, µ , �2 mentioned

above and simulate the dynamical system by computing F -orbits for various

initial conditions, giving the time evolution of stock holding and pricing function

forecast for agent 1.

When �1 > ⌘1/2 we observe, for initial conditions around the equilibrium,

that the economy converges to (s⇤1, v
⇤
1) and therefore this equilibrium is stable

and attracting under our adaptive learning scheme.

When �1 < ⌘1/2, we know that the equilibrium is no longer asymptotically

stable. The observed behavior can be summarized in a two parameter bifur-

cation plot (Figure 1), a plot of the (⌘, �)-plane, where ⌘ = ⌘1 and � = �1,

indicating the nature of the observed attractor for each ⌘ and � value. We see

that the economy may stably cycle with various periods, and even may exhibit

stable chaotic behavior or diverge with v ! 1.
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We also plot a similar diagram for the behavior of the stock holding s of

agent 1 in Figure 2. The white region corresponds to parameters for which the

system converges to equilibrium, and red represents parameters for which both

agents survive (no convergence to equilibrium).

To illustrate in more detail what kind behavior is observed for �, ⌘ pa-

rameters in the chaotic region, we plot time series for (�, ⌘) = (0.18, 0.6) and

(0.22, 0.8), two values in the chaotic region. In Figures 3 and 4, we plot segments

of a time series for v and s with (�, ⌘) = (0.18, 0.6). The initial 500 time steps

beginning with initial conditions v0 = 19 and s0 = 0.4 are plotted in Figure

3, to illustrate the initial transient behavior, and then in Figure 4 we plot 500

time steps starting from t = 5000 to illustrate the long-term behavior. There

is perpetual trading of small increments, and the price-dividend ratio is seen

to fluctuate between about 22 and 70. Figures 5 and 6 tell a similar story for

(�, ⌘) = (0.22, 0.8).

In Figures 7 and 8, we examine the initial transient behavior a little more

closely, this time plotting price and return for the first 100 time steps. In Figure

7 we have a period of seemingly stable upward trend of the price, which then

gradually becomes more volatile, breaking into an oscillatory behavior, which,

we know from previous graphs, will begin to oscillate with higher and higher

period until reaching a long term chaotic attractor. In Figure 8, the chaotic

behavior is visible earlier, within only a few time steps.

We point out that we are not observing bifurcation in these plots: the pa-

rameters are fixed. Rather, the natural behavior of the system in Figure 7 is

to begin with an appearance of stability with a slow trend, followed by gradual

encroachment of chaos reflected in the endogenous market clearing price. The

long term asymptotic behavior is chaotic.

Another view of the asymptotic attractors is shown by the phase portraits in

Figures 9 and 10. Here we fix � = 0.15 and let ⌘ vary from 0.1 to 0.6, plotting the

attractors we observe after all transients have dissipated. As expected, we begin
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with an attracting fixed point, bifurcate to a periodic orbit, and by ⌘ = 0.48

observe a chaotic attractor.

For yet another view, Figure 11 shows an orbit diagram focusing on the

price-dividend ratio v, with ⌘ = 0.5 and � varying along the horizontal axis. On

the vertical axis are plotted the numerically observed limit points of F -orbits.

Above � = 0.25, we expect only a single point, the stable equilibrium. As �

decreases below 0.25, the picture reproduces the classic period-doubling cascade

toward chaos observed in generic one-dimensional dynamical systems. (See [28]

for a rigorous analysis confirming that this is actually what is happening.)

7. Conclusions

We have demonstrated that even in the smallest heterogeneous version of

the Lucas model, with a single asset and two boundedly rational investors, it is

easy to produce dynamical behavior of the endogenous asset prices and trading

volume that is inconsistent with rational expectations behavior. Our investors

are boundedly rational only in the sense that their state space is restricted to

exclude private information of other investors, such as wealth and degrees of

risk aversion, but they continue to use publicly available market information

and to be forward-looking when making their investment decisions.

In our two-investor market with learning, one investor has log-utility and the

other has CRRA risk aversion parameter � > 0 and learning (gain) parameter

⌘, 0 < ⌘ < 1. Among our results, we find that when � < ⌘/2 the market avoids

equilibrium and can be chaotic; when ⌘/2 < � < �0 the market converges

over time to an asymptotically stable equilibrium in which the least risk-averse

investor (according to whether or not � > 1) holds all the stock. (Here �0 =

1 + 2µ/�2 ⇡ 29.5 for our parameter choices.) When � > 1 market stability

is highly likely. While this may o↵er some comfort to financial economists, we

note that market instability is a fundamental property of the model for some

parameter ranges even in this very simple version of the model. The stability
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of more complex models over broad parameter ranges remains an open question

but the recent work of [16] casts some doubt that stability will be ubiquitous.

One way to interpret our results is that they contribute to the discussion of

constant-gain learning, as discussed at length by Evans and Honkapohja [23],

who examine various constant gain learning models as sources of persistent

dynamics. Their models di↵er somewhat from ours in that they incorporate

exogenous price shocks, while in our model the market price is determined en-

dogenously through market-clearing from an exogenous dividend shock. In the

Evans-Honkapohja framework, convergence to the rational expectations equi-

librium with stochastic shocks can only happen with decreasing-gain learning

([23], p. 48). Our stochastic framework provides an alternate situation in which

constant gain learning can frequently lead to convergence to equilibrium.

Least squares learning and Bayesian learning correspond to decreasing gains

learning rules. Indeed, other numerical experiments we conducted suggest that

convergence to equilibrium is stable for all positive values of risk aversion, in our

framework, if the gains process corresponds to least squares learning (decreasing

like 1/t).

However, a constant gain learning rule, as pointed out in [23], is a prudent

rule if structural market changes are expected in the future. It is also a reason-

able rule for the following reason. If we denote by vt the current price-dividend

ratio estimate by agent 1, and vmt the ratio of the realized market-clearing price

to the dividend dt, then our learning rule can be restated as

vt = vt�1 + ⌘(vmt�1 � vt�1),

where ⌘ is our gain parameter. This can be solved recursively as

vt = (1� ⌘)tv0 + ⌘
tX

i=0

(1� ⌘)ivmt�1�i,

meaning that constant gain learning corresponds asymptotically to estimating

v by means of an exponentially weighted average of historical lagged market

values. This kind of forecasting is common in market practice.
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Another note worth making concerns what we have learned about existence

of equilibria. Our CEE-style equilibria are also REE-style equilibria, because

endowing agents with complete market information after the CEE has been

reached would not change their behavior, since they are already behaving opti-

mally and agree on the true price forecast. Most of our equilibria are “corner”

solutions in which one of the two agents asymptotically holds all the wealth and

the other holds zero, corresponding to the homogenous agent case. However,

Theorem 3 identifies an additional kind of equilibrium. When ✓1 = ✓2, it is pos-

sible that the agents have di↵ering risk aversion parameters, but have the same

optimal policy and co-exist at a no-trading equilibrium in which both agents

hold a positive fraction of the supply of stock, agree on the pricing function

(39), and invest and consume optimally in every period.

For the log-normal dividend growth process we considered above, from Equa-

tion (59) we can conclude that this 2-agent equilibrium takes place whenever

(1� �1)µ+
1

2
(1� �1)

2�2 = (1� �2)µ+
1

2
(1� �2)

2�2.

For any �1 < 1 there will be a “dual” value �2 > 1 satisfying this equation.

Therefore any CRRA agent has a distinct “dual” agent for which the pair form

a heterogeneous economy with nontrivial REE and explicit pricing and policy

functions given by the formulas in Theorem 3.

As a final note, we remark that our results illustrate that chaos can be

deceptive. Looking back at Figures 7 and 3, agents observing the apparent

bifurcations might assume that the system parameters are changing, when in

fact they are not. Instead, the economy is gradually falling into the basin of

attraction of a chaotic attractor, but unpredictable behavior takes more than

100 time steps to begin to be visible. An observer of prices in the setting of

Figure 7 cannot tell the di↵erence, during the first 40 periods, between a gentle

price trend and the early stages of a descent into a chaotic basin. This should

caution observers of vastly more complex real economies to be wary of drawing

long-term conclusions from observations of finite time series.
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Bifurcation plot for Price-Dividend ratio v

Figure 1: This bifurcation plot of the price-dividend kernel v summarizes the asymptotic v

dynamics as a function of the risk aversion parameter � and the learning speed parameter ⌘.

Each point is colored to indicate the kind of attractor we observe. Color dictionary: white:

the price-dividend ratio converges to a fixed point (equilibrium); light green: converges to

attracting period 2 orbit; orange: period 4; dark blue: period 8; purple: period 6; light blue:

period 5; red: bounded, either chaos or period > 8; grey: divergent. The initial conditions

used are s0 = 0.4, v0 = 30, with parameters � = 0.95, µ = 0.01752,�2 = 0.00123.
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friction parameter ⌘
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Bifurcation plot for Holdings s

Figure 2: Bifurcation plot of the stock holding variable s. Color Dictionary: white: converges

to s⇤ = 1 (agent 2 dies); red: s remains bounded below 1 (both agents survive); grey: price

diverges to infinity. Parameters as in Figure 1.
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Figure 3: The graphs of price-dividend ratio and stock holding when �1 = 0.18 and ⌘ = 0.6.

A single path simulation with v0 = 19, s0 = 0.4, time step 0� 500, �, µ,�2 as before.

Figure 4: The graphs of price-dividend ratio and stock holding when �1 = 0.18 and ⌘ = 0.6.

A single path simulation with v0 = 19, s0 = 0.4, time step 5000� 5500, �, µ,�2 as before.
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Figure 5: The graphs of price-dividend ratio and stock holding when �1 = 0.22 and ⌘ = 0.8.

A single path simulation with v0 = 25, s0 = 0.7, time step 0� 500, �, µ,�2 as before.

Figure 6: The graphs of price-dividend ratio and stock holding when �1 = 0.22 and ⌘ = 0.8.

A single path simulation with v0 = 25, s0 = 0.7, time step 5000� 5500, �, µ,�2 as before.
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Figure 7: The graphs of price and stock return when �1 = 0.18 and ⌘ = 0.6. A single path

simulation with v0 = 19, s0 = 0.4, time step 0� 100, �, µ,�2 as before.

Figure 8: The graphs of price and stock return when �1 = 0.22 and ⌘ = 0.8. A single path

simulation with v0 = 25, s0 = 0.7, time step 0� 100, �, µ,�2 as before.
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Figure 9: Plots of the attractor for � = 0.15 and various values of the learning parameter ⌘.

Each figure shows the attractor by plotting the orbit from t = 5000 to t = 6000 in order to

remove initial transients. In all cases the initial values were s0 = 0.4 and v0 = 30. Here we

see the attractors are fixed points or periodic orbits.
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Figure 10: Plots of the attractor for � = 0.15 and various values of the learning parameter ⌘

larger than those of the previous figure. Each figure shows the attractor by plotting the orbit

from t = 5000 to t = 6000 in order to remove initial transients. In all cases the initial values

were s0 = 0.4 and v0 = 30. Here we see the attractors become complex, indicating chaos.
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Figure 11: The orbit diagram for the price-dividend ratio function in the system and using

⌘ = 0.5 and initial seed v0 = 30 and s0 = 0.4. A point is plotted above a particular value

of risk aversion � if it is an attracting value of v for the parameters (�, 0.5). For � > 0.25

we begin with an attracting fixed point, and as � decreases we bifurcate to more complex

attractors.
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