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Abstract. We define the notion of rotations on infinite binary trees, and construct

an irrational tree rotation with bounded distortion. This lifts naturally to a Lipschitz
circle homeomorphism having the middle-thirds Cantor set as its minimal set. This

degree of smoothness is best possible, since it is known that no C1 circle diffeomor-

phism can have a linearly self-similar Cantor set as its minimal set.

1. Introduction

Let A1 and A2 be disjoint compact subintervals of [0, 1), and let L be the smallest
compact interval containing A1 ∪A2.

Let S : A1 ∪ A2 → L be a mapping such that the restrictions S|Ai are affine
surjections onto L for each i. Then we define the affine Cantor set KS by

KS ≡ {x ∈ L : Si(x) ⊂ A1 ∪A2, for all i ≥ 1}.

We call this a two-branched affine Cantor set. If we replace the restriction that
S be locally affine with the requirement that |S′| > 1, we call KS a two-branched
hyperbolic Cantor set. (This is sometimes also called a dynamically defined Cantor
set, a self-similar Cantor set, or a “cookie cutter”.) A k-branched affine Cantor set
or hyperbolic Cantor set is defined similarly for any k ≥ 2.

A different kind of Cantor set arises as follows. Let f be an orientation preserving
homeomorphism of the circle S1 = R/Z. Poincaré showed that if f has no periodic
orbits, then either

(1) every orbit is dense in the circle, and f is topologically conjugate to the
irrational rotation Rα(x) = x+ α, where α is the rotation number of f , or

(2) no orbit is dense, and every orbit accumulates on a unique Cantor set Γf .
(In this case the homeomorphism is called a Denjoy counterexample because of
Denjoy’s theorem below.) The Cantor set Γf is minimal for f , meaning that it
is compact, non-empty, f -invariant, and has no compact non-empty f -invariant
subsets.

Intuitively, the Cantor sets Γf are fundamentally different from the self-similar
Cantor sets KS described above. To make precise the sense in which this is true,
we introduce the following terminology.

For r ≥ 0, denote by C(r) the class of Cr-minimal sets; that is,

C(r) = {C ⊂ S1 : C is a minimal Cantor set for some Cr diffeomorphism of S1}.

Since any two Cantor sets in S1 are ambiently homeomorphic, it is easy to see
that C(0) includes every Cantor set. On the other hand, C(r) is empty for r ≥ 2
due to:
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Denjoy’s Theorem [1]. If f is a C1 diffeomorphism of S1 without periodic points,
and if the derivative Df has bounded variation, then f is topologically conjugate to
an irrational rotation.

Herman [3] produced Denjoy counterexamples of class C1+α for all α < 1, so
C(r) is non-empty for all r < 2. Clearly C(r) ⊂ C(s) if s < r. The intuitive idea
mentioned above can be stated as follows:

Theorem A [5]. C(1) contains no affine Cantor sets. Moreover, if the generating
map S is C2-sufficiently close to affine, KS /∈ C(1).

See also McDuff [4], and [6] for other results about C(r).
In this paper we show that at least some affine Cantor sets do belong to C(r) for

all r < 1. In fact we will prove

Theorem 1. If S is a two-branched affine Cantor set as defined above and |A1| =
|A2|, then there is a bi-Lipschitz homeomorphism f of the circle (Lipschitz with
Lipschitz inverse) such that Γf = KS.

The rotation number of the f is the golden mean.

In particular, the usual middle-thirds Cantor set (scaled down to fit inside the
fundamental domain [0, 1) of R/Z) is the minimal set for some bi-Lipschitz circle
homeomorphism, but not for any C1 circle diffeomorphism.

When S is defined as in Theorem 1 with |A1| = |A2|, we call KS a linear Cantor
set to distinguish this special case from the more general affine case.

The method of proof of Theorem 1 is the following. A hyperbolic Cantor set K
has a natural tree structure, discussed below. Such a tree has a natural circular
ordering, and the resulting order topology. The rotation number of a tree homeo-
morphism can be defined in the usual way. We construct a tree homeomorphism
with rotation number equal to the golden mean. This can be lifted in a natural way
to a circle homeomorphism f with Γf = K. The tree homeomorphism can be con-
structed in such a way that it has bounded distortion in the sense that it changes
the “depth” of any node in the tree by a bounded amount. In the case when K is a
linear Cantor set, bounded distortion on the tree level lifts to a Lipschitz condition
on f .

Remark. It might have been tempting to think that the reason for Theorem A is an
unbounded distortion forced by a conflict between the scaling of gaps of an affine
Cantor set and the order property of orbits for an irrational rotation. Theorem 1
shows that this is not the case; instead the difficulty rests more delicately on the
continuity of the derivative of f .

2. Trees

Intuitively, a tree is simply a graph containing no closed loops; it can be specified
by giving a list of nodes, together with a description of which nodes are connected
by edges. In this paper we will be considering infinite binary trees where every
node (except one isolated node) is the parent of two other nodes (its children), and
the only edges are those connecting parent and child.

Since our tree rotations will always take nodes to nodes, we will henceforth
ignore the edges of the tree, and simply consider the nodes, along with the relation
of parenthood, as follows. (The whole discussion is determined by the structure of
Cantors sets on the circle.)
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First, we define the complete circular binary tree T . T is a countable set of
elements called nodes, with a certain labelling. There are two special nodes, r and
r∗, called the root node and the isolated node, respectively. The remaining nodes
are in one-to-one correspondence with the set of nonempty finite words from the
alphabet {0, 1}. The node corresponding to i1 . . . ik, k ≥ 1, is denoted r(i1 . . . ik).

The node r(i1 . . . ik) is called the parent of each of the two nodes r(i1 . . . ik0)
and r(i1 . . . ik1); they are its children. r is the parent of r(0) and r(1). The isolated
node n has no children. Descendant and ancestor are defined in the obvious way.
To visualize T as a graph, connect every non-isolated node with each of its children
by an edge. (See figure 1.)

[figure 1]

If u is the node r(i1 . . . ik), we will use the notation u(j1 . . . jl) to denote the
node r(i1 . . . ikj1 . . . jl).

The level of a node u ∈ T is defined by `(u) = 0 if u = r or r∗; `(u) = k if
u = r(i1 . . . ik) for some choice of i1 . . . ik.

There is also a natural (left-right) linear order structure we can place on T .
This simplest way to specify this is to define an injection µ : T → (0, 1]. We let
µ(r) = 1/2, µ(r∗) = 1, and

µ(r(i1, . . . , ik)) = 2−k−1 +
k∑
j=1

ij2−j .

The range of µ is the set of dyadic rationals in (0, 1]. We pull back the natural
circular ordering on (0, 1] to T via µ, and denote it by ≺. That is, if u, v, w ∈ T ,
then u ≺ v ≺ w iff µ(u) < µ(v) < µ(w) mod 1.

This ordering induces the usual order topology on T , for which the open intervals
form a basis. In this topology, T is homeomorphic to a countable dense subset of
the circle.

Effectively now there are two orderings on T : the “left-right” circular ordering,
and the “vertical” partial order induced by the relation of parenthood. We will
write u l v if v is a descendant of u.

By a subtree we mean a subset of T with the induced orderings.
A subtree S of T is called an ideal (with respect to l) if S contains r and r∗,

and if moreover S contains u whenever S contains v and u l v.
Let g be an order-preserving bijection of T (relative to the circular order ≺).

Then g is a homeomorphism, and the push-forward µ(g) defined by µ(g)(x) =
µ(g(µ−1(x))) is a homeomorphism of the dyadic rationals in the circle. Therefore
µ(g) extends to an orientation-preserving homeomorphism of the circle, and as such
it has a rotation number. This will be our definition of the rotation number of g
on T . For this reason, we call any such g a tree rotation.

There is a natural one-to-one correspondence τ between T and the collection I
of connected components (intervals) of S1 \KS . To describe this, we rotate KS so
that its left endpoint is at 0. Let A1 = [0, a], A2 = [b, c], where 0 < a < b < c < 1.
Let φ0 : L → A1 and φ1 : L → A2 be the two branches of the inverse of S. Then
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τ : T → I is defined by

τ(r∗) = (c, 1)

τ(r) = (a, b)

τ(r(i1 . . . ik)) = φi1 ◦ · · · ◦ φik [(a, b)].

It is easy to check that τ is order-preserving.
Next, we say that the node u immediately precedes the node v in a finite ideal S

of T if there is no node w of S such that u ≺ w ≺ v.
We need these lemmas for later use.

Lemma 1. If u immediately precedes v in a finite ideal S of T then `(u) = `(v)
implies `(u) = `(v) = 0, and hence u = r, v = r∗.

Proof. For contradiction, assume k := `(u) = `(v) 6= 0. Then for some choice of
indices, u = r(i1 . . . ik) and v = r(j1 . . . jk). Let

m = min{n : in 6= jn} ≥ 1,

and let
w = r(i1 . . . im−1)

if m > 1 or w = r if m = 1. Then u = w(im . . . ik) and v = w(jm . . . jk). Since
S is an ideal and u ∈ S, this means w ∈ S. Also, w lies between u and v. This
contradicts the choice of u and v in S.

Lemma 2. Suppose S is a finite ideal of T , and suppose u immediately precedes v
in S. Then there is a unique node w := S(u, v) of T \ S such that

(i) S ∪ {w} is an ideal in T ,

(ii) w is between u and v (i.e. u immediately precedes w and w immediately
preceds v in S ∪ {w}), and

(iii) `(w) = max{`(u), `(v)}+ 1.

Furthermore any other node of T between u and v has level greater than `(w).

Proof. If u = r and v = r∗, let w = u(1). Otherwise, by Lemma 1, `(u) 6= `(v).
Let w = u(1) if `(u) > `(v), otherwise let w = v(0). Clearly w satisfies (i),(ii), and
(iii). We leave uniqueness and the remaining claim as an excercise.

Lemma 3. Suppose u, v, u′, v′ are nodes of T satisfying `(u) < `(v), `(u′) > `(v′),
and max{|`(u)− `(u′)|, |`(v)− `(v′)|} ≤ 2.

If x, y are nodes with `(x) = `(v) + 1 and `(y) = `(u′) + 1, then |`(x)− `(y)| ≤ 1.

Proof. For contradiction suppose `(x) ≥ `(y) + 2. Then

`(x) ≥ `(u′) + 3 ≥ `(v′) + 4,

so `(v) ≥ `(v′) + 3, a contradiction. Similarly if `(y) ≥ `(x) + 2.
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Lemma 4. Let u, v, u′, v′ be distinct nodes of a finite ideal S of T such that u is
adjacent to v, u′ is adjacent to v′, and

max{|`(u)− `(u′)|, |`(v)− `(v′)|} ≤ 2.

Then
|`(S(u, v))− `(S(u′, v′))| ≤ 2.

Proof. By Lemma 1, `(u) 6= `(v) and `(u′) 6= `(v′). There are four possible cases.
Case 1: `(v) < `(u) and `(v′) < `(u′). Then by Lemma 2, `(S(u, v)) = `(v) + 1,

`(S(u′, v′)) = `(v′) + 1, and

|`(S(u, v))− `(S(u′, v′))| = |`(v)− `(v′)| ≤ 2.

Case 2: `(v) < `(u) and `(v′) < `(u′) is similar.
The remaining two cases are covered by Lemma 3.

3. Proof of Theorem 1

Let α denote the golden mean (
√

5 − 1)/2 = 0.61803.... Define the irrational
rotation Rα : S1 → S1 by Rα(x) = x+ α mod 1. Define R : Z→ S1 by

R(n) = Rnα(0) = nα mod 1.

The following theorem will be proved in Section 4:

Theorem 2. There is a bijection h : Z → T with the same circular ordering as
the bi-infinite sequence {R(n) : n ∈ Z}, and with the property that, for all n,

|`(h(n))− `(h(n+ 1))| ≤ 2.

Corollary. There is a an order preserving homeomorphism g : T → T with rota-
tion number α such that T = {gn(r) : n ∈ Z} and

|`(g(u))− `(u)| ≤ 2

for all u ∈ T .

Proof of Corollary. Define g : T → T by g = hσh−1, where h is the function given
in Theorem 2, and σ : Z→ Z is the shift σ(n) = n+1. Then g is an order-preserving
bijection of T , and since its orbit has the same ordering as the R-orbit of 0, it must
have rotation number α. The rest of the Corollary follows immediately.

Our desired function f will be the extension to S1 of the natural lift of g to the
intervals comprising the complement of KS in S1. To make this precise we use the
function τ defined in the previous section. Recall I is the collection of connected
components of S1 \ KS . For each I ∈ I, define f |I to be the unique orientation-
preserving affine map taking I onto τ ◦ g ◦ τ−1(I). In this way, f is defined on all
of S1 \KS . Since g is order-preserving on T , f is also order-preserving. Since ∪I
is dense in S1, f extends to a unique continuous function, also called f , on S1. By
its contruction, f permutes the intervals of I, is a homeomorphism of the circle,
and f(KS) = KS .
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Let β denote the (constant) derivative of S. Then the length of any interval at
level k is simply (b− a)/βk. Since g changes the level of any node by at most two,
this means that f can expand or contract any I ∈ I by at most a factor β2. That
is, on S1 \KS ,

1/β2 ≤ f ′ ≤ β2.

Since KS has measure zero and f(KS) = KS , f is absolutely continuous on S1.
The bound on f ′ therefore yields a global Lipschitz constant of β2 for f and f−1.

Since f is a homeomorphism with an invariant Cantor set and irrational rotation
number, it must be a Denjoy counterexample, and Γf ⊂ KS . If x is any endpoint
of KS , then since h is surjective, {fn(x) : n ∈ Z} is dense in KS , and therefore
Γf = KS . This completes the proof of Theorem 1.

4. Proof of Theorem 2

The proof is by induction. Recall the sequence of denominators of best ap-
proximations to the golden mean (the Fibonnaci sequence): q0 = 1, q1 = 1,
qn = qn−1 + qn−2. (See, for example, Hardy and Wright [2] as a general refer-
ence for Diophantine approximation.)

First we need purely number-theoretic lemma.

Lemma 5. Let n ≥ 4 be a positive integer and suppose k, k′ are integers satisfying

qn−2 ≤ k < qn−1 ≤ k′ < qn.

Let

Q = {i ∈ Z : −k ≤ i ≤ qn − k − 1} and

Q′ = {i ∈ Z : −k′ ≤ i ≤ qn+1 − k′ − 1}.

Then Q ⊂ Q′. Moreover, R(Q) partitions S1 into qn open intervals, and each
such interval contains at most one point of R(Q′).

Equivalently, the the two nearest neighbors in R(Q′) of any point of R(Q′ \ Q)
lie in R(Q).

In particular, if n is odd, for each i = −k′, . . . ,−k − 1,

R(qn + i) ≺ R(i) ≺ R(qn−1 + i),

and for each i = qn − k, . . . , qn+1 − k′ − 1,

R(i− qn−1) ≺ R(i) ≺ R(i− qn).

In each case the three points are nearest neighbors in R(Q′).
If n is even the reverse inequalities hold.

Proof of Lemma 5. A standard fact of the theory of Diophantine approximation is
the following:

For n odd and x ∈ S1,

x+R(qn) ≺ x ≺ x+R(qn−1)
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and the interval
{y ∈ S1 : x+R(qn) ≺ y ≺ x+R(qn−1)}

contains no other points of the set

{x+R(i) : i = 1, . . . , qn+1 − 1}.

For n even the same is true but the inequalities are reversed.
Now fix i ∈ {−k′, . . . ,−k − 1}. From the definitions of k and k′, it is straight-

forward to check that i+ qn ∈ Q but i+ qn+1 /∈ Q′.
This means that the nearest neighbors in R(Q′) to R(i) are R(i+ qn) and R(i+

qn−1), both belonging to R(Q). Also

R(i+ qn) ≺ R(i) ≺ R(i+ qn−1).

A similar argument works for i ∈ {qn − k, . . . , qn+1 − k′ − 1} using the fact that
i− qn ∈ Q and i− qn+1 /∈ Q′.

To prove Theorem 2, what we will actually prove is the following: for every
n ≥ 4, there is a positive integer kn such that

qn−2 ≤ kn ≤ qn−1 − 1,

and a function hn : Qn := {−kn,−kn + 1, . . . , 0, . . . , qn − kn − 1} → T such that

(in) the values of hn have the same circular ordering as {R(i) : i ∈ Qn},
(iin) |`(hn(i))− `(hn(i+ 1))| ≤ 2 for i = −kn, . . . , qn − kn − 2,
(iiin) |`(hn(−kn))− `(hn(qn − kn − 1))| ≤ 1,
(ivn) hn(Qn) is an ideal in T , and
(vn) hn|Qn−1 = hn−1 (n > 4).

It will follow from the proof that each hn is injective and the union of the sets
hn(Qn) is the whole tree T . Then (v) will imply that the hn’s define a well-defined
function h on Z, and conditions (i) and (ii) yield the conclusions of the theorem.

(Because of (vn), we will henceforth write h instead of hn for convenience.)
To start, set k4 = 2 and h(0) = r∗, h(1) = r, h(2) = r(0), h(−1) = r(01), and

h(−2) = r(1). This defines h on the set Q4 = {−2,−1, 0, 1, 2}, and the circular
ordering of these points in T is

h(2) ≺ h(−1) ≺ h(1) ≺ h(−2) ≺ h(0)

which coincides with the circular ordering of {Ri(0) : i = −2, . . . , 2}. Conditions
(i) - (iv) are easily verified. (See Figure 2)

[figure 2]

Now assume by induction that (in) . . . (vn) hold. We wish to define kn+1 so that

qn−1 ≤ kn+1 ≤ qn − 1,

and extend h to Qn+1 = {−kn+1,−kn+1 + 1, . . . , 0, . . . , qn+1 − kn+1 − 1} so that
(in+1) . . . (vn+1) hold.
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Define kn+1 to be largest integer k in {qn−1, . . . qn− 1} such that `(h(qn− k)) >
`(h(qn−1 − k)).

For convenience of notation in the rest of this proof, we will write k for kn+1.
To extend h to the new domain Qn+1, by induction we need only define new

values for h on Qn+1 \Qn = {−k, . . . ,−kn − 1} ∪ {qn − kn, . . . , qn+1 − k − 1}.
Notice that h(Qn) divides the tree T into qn intervals. Similarly the set R(Qn)

divides the circle into qn intervals. Each such interval contains at most one point
of the set R(Qn+1 \Qn) by Lemma 5.

For j ∈ Qn+1 \ Qn, if R(j) falls into the interval with endpoints R(j′), R(j′′),
j′, j′′ ∈ Qn, we then define h(j) to be the unique node (Lemma 2) of T \ h(Qn)
between h(j′) and h(j′′) of least possible level. (This is known as the standard tree
insertion.)

This will guarantee properties (i),(iv), and (v) for n+ 1; we need only verify (ii)
and (iii). To do this, we need to be more explicit about where the new values of h
lie with respect to the nodes of h(Qn). Assume n is odd (otherwise the argument
is similar with inequalities reversed).

By Lemma 5, for i = qn − kn, . . . qn+1 − k − 1, we have

(1) h(i− qn−1) ≺ h(i) ≺ h(i− qn),

and for i = −k, . . . ,−kn − 1,

(2) h(qn + i) ≺ h(i) ≺ h(qn−1 + i).

By Lemma 4, it follows from (iin) that for

i = qn − kn, . . . , qn − k − 2 and − k, . . . ,−kn − 2,

we have
|`(h(i))− `(h(i+ 1))| ≤ 2.

To complete the verification of (iin+1), it remains to show that

(3) |`(h(−kn − 1))− `(h(−kn))| ≤ 2

and

(4) |`(h(qn − kn − 1))− `(h(qn − kn))| ≤ 2.

We will prove (3), leaving the similar proof of (4) to the reader. Now the nearest
neighbors of h(−kn−1) in h(Qn) are u := h(qn−kn−1) and v := h(qn−1−kn−1)
by Lemma 5. When the value u was assigned at the previous stage, its nearest
neighbors in h(Qn−1) were v and h(qn−2 − kn − 1), again by Lemma 5. Therfore
by Lemma 2, `(u) > `(v). This means, again by Lemma 2, that

`(h(−kn − 1)) = `(u) + 1.

But by (iiin), we have

|`(u)− `(h(−kn))| ≤ 1.



CANTOR SETS, BINARY TREES AND LIPSCHITZ CIRCLE HOMEOMORPHISMS 9

These last two statements imply (3).
Finally, we verify (iiin+1). From the order properties (1) and (2) we have the

following:

h(0) ≺ h(qn − qn−2) ≺ h(−qn−2)

h(1) ≺ h(qn − qn−2 + 1) ≺ h(−qn−2 + 1)
. . .

h(qn − k − 1) ≺ h(qn+1 − k − 1) ≺ h(−qn−2 + qn − k − 1)

h(qn − k) ≺ h(−k) ≺ h(qn−1 − k)
. . .

h(qn − qn−1) ≺ h(−qn−1) ≺ h(0).

It follows from our definition of k that `(h(qn−k)) > `(h(qn−1−k)) and `(h(qn−
k − 1)) < `(h(−qn−2 + qn − k − 1)). Lemmas 2 and 3 therefore give us property
(iiin+1). This completes the proof of Theorem 2.

5. Final Remarks

In the end, the use of trees here is mainly as a convenient device for keeping
track of scales in a Cantor set. These results are clearly the tip of a large iceberg.
For example, we suspect that similar constructions would work for other rotation
numbers – we have only done the simplest case. The problem of handling affine
but nonlinear Cantor sets is untouched. One could also imagine using trees other
than the complete binary tree to model certain Cantor sets, and some trees could
be very much better adapted to irrational rotation than the standard binary tree.
To retreat to the motivating question of this work, we note that a good geometric
intrinsic characterization of Denjoy minimal sets is still unavailable.
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