
DENJOY’S THEOREM WITH EXPONENTS
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Abstract. If X is the (unique) minimal set for a C1+α diffeomorphism of the circle

without periodic orbits, 0 < α < 1, then the upper box dimension of X is at least
α. The method of proof is to introduce the exponent α into the proof of Denjoy’s

theorem.

1. Introduction

If f is a homeomorphism, the set Γ is a minimal set for f if Γ is compact, non-
empty, invariant, and minimal (relative to inclusion) with respect to these three
properties. Equivalently, Γ 6= ∅ is minimal if f(Γ) = Γ and every f -orbit in Γ is
dense in Γ.

The simplest examples of minimal sets are fixed points or periodic orbits. Zorn’s
Lemma implies that every homeomorphism of a compact manifold has at least one
minimal set.

In this paper we consider homeomorphisms of the circle, where Poincaré [13]
already understood all the possibilities. Either f has a periodic orbit, in which case
all its minimal sets are finite, or else f has no periodic orbits, in which case f has
a unique minimal set which is either S1 itself (the transitive case) or a Cantor set
C (the intransitive case). In the transitive case, f is topologically conjugate to an
irrational rotation. In the intransitive case, C is the set of accumulation points of
the forward f -orbit of every point. Moreover, for each interval I disjoint from C,
fn(I) ∩ fm(I) = ∅ for n 6= m.

The intransitive case can be realized as a C1 diffeomorphism (Bohl [3]). This
is often called a Denjoy counterexample because of Denjoy’s theorem, which states
that such a diffeomorphism cannot be too smooth:

Denjoy’s Theorem [4]. If f is a C1 diffeomorphism of S1 without periodic points,
and if the derivative Df has bounded variation (e.g. if f is C2), then f is topolog-
ically conjugate to an irrational rotation.

Herman [8] produced Denjoy counterexamples of class C1+α for all α < 1. He
also [private communication] raised the following

Question. for which Cantor subsets C of the circle S1 does there exist a C1 diffeo-
morphism of S1 having minimal set C?
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For r ≥ 0, we will denote by C(r) the class of Cr-minimal sets; that is,

C(r) = {C ⊂ S1 : C is a minimal Cantor set for some Cr diffeomorphism of S1}.

Since any two Cantor sets are homeomorphic, it is easy to see that C(0) includes
every Cantor set. Moreover, Denjoy’s theorem implies that C(r) is empty for r ≥ 2.
Other cases are more subtle.

There are partial answers to Herman’s question about C(1). For example, the
usual middle thirds Cantor set does NOT belong to C(1). See McDuff [9], Norton
[11] for more results excluding certain Cantor sets. The purpose of this note is
to present the proof of the following theorem. Let BD(X) denote the upper box
dimension of the set X (defined below).

Theorem 1. For any α ∈ [0, 1), if C ∈ C(1 + α) then BD(C) ≥ α.

This statement is sharp, as shown in section 4 below. The following corollary is
immediate.

Corollary 1 (Denjoy’s Theorem “with exponents”). If f is a diffeomorphism
of the circle with minimal set C and BD(C) = α ∈ (0, 1), then f /∈ C1+β for any
β > α.

Theorem 1 has a simple corollary for planar diffeomorphisms. Define the ω-limit
set ωf (x) of a point x for a homeomorphism f to be the set of limit points of the
sequence {fn(x) : n ∈ Z+}.

Corollary 2. Let K be a C1+α circle in the plane, and let f be a C1+α diffeomor-
phism of a neighborhood of K into itself such that f(K) = K.

If f |K has no periodic orbits, then, for all x ∈ K,

BD(ωf (x)) ≥ α.

Proof of Corollary 2. There is a C1+α diffeomorphism h defined on a neighborhood
of K that takes K to the unit circle S. The restriction of g = hfh−1 to S is an
ordinary C1+α circle diffeomorphism. If ωg(h(x)) = S, then BD(ωg(h(x))) = 1.
Otherwise Theorem 1 applies. Either way ωf (x) ≥ α since box dimension is a
diffeomorphism invariant. QED

Remarks. 1. Ideas related to those of Corollary 2 arose in a paper of J. Harrison
[7]. There, she constructed a C2 diffeomorphism f of an annulus with an invariant
fractal circle (a quasicircle) on which f is conjugate to a Denjoy counterexample.
The diffeomorphism can be made C2+α but this forces the Cantor minimal set to
have Hausdorff (and box) dimension 1 + α. (An important feature of this example
is that Df is the identity at each point of the minimal set.)

However, a version of Corollary 2 for smoothness C2+α and dimension 1 + α
fails to be true without further hypotheses, even for quasicircles in the plane. This
is because G.R. Hall [6] has constructed a C∞ diffeomorphism g of an annulus
with a Lipschitz invariant circle on which g is topologically conjugate to a Denjoy
counterexample. In Hall’s example, the rotation number is required to be well-
approximable by rationals (Liouville), while in the Harrison example the rotation
number is required to be badly approximable by rationals (e.g. golden mean). It is
unknown whether either kind of example exists for all irrational rotation numbers.
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2. P. McSwiggen [10] has produced higher dimensional “Denjoy counterexam-
ples” of class Cn on the n-torus, n ≥ 2. It is tempting to conjecture that a statement
similar to Theorem 1 holds there: in dimension n, a Cn+α diffeomorphism in the
topological conjugacy class of McSwiggen’s example must have a minimal set with
dimension at least n− 1 + α.

For n = 2, some geometric restrictions on the possible minimal sets are derived
in [12].

The proof of Theorem 1 proceeds in two steps. In section 2, we show that the
box dimension of a compact subset of R is at least α if the “degree α gap sum” is
infinite (Proposition 1). Then in section 3, we show that any C ∈ C(1 + α) must
have infinite degree α gap sum (Theorem 2).

In section 4, we show that Theorem 1 is sharp: for every α ∈ (0, 1) there is a
diffeomorphism f ∈ C1+α such that its minimal set has box dimension α.

Acknowledgement: The author thanks the referee for helpful suggestions.

2. Box dimension

The upper box dimension BD(X) of a bounded nonempty set X in Rn is defined
as follows. For each ε > 0 let N(ε) denote the minimal number of ε-balls needed to
cover X. Then

BD(X) = lim sup
ε→0

logN(ε)
log(1/ε)

.

That is, BD(X) is roughly the maximum exponential growth rate of N(ε) with
respect to 1/ε. The lower box dimension is defined the same way with the lim inf
instead of the lim sup. One convention is to use the term “box dimension” for
the common value of the upper and lower box dimensions if they are equal. (Other
names for the same value are “capacity dimension”, “Minkowski content”, “entropy
dimension”, “Kolmogorov dimension”, and “box-counting dimension” .) In this
paper we will simply say “box dimension” as short for “upper box dimension”, and
so we will enjoy the virtue that the box dimension always exists for any bounded
nonempty set.

This is a well-known measure of dimension, and has many nice properties. See
Falconer [5] for further details and references. For example, the box dimension is
monotone with respect to set inclusion, is a Lipschitz invariant, and is equal to the
topological dimension for submanifolds. It also agrees with the Hausdorff dimension
for self-similar sets. In general, the box dimension of any set is always greater than
or equal to the Hausdorff dimension, and inequality is possible even for closed sets.

If X is a compact subset of R or R/Z, let I(X) denote the collection of all
bounded connected components of the complement of X, called the gaps of X.
Each gap in I(X) is thus an open interval with endpoints in X.

For 0 < α ≤ 1 we define
Gα(X) =

∑
|I|α,

where the sum is taken over all intervals I ∈ I(X). This is called the “degree α
gap sum of X”. This concept was introduced by Besicovitch and Taylor [2], who
also knew the following proposition, essential for our purposes:

Proposition 1. If X ⊂ R is compact and BD(X) < α, then Gα(X) <∞.

It so happens the converse is also nearly true [1]: if X is compact, has measure
zero, and Gα(X) < ∞, then BD(X) ≤ α. This means that if X is compact and
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has Lebesgue measure zero, then

BD(X) = inf{s : Gs(X) <∞}.
Proof of Proposition 1. The proof may be found in Bates-Norton [1]; we give the
details here for the reader’s convenience.

The first remark is that we may calculate BD(X) by restricting attention to the
binary decomposition of R. For k ∈ Z, a binary k-interval is an interval of the form
[l/2k, (l+ 1)/2k) for some l ∈ Z. For a bounded X ⊂ R, let ν(k) be the number of
binary k-intervals that meet X (necessarily finite). The reader may verify that for
2−(k+1) < ε ≤ 2−k,

N(ε)/2 ≤ ν(k) ≤ 2N(ε),

and this means

BD(X) = lim sup
k→∞

log ν(k)
k log 2

.

If BD(X) < α, then for sufficiently large k and some δ > 0,

log ν(k) < (α− δ)k log 2,

or ν(k) < 2k(α−δ). This implies

(1)
∞∑
k=1

ν(k)2−kα <∞.

Let U be the union of the gaps of X, and let U denote the binary Whitney
decomposition of U . That is, U is a collection of intervals with the following prop-
erties:

i. every element of U is a binary k-interval for some k,
ii. the union of all elements of U is U , and distinct elements of U are disjoint,

and
iii. for all I ∈ U ,

|I| ≤ dist(I, ∂U) ≤ 4|I|.
(See Stein [14] for details of the construction.)

Now it is easy to check that for any gap J ,
∑
{|I|α : I ∈ U and I ⊂ J} is

comparable to |J |α, and so Gα(X) <∞ if and only if

(2)
∑
{|I|α : I ∈ U} <∞.

To establish (2), we argue as follows. Let Uk be the collection of binary k-
intervals of U , and Xk be the collection of binary k-intervals meeting X. (Recall
Xk has cardinality ν(k).)

For any interval I, let I ′ denote the interval with length 10|I| and the same
midpoint as I. Let X ′k = {I ′ : I ∈ Xk}.

Then, by property (iii) above, every I ∈ Uk is contained in some J ∈ X ′k, and
moreover any J ∈ X ′k contains at most 10 elements of Uk. This means

cardinality(Uk) ≤ 10ν(k).

Therefore ∑
{|I|α : I ∈ U} =

∑
k

∑
{|I|α : I ∈ Uk}

=
∑
k

(cardinality(Uk))2−kα ≤
∑
k

10ν(k)2−kα <∞

using (1).



DENJOY’S THEOREM WITH EXPONENTS 5

3. Proof of Theorem 1

Let B1+α denote the collection of all C1+α diffeomorphisms f of the circle R/Z
with irrational rotation number and a Cantor minimal set Γf . By Herman [8], B1+α

is nonempty for all α ∈ [0, 1).
Theorem 1 follows immediately from Proposition 1 and

Theorem 2. If f ∈ B1+α then Gα(Γf ) =∞.

The idea of the proof is simply to adapt the standard Denjoy argument to the
exponent α. Here we adapt the Schwarz version of the proof of Denjoy’s theorem,
as described in Sullivan [15].

For the sake of simplifying the notation our computations will really take place
in the cover R of R/Z. The choice of lift will not matter, and we use the same
letter f to denote it. Write Γ = Γf .

We assume for contradiction that Gα(Γ) = G < ∞. Since Df is α-Hölder and
bounded below, logDf is also α-Hölder. Choose a constant M > 0 so that

| logDf(x)− logDf(y)| ≤M |x− y|α.

We denote the closure of a set X by cl(X). Recall I(Γ) is the collection of bounded
connected components of the complement of Γ. We need three lemmas.

Lemma 1. Let I be any interval of I(Γ). For all x, y ∈ cl(I) and for all n > 0,

e−MG ≤ Dfn(x)
Dfn(y)

≤ eMG.

Proof. For any such x, y,

| log
Dfn(x)
Dfn(y)

| = |
n−1∑
i=0

logDf(f i(x))− logDf(f i(y))|

≤
n−1∑
i=0

M |f i(x)− f i(y)|α ≤MG.

Lemma 2. For I as above, and for any x ∈ cl(I),

∞∑
n=0

(Dfn(x))α ≤ GeMGα

|I|α
.

Proof. By the Mean Value Theorem, for each n there is xn in I so that |fn(I)| =
|I|Dfn(xn).

So if x ∈ cl(I), then Dfn(x) ≤ eMGDfn(xn) by Lemma 1, and so∑
Dfn(x)α ≤

∑
eMGαDfn(xn)α =

∑
eMGα|fn(I)|α/|I|α ≤ GeMGα/|I|α.
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Lemma 3. For any I ∈ I(Γ), any x ∈ cl(I), and any C > 1, there exists a δ > 0
such that for all y and all n > 0,

|x− y| < δ implies Dfn(y) ≤ CDfn(x).

Proof. Suppose I, x, and C are chosen and fixed. We establish the conclusion
by induction on n. The statement for n = 1 is immediate by continuity of Df .
Suppose by induction that Df i(y) ≤ CDf i(x) for all y within δ of x, and for
i = 0, 1, 2, . . . , n− 1.

By shrinking δ if necessary, we may assume without loss of generality that

(3) exp[MCαδαGeMGα/|I|α] ≤ C.

(Note that this condition is independent of n.)
Now we estimate as before:

| log
Dfn(x)
Dfn(y)

| = |
n−1∑
i=0

logDf(f i(x))− logDf(f i(y))|

≤
n−1∑
i=0

M |f i(x)− f i(y)|α

=
n−1∑
i=0

MDf i(xi)α|x− y|α

by the Mean Value Theorem, for some choices xi between x and y,

≤
n−1∑
i=0

MCαDf i(x)αδα by induction

≤MCαδαGeMGα/|I|α by Lemma 2.

Now taking exponentials and applying (3) yields Dfn(y) ≤ CDfn(x), complet-
ing the induction.

With these lemmas, we may now complete the proof of Theorem 2. Fix any
I ∈ I(Γ), and let x be an endpoint of I.

Choose any C > 1 and let δ be the number asserted to exist by Lemma 3. Let
B denote the open ball with center x and radius δ. By Lemma 2, Dfn(x) tends to
zero as n→∞. By Lemma 3, Dfn tends uniformly to zero on B.

Choose N so large that |fm(B)| < δ/3 for all m > N . Since x ∈ Γ, it is f -
recurrent. Hence we may choose k > N so that |fk(x)− x| < δ/3. By choice of N ,
this means that fk(B) is strictly contained in B. Therefore fk has a fixed point
in B. This means f has a periodic point, contradicting our hypothesis that f is a
Denjoy counterexample.



DENJOY’S THEOREM WITH EXPONENTS 7

4. Theorem 1 is sharp

The construction of Denjoy counterexamples is standard (see e.g. Herman [8]).
It turns out that the standard construction of a C1+α counterexample does the
trick: the box dimension of its minimal set is equal to α, and therefore the lower
bound on box dimension in the statement of Theorem 1 cannot be increased. The
main point is that the box dimension of such minimal sets is easily calculated using
the gap sums of section 2.

We sketch here one method of constructing examples that will serve our purposes.
Let R denote any irrational rotation of S1 = R/Z. Choose a Hölder exponent
α ∈ (0, 1) and set β = 1/α.

We may choose M = M(β) ∈ Z+ large enough that ((M + 1)/M)β < 5/4.
For all n ∈ Z, define

ln = A/(|n|+M)β ,

where A > 0 is chosen so that
∑
ln = 1. For each n, let In be a closed interval on S1

of length ln, and arrange the collection {In : n ∈ Z} so that the intervals are pairwise
disjoint and have the same circular ordering as the R-orbit {Rn(0) : n ∈ Z}. (This
can always be done for any irrational rotation and any positive bi-infinite sequence
{ln} so long as

∑
ln ≤ 1.)

The complement C = S1 \
⋃
int(In) is a Cantor set. If f is defined on

⋃
int(In)

so that f |In is an order-preserving homeomorphism onto In+1, then f will extend
by continuity to a homeomorphism of S1 with minimal set C.

It follows from the definition of ln that∑
(ln)s <∞ if and only if s > α.

Therefore, from section 2, BD(C) = α.
It remains to specify f so that f ∈ C1+α. Let φ : [0, 1] → [0, 4] be a C∞ bump

function such that φ−1(0) = [0, 1/3]∪ [2/3, 1] and
∫
φdx = 1. For each n, let an,bn

denote, respectively, the left and right endpoints of In.
Define g : S1 → R by g(x) = 1 for x ∈ C, and

g(x) = 1 + (
ln+1 − ln

ln
)φ(

x− an
ln

)

for x ∈ In.
It is easy to see that g is well-defined and continuous on S1. One can check that

the choice of M(β) in determining the lengths ln implies that 0 < g < 2 on S1.
Also, a simple calculation shows that∫ bn

an

g = ln+1 and
∫ 1

0

g = 1.

Now define
f(x) = a1 +

∫ x

a0

g(t) dt.

Since g is positive, continuous, and
∫ 1

0
g = 1, f is (the lift of) a C1 diffeomorphism

of S1. The reader can verify that f(In) = In+1 for all n. The modulus of continuity
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of Df = g is determined by the estimate on each interval. On In, the variation of
g is on the order of

| ln+1 − ln
ln

| = O(1/|n|)

over an interval whose length is O(1/|n|β). Hence g is (1/β = α)-Hölder and so
f ∈ C1+α.
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