
5. Ordinary sequences.  Fibonacci's rapid rabbits

We have dealt with ordinary functions defined on an interval [a, b].  But domains and
ranges need not in general be intervals.  In particular, a function can have a discrete set
of integers for its domain and a discrete set of numbers for its range.  The function is
then a called a sequence.  It can still be defined in terms of its graph, which is still the
plot of all possible (THING, LABEL) pairs with THING measured along a horizontal axis
and LABEL along a vertical one.  But the graph is now a discrete set of points – unlike
the graph of an ordinary function, which is a (usually continuous) curve.

THICKNESS (mm)FREQUENCYTHICKNESS (mm)FREQUENCY

0.06790.167118
0.08350.18317
0.1280.29

0.117450.2331
0.1331650.252
0.1590

  Table 5.1  Leaf thicknesses in  Dicerandra linearifolia

For example, leaf-thickness variation in Dicerandra linearifolia,  an annual
plant in the mint family (Lamiaceae) endemic to North Florida, South Georgia and
parts of Alabama, is of interest to biologists because different thicknesses may be
favored at different temperatures for several reasons (including, e.g., that thicker
leaves retard heat loss whereas thinner ones intercept more light, because more of
them can be produced).  Table 1 shows thicknesses of 489 specimens of D. linearifolia
leaves, measured by Winn (1996) with an ocular micrometer under a dissecting
microscope and corrected for magnification.  A consequence of this method is that
measurements are recorded as multiples of one sixtieth of a millimeter, with leaf
thickness varying between 4 and 15 of these units.  Accordingly, using fk to denote the
label assigned to k by the sequence f (to distinguish it from the label f(k) that the
ordinary function f would assign), we define a sequence on the discrete set of integers
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} by

 fk  =frequency of leaf thickness  k/60  mm.(5.1)

For example, f6 = 28, because there are 28 specimens of thickness 0.1 mm, and f13 = 0,
because there is no specimen of thickness zero.  The graph is shown in Figure 1.

NUMBER OF CLUTCHES OF SIZE (BOLD)

SpeciesLocality1234567Total

Lapland
Longspur

Devon Island,
Canada014121617454

Lapland
Longspur

Victoria and
Jenny Lind

Island00092233064

Lapland
Longspur

Cape Thompson1142365170111

McCown's
Longspur

Wyoming00181820038

Table 5.2Clutch size in arctic passerines.  Source: Hussell (1972, p. 325)
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A convenient shorthand for the set of all integers between L and M is [L...M], and
the corresponding shorthand for a sequence f defined on [L...M] is {fk|L ≤k ≤ M}.  For
example, Figure 1 is the graph of the sequence {fk|1 ≤k ≤ 15} defined by (1), and Figure 2
is the graph of the sequence {fk|1 ≤ k ≤ 7} defined, using data from Table 2, by

    fk   =frequency of clutch with k eggs(5.2)

in Lapland Longspur, Calcarius lapponicus.  If [L...M] is obvious from context, however,
then in place of {fk|L ≤k ≤ M} we can write {fk}, or simply f.1

PeriodDeathsPeriodDeathsPeriodDeaths
0 ≤ t < 11673 ≤ t < 466 ≤ t < 71
1 ≤ t < 2484 ≤ t < 537 ≤ t < 81
2 ≤ t < 3235 ≤ t < 668 ≤ t < 91

Table 5.3Deaths from malignant melanoma.  Source: Gross and Clark (1975)

A common way to generate a sequence is to sample an ordinary function of time
at integer times.  For example, Table 3 shows McDonald's (1963) data on deaths among
256 males with malignant melanoma and metastasis (spread of disease beyond original
site) upon admission to the M.D. Anderson Tumor Clinic between 1944 and 1960.
Time t is measured in years from date of admission.  We can think of these data as
output from some death process associated with the melanoma and represented
mathematically by the ordinary function F, defined on [0, ∞) by

       F(t)  =   proportion deceased at time t after diagnosis of metastasis.(5.3)

Although this function is defined for all t ≥ 0, with aggregated data we can "observe" it
only at integer times.  In this way we generate the sequence {Fk| 0 ≤ k ≤ 9} whose graph
is shown in Figure 3; for example, F0 = F(0) = 0, F1 = F(1) = 167/256 = 0.652, F2 = F(2) =
215/256 = 0.84, and so on.  We resist any temptation to join the dots until Lecture 10.

The sequences graphed in Figures 1-3 are all finite.  But a sequence can also be
infinite.  In particular, a sequence can be defined for every nonnegative or positive
integer, in which case, we denote its domain by [0...∞) or [1...∞), respectively.  For
example, in one of the earliest known examples of biomathematics, dating all the way
back to the beginning of the 13th century, Leonardo Fibonacci of Pisa – reputedly the
most distinguished mathematician of the Middle Ages – considered the growth of an
idealized rabbit population with zero mortality in which every rabbit is paired from
birth (until eternity) with a member of the opposite sex.  He supposed this population
to sprout from a single pair of newborns introduced at time zero.  He further assumed
that rabbits reach maturity at age one month, and that every adult pair reproduces
itself – precisely once – every month.  How many pairs of rabbits will there be on
December 31 if the initial pair is introduced on New Year's Day?

At the time corresponding to either the end of month k or the beginning of
month k+1, let ak denote the number of adult pairs, let yk denote the number of young
pairs, and let uk denote the grand total.  Then

  uk=ak+yk(5.4)

1 More generally, we denote the set of all things of type • with property P by {•} if P is obvious from
context, by {P} if • is obvious from context, and by {•|P} if neither • nor P is obvious.
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for any value of k.  Because the population starts with a pair of newborns, on January 1
(which we regard not only as the beginning of month 1, but also as the end of month 0)
there are no adults – just a pair of juveniles.  Hence

  a0=0,y0=1.(5.5)

At midnight on January 31 (or, if you prefer, zero hours on February 1), Adam & Eve
Rabbit reach maturity.  There are now no juveniles (because they have just become
adults), but we do have a single pair of adults, namely, A & E Rabbit.  That is,

  a1=1,y1=0.(5.6)
During the month of February, A & E Rabbit reproduce themselves.  So, on February
29 at midnight  (it's leap year, what else?), a first pair of young is counted; and A & E
Rabbit are still around, so

  a2=1,y2=1.(5.7)
During March, A & E Rabbit reproduce again, so a fresh pair of young is counted in the
midnight census of March 31.  Only a single pair of young is counted at that time,
however, because A & E's first son and daughter have just become adults.  On the
other hand, we now have two pairs of adults (A & E plus kids).  So

  a3=2,y3=1.(5.8)
Continuing in this manner, we find that the number of young at the end of month k is
identical to the number of adults at the beginning of month k, which in turn is
identical to the number of adults at the end of month k–1.  That is,

      yk=ak−1.(5.9)
This result is illustrated by Figure 4, where time increases downwards, unfilled circles
correspond to juveniles, filled circles correspond to adults, and all circles on the same
vertical line correspond to the same pair of rabbits; for example, y4 = a3 because there
are two unfilled circles on the level corresponding to time k = 4 and two filled circles
on the level above.  Similarly, because number of filled circles at any level equals total
number of circles (both unfilled and filled) at the level above, number of adults at the
end of month k equals number of young at the end of month k–1 plus number of
adults at the end of month k–1, i.e.,

        ak=yk−1+ak−1(5.10)

Because (9) and (10) are true for any k, we can replace k by k + 1 to obtain
      yk+1=ak(5.11a)

and
        ak+1=yk+ak(5.11b)

Now, from (4) with k+1 in place of k, (11), (4), (10) and (4) with k–1 in place of k, we
obtain

    
  

uk+1=ak+1+yk+1

=yk+ak+ak

    

  

=uk+ak

=uk+yk−1+ak−1

=uk+uk−1

(5.12)

So, from (4)-(6) and (12), the number of rabbit pairs at time k is defined recursively by
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      u0=1(5.13a)
      u1=1(5.13b)
      uk+1=uk+uk−1ifk≥1(5.13c)

yielding u2 = u1 + u0 = 2, u3 = u2 + u1 = 2 + 1 = 3, u4 = 3 + 2 = 5, u5 = 5 + 3 = 8, and so on,
as you can readily verify by counting all circles at a given level in Figure 4.  We call
(13c) a recurrence relation (because recurrent use of it yields the sequence).  Figure 5(a)
shows the graph of  {uk| 0 ≤ k ≤ 10}, whereas Table 4 defines {uk| 0 ≤ k ≤ 19} explicitly.

k  yk  ak  ukk  yk  ak  uk

010110345589
1011115589144
21121289144233
312313144233377
423514233377610
535815377610987
65813166109871597
7813211798715972584
813213418159725844181
921345519258441816765

  Table 5.4      The Fibonacci sequence

Note that uk gets larger and larger as k gets larger and larger.  Indeed there is no
number, however large, that uk cannot exceed, for large enough k.  We identify this
state of affairs by saying that the sequence {uk} diverges to infinity as k → ∞.  We write

  
Limk→∞uk=∞.(5.14)

Because there is no mortality to hold rabbits in check, the behavior of the sequence is
neither surprising nor realistic.  Nevertheless, zero mortality may not be unreasonable
for a year or so, in which case, we can answer the question we began with: From Table
4, the prediction for midnight on December 31 is u12 = 233 rabbit pairs.

A more interesting sequence compares the number of rabbit pairs at the end of a
month with the number at the end of the previous month.  Accordingly, we define the
Fibonacci ratio, φk, to be the ratio between number of rabbit pairs at the end of month k
and number at the end of month k–1, i.e., we define

    
  
φk=

uk

uk−1

.(5.15)

This ratio is a measure of how rapidly the population has grown during month k.
Note that k ≥ 1; (15) is meaningless for k = 0, because u-1 is undefined, and so the
domain of φ is [1...∞), as opposed to [0...∞) for u.  Figure 5(b) shows the graph of {φk| 1 ≤
k ≤ 10}, and Table 5 defines {φk| 1 ≤ k ≤ 20} explicitly (correct to 10 significant figures).
For example, from (15) and Table 4, we have φ1 = u1/u0 = 1/1 = 1, φ2 = u2/u1 = 2/1 = 2,
φ3 = u3/u2 = 3/2, φ4 = u4/u3 = 5/3, and so on.

Alternatively, dividing (13c) by uk  and using (15), for k ≥ 1 we have

    

  

uk+1

uk

=
uk

uk

+
uk−1

uk

=1+
1

uk−1
uk

=
1

φk

.(5.16)

But replacing k by k+1 in (15) yields
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φk+1=

uk+1

u(k+1)−1

=
uk+1

uk

.(5.17)

Thus, on substituting from (17) into (16), we find that {φk} is defined on [1...∞) by the
recurrence relation2

      φ1=1(5.18a)

             
  

φk+1=1+
1

φk

ifk≥1.(5.18b)

Now, from (16) alone, we have φ2 = 1+1/1 = 2, φ3 = 1 + 1/2 = 3/2, φ4 = 1 + 2/3 = 5/3, etc.,
agreeing with previous calculations.

k  φkk  φk

11111.617977528
22121.618055556
31.5131.618025751
41.666666667141.618037135
51.6151.618032787
61.625161.618034448
71.615384615171.618033813
81.619047619181.618034056
91.617647059191.618033963

101.618181818201.618033999

  Table 5.5      The Fibonacci ratio

The behavior of {φk} as time k increases is very different from that of {uk}.  The
ratio φk  alternately increases and decreases, by smaller amounts each time, until
eventually it settles down to a number somewhere near 1.618.  Let the exact value of
this number be denoted by φ∞.  In fact, it is shown in Appendix 5A that3

  φ∞=
1
21+5 ().(5.19)

Then, as k gets larger and larger, φk gets closer and closer to φ∞, until for all practical
purposes φk and φ∞ are indistinguishable.  We identify this state of affairs by writing

  
Limk→∞φk=φ∞,(5.20)

and we say that the sequence {φk} converges to φ∞.  See Exercises 2-6.
Finally, a remark on terminology.  Henceforth, we will sometimes refer to the

above sequences as ordinary sequences to distinguish them from function sequences,
which we introduce in Lecture 7.

2 Because (16) defines φk+1 in terms of φk whereas (13) defines uk+1 in terms of both uk  and  uk–1, (16) is a
first-order recurrence relation whereas (13) is a second-order one.
3 This number is called the golden ratio and plays an important role in studies of phyllotaxis. See, for
example, Jean (1994).
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Exercises 5

5.1(i)Solve (A2)(ii)Verify (A3).

5.2The sequence {sn|n ≥ 0} is defined recursively by

  

s0=1

sn+1=
1
2

sn+
9
sn





,n≥0.

(i)Using Mathematica or otherwise, find the values of s1, s2, s3 and s4 correct
to six significant figures.

(ii)What is the value of s∞  = 
  
limn→∞sn, precisely?

5.3*The sequence {sn|n ≥ 0} is defined recursively by

  

s0=1

sn+1=
1
2

sn+
10
sn





,n≥0.

(i)Using Mathematica or otherwise, find the values of s1, s2, s3 and s4 correct
to six significant figures.

(ii)What is the value of s∞ = 
  
limn→∞sn, precisely?

5.4From Figure 1.3, arterial flow during the ejection phase of our cardiac cycle 
reaches a maximum between 0.1 and 0.2 s.  From Appendix 16, the exact time 
of maximum is the limit  as n → ∞ of the sequence defined by

  

tn=
0.1ifn=0

240tn−1
2

−11
16(30tn−1−7)

ifn≥1.






(i)Find t∞ correct to 6 significant figures.
(ii)What is t∞ if t0 = 0.1 is replaced by t0 = 0.3?  Can you guess its significance?
(iii)Find a quadratic polynomial Q such that Q(t∞) = 0, not approximately, but

precisely.  Deduce the exact value of t∞, and verify that it agrees with (i).
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5.5*From Figure 1.4, venous inflow during the diastolic phase of our cardiac cycle 
reaches a maximum between 0.5 and 0.55 s.  By the method of Appendix 16, the 
exact time of maximum is the limit  as n → ∞ of the sequence defined by

  

tn=
0.5ifn=0

1800tn−1
2

−709
100(36tn−1−23)

ifn≥1.






(i)Find t∞ correct to 6 significant figures.
(ii)Find a quadratic polynomial Q such that Q(t∞) = 0, not approximately, but

precisely.
(iii)Deduce the exact value of t∞ and verify that it agrees with (i).

5.6From Figure 1.4, venous inflow during the diastolic phase of our cardiac cycle 
reaches a local maximum between 0.8 and 0.85 s.  By the method of Appendix 16,
the exact time of maximum is the limit  as n → ∞ of the sequence defined by

  

tn=
0.8ifn=0

15(48tn−1
2

−35)
16(90tn−1−77)

ifn≥1.






(i)Find t∞ correct to 6 significant figures.
(ii)Find a quadratic polynomial Q such that Q(t∞) = 0, not approximately, but

precisely.
(iii)Deduce the exact value of t∞, and verify that it agrees with (i).

5.7The Fibonacci sequence is defined recursively, and therefore implicitly, by (13).  
But the sequence can also be defined explicitly by

  
un=

1
5

φ∞ ()
n+1

+
(−1)

n

φ∞ ()
n+1












,

where φ∞ is defined by (19).
(i)Verify that the above expression satisfies (13), and use it to compute the 

values of u0, u1, u2, u3, u4, u5 and u6.
(ii)Deduce an explicit expression for the Fibonacci ratio φn.

5.8Show that the sequence {Un} defined by 
  
Un=uk

k=0

n

∑ is related to the Fibonacci 

sequence {un} by   Un+1=un+2 (for n ≥ 0).

5.9Show that the Fibonacci sequence {un} satisfies

  un+1un−1+(−1)
n

={un}
2

for all n ≥ 1.
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Appendix 5A: Convergence of the Fibonacci ratio sequence

The purpose of this appendix is to establish (20) and to show that convergence is
oscillatory.   We first determine what the limit of {φk} must be, if  the sequence
converges.  So assume there exists some number φ∞, as yet unknown, to which the
sequence converges.  Then, as k gets larger and larger, φk gets closer and closer to φ∞,
until for all practical purposes φk and φ∞ are indistinguishable.  In particular, φk+1 is
even closer to  φ∞ than φk.  From (18), however, we have

             
  

φk+1=1+
1

φk

(5.A1)

for all k ≥ 1.  As k gets larger and larger, this equation gets closer and closer to

             
  

φ∞=1+
1

φ∞

,(5.A2)

becoming indistinguishable from it in the limit as k → ∞.  Multiplying (A2) by φ∞, we
have   φ∞

2
 = φ∞ + 1 or   φ∞

2
 – φ∞ – 1 = 0, a quadratic equation whose only positive solution

is (19); see Exercise 1.  Subtracting (A2) from (A1), we find (Exercise 1) that

            
  
φk+1−φ∞=−φk−φ∞

φ∞φk





.(5.A3)

In terms of magnitude, therefore, i.e., ignoring sign, we have

            
  
|φk+1−φ∞|=

|φk−φ∞|
φ∞φk

.(5.A4)

Because φ1 > 0, by (18), (A1) implies φk > 1 for all k ≥ 2.  Thus 1/φk < 1 for all k ≥ 2, so
that (A4) implies

            
  
|φk+1−φ∞|<

|φk−φ∞|
φ∞

.(5.A5)

From (19), however, we have 1/φ∞  =  2/{1+  5} = 0.618.  So (A5)  implies
            φk+1−φ∞<0.62φk−φ∞(5.A6)

for all k ≥ 2.  That is, the distance between φk and φ∞ is reduced by at least 38% at each
iteration of the recurrence relation, and must therefore eventually approach zero.
This establishes (20).  Moreover, from (A3), if φk > φ∞ then φk+1 < φ∞, and vice versa.  So
the convergence is oscillatory.
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Answers and Hints for Selected Exercises

5.2(i)n = 0 ⇒ s1 =   
1
2s0+9

s0 ()=
1
21+9

1 ()=
10
2=5

n = 1 ⇒ s2 =   
1
2s1+9

s1 ()=
1
25+9

5 ()=
17
5=3.4

n = 2 ⇒ s3 =   
1
2s2+9

s2 ()=
1
2

17
5+45

17 ()=
257
85=3.02353

n = 3 ⇒ s4 =   
1
2s3+9

s3 ()=
1
2

257
85+765

257 ()=
65537
21845=3.00009

    (ii)In the limit as n → ∞, we have   s∞=
1
2s∞+9

s∞ () ⇒ 2s∞ = s∞ + 9/s∞

⇒ s∞ = 9/s∞ ⇒   s∞
2

=9  ⇒   s∞=9 = 3.

5.3(i)n = 0 ⇒ s1 =   
1
2s0+10

s0 ()=
1
21+10

1 ()=
11
2=5.5

n = 1 ⇒ s2 =   
1
2s1+10

s1 ()=
1
2

11
2+20

11 ()=
161
44=3.65909

n = 2 ⇒ s3 =   
1
2s2+10

s2 ()=
1
2

161
44+440

161 ()=
45281
14168=3.19601

n = 3 ⇒ s4 =   
1
2s3+10

s3 ()=
1
2

45281
14168+141680

45281 ()=
4057691201
1283082416=3.16246

    (ii)In the limit as n → ∞, we have   s∞=
1
2s∞+10

s∞ () ⇒   s∞=10

5.5(i)       0.519348

(ii)      t∞ satisfies 
  
t∞=

1800t∞
2

−709
100(36t∞−23)

  or  Q(t∞) = 0, where  Q(t)=1800t
2

−2300t+709

(iii)
  
t∞=

115−463
180

 (because the other solution lies outside [0.5, 0.55])

5.6(i)        0.802559
(ii)        Q(t)=720t

2
−1232t+525

(iii)
  
t∞=

154−91
180

 (because the other solution lies outside [0.8, 0.85])


