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Abstract

Optimal control of the 1-D Riemann problem of Euler equations whose solution is

characterized by discontinuities is carried out by both nonsmooth and smooth op-

timization methods. By matching a desired flow to the numerical model for a given

time window we effectively change the location of discontinuities. The control pa-

rameters are chosen to be the initial values for pressure and density fields. Existence

of solutions for the optimal control problem is proven. A high resolution model and

a model with artificial viscosity, implementing two different numerical methods, are

used to solve the forward model. The cost functional is the weighted difference be-

tween the numerical values and the observations for pressure, density and velocity.

The observations are constructed from the analytical solution. We consider either

distributed observations in time or observations calculated at the end of the assimi-

lation window. We consider two different time horizons and two sets of observations.

The gradient (respectively a subgradient) of the cost functional, obtained from the

adjoint of the discrete forward model, are employed for the smooth minimization

(respectively for the nonsmooth minimization) algorithm. Discontinuity detection

improves the performance of the minimizer for the model with artificial viscosity by

selecting the points where the shock occurs (and these points are then removed from
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the cost functional and its gradient). The numerical flow obtained with the optimal

initial conditions obtained from the nonsmooth minimization matches very well the

observations. The algorithm for smooth minimization converges for the shorter time

horizon but fails to perform satisfactorily for the longer time horizon.
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1 Introduction

Optimal control methods are presently employed for various applications in

different fields: e.g. aerodynamics, meteorology, acoustics, chemistry, econom-

ical models to mention but a few.

The vast majority of applications consider the minimization of a smooth cost

functional. We consider the case of a nonsmooth cost function and the appli-

cation of the adjoint method for minimizing this cost functional.

Recently optimal control involving nonsmooth functions has attracted the

attention of an increasing number of researchers due to availability of new

methods of nondifferentiable optimization employing subgradients following

the seminal work of Lemarechal [37] (e.g. Lemarechal [38], Bonnans et al. [7],

Schramm and Zowe [58], Luksan and Vlcek [45], Makela and Neittaanmaki

[47] to cite but a few).

Nonsmooth cost functionals were employed in variational data assimilation in

atmospheric sciences (Zhang et al. [71]), for inverse design problems involv-

ing transonic diffusers : 1-D (Narducci et al. [52] or 2-D (Dadone et al. [13]),

in acoustics (Habbal [26]), for the research of a convex hull with bounded

curvature of a given set of points (Hassold [27]), in mechanical structures

(minimizing the maximal stress over an arch structure Habbal [25]), for chro-

matography (James and Sepulveda [34]), capital asset management (Leonard

and Long [?]), in the design of a duct flow with a shock (Frank and Shubin [17],

Cliff et al. [11], Iollo et al. [32]), for airfoil design (Jameson [35], Matsuzawa

and Hafez [50], Iollo and Salas [31] and Giles and Pierce [20]).
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The presence of discontinuities creates serious theoretical and numerical dif-

ficulties. Good shock-capturing schemes with low continuity properties often

cannot be combined successfully with efficient optimization methods requir-

ing smooth functions (e.g. gradient-based methods). To alleviate this problem

one can use methods that are relatively insensitive to the non smoothness of

the cost function. Stochastic optimization methods are applied for the design

of a minimum time changeover operation for a pressure vessel avoiding the

formation of explosive mixtures (Barton et al. [3]) or for aerodynamic shape

optimization (Huyse and Lewis [30]). Genetic algorithms (Oyama et al. [56])

were also used for wing optimization. For these non-gradient-based methods

the drawback is the relatively large number of analyses required (i.e. large

memory demands) as the number of variables increases.

In the case of gradient-based methods different remedies to allevaiate the influ-

ence of the discontinuities were employed. For variables which are continuous

across the shock one can avoid dealing with shocks by considering cost func-

tions based on the above variables (e.g. the surface flux for inverse nozzle

design as used by Matsuzawa and Hafez [49]). For most cases the shocks were

smoothed using numerical dissipation. It was shown that sometimes smooth-

ing is equivalent to modifying the cost function (Matsuzawa and Hafez [49]).

An alternative smoothing procedure has been introduced by Valorani and

Dadone [63], namely a filtering process which was obtained by modifying a

set of sensitivity equations through by adding artificial dissipative terms. The

optimization search was performed on original nonsmooth objective function

computed with an accurate (non smoothed) flow analysis but with smoothed

flow sensitivities.

If the shocks are weak at design conditions (like in the case of transonic flows)
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acceptable results can be obtained by addition of artificial dissipation. How-

ever, accurate treatment of the shock waves is essential in other cases (e.g.

supersonic flows). The alternative approach to shock smearing is shock fitting

which involves careful integration of the objective function through the shock

wave (Narducci et al. [52]). Perturbation of a discontinuous function produces

delta functions and formulations based on variations of smooth functions have

to be modified (Iollo et al. [32]). Another approach was to introduce the shock

location as an explicit control variable (Cliff et al. [11]). A coordinate straining

method was also employed by Narducci et al. [52]. It consists of a coordinate

transformation aimed at aligning the calculated shock with the target followed

by addition of a penalty term proportional to the square of distance between

the shocks.

Results for the optimal control of the Euler equations were obtained, among

others, by Anderson and Venkatakrishnan [1] (in 2-D), Arian and Salas [2] (in

2-D), Dadone and Grossman [14],[15] (2-D and 3-D), Cliff et al. [10],[9],[11]

(1-D and 3-D).

Theoretical contributions (combined with practical applications in certain

cases) for the adjoint method were provided by Giles and Pierce [18],[19],[20],[21]

(for Euler equations) and Ulbrich [64],[65], [67], [66] (in the setting of optimal

control for scalar conservation laws). A generalized adjoint for physical pro-

cesses in atmospheric sciences with parameterized discontinuities was studied

by Xu [70]. Numerical aspects of the adjoint model for discontinuous nonlinear

atmospheric models were discussed by Zhang et al. [72].

Problems with discontinuities in an optimal control setting or in sensitivity-

based control were studied by Mohammadi and Pironneau [51], Gunzburger

5



[24], [23], Tolsma and Barton [62] and Zhang et al. [71].

Practical aspects of control of problems with shocks were presented by Iollo

and Salas [33], Birkmeyer et al. [5], Stanewsky [61], Jameson [35], Bein et al.

[4] or Wang et al. [69].

This article presents theoretical and numerical results for an optimal control

of the unsteady 1-D Riemann problem of Euler equations. The numerical solu-

tions of the optimal control problem were obtained using both nonsmooth and

smooth optimization algorithms. The present research extends our previous

results in optimal control for a smooth cost functional (Homescu et al. [28])

and sensitivity analysis for discontinuous flow (Homescu and Navon [29]) with

optimization methods suitable for discontinuous cost functionals.

This specific problem was chosen due to the fact that it has an analytical so-

lution which is characterized by the presence of many types of discontinuities:

shocks, contact discontinuities and wave rarefaction regions. This Riemann

problem may be briefly described in the following way: a gas tube is divided

by a membrane into two regions with different values for pressure and density

fields and a zero velocity field. After the membrane is suddenly removed the

gas moves freely.

Our optimal control problem has very interesting aerodynamic applications

and consists of moving the regions of discontinuities to desired locations by

matching the desired flow to the numerical flow. The control parameters con-

sist of the initial values of pressure and density to the left and to the right

of the membrane. We consider the initial velocity to the left and to the right

of themembrane to be zero. The cost functional is the weighted difference

between the observations and the numerical values for density, pressure and
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velocity fields. The observations obtained from the analytical solution of the

Riemann problem are computed in two ways: either at the end of the assimi-

lation window or distributed in time during the assimilation window.

Two numerical models were chosen, representative for possible approaches of

solving a flow with discontinuities: a high-resolution model (HRM) and a

model with artificial viscosity (AVM).

We employ a nonsmooth optimization algorithm described in Luksan and Vl-

cek [45], [46], Vlcek and Luksan [68], which is a hybrid algorithm that combines

the characteristics of the variable metric method and the bundle method. We

also apply a smooth optimization algorithm (L-BFGS) described in Nocedal

[54] and Liu and Nocedal [43]). Both methods require the computation of a

subgradient (respectively the gradient) of the cost functional. This subgradi-

ent (respectively gradient) is obtained from the adjoint model derived from

the original numerical model. Accuracy tests for both the gradient and sub-

gradient obtained via the adjoint method.

We consider two time horizons which are representative for the time evolution

of the flow. Their length was chosen for two main reasons. First we wanted to

ensure that all desired characteristics of the discontinuities are still present in

the flow at the end of each time window. Second, we selected the larger time

window such that if we were to slightly increase it some of the discontinuity

characteristics will disappear.

We obtained excellent results using nonsmooth optimization for both models

and for both time horizons. The numerical flow corresponding to the opti-

mized initial conditions matches closely the observations and one can see from

the Figures presented that the location of the discontinuities was changed to
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changed to the desired location.

The L-BFGS algorithm did not converge in many cases. Even for the cases

where convergence was obtained one may notice that there is a large difference

between the L-BFGS optimization results and the desired values of the control

parameters.

For the model with artificial viscosity a discontinuity detection method was

used to eliminate the points where the shock is located from the computation

of the cost functional and its gradient (or subgradient). As a result of this

technique the optimized results were obtained at the same level of accuracy

but in fewer minimization iterations.

The article is organized as follows. Section 2 introduces the governing equa-

tions (unsteady Euler 1-D) for the flow including its analytical solution. Sec-

tion 3 describes the discretization of the 1-D Riemann problem in space and

time using both the high-resolution model and the artificial viscosity model.

In section 4 we present results related to existence of solutions for optimal

control problem considered. Section 5 describes the methods of nonsmooth

and smooth unconstrained optimization employed for this research. Methods

of detection of discontinuities in data are presented in section 6. The adjoint

method for computing the gradient (or a subgradient) of the cost functional

with respect to the control parameters is presented in Appendix A. Procedures

for validating the adjoint code and checking the accuracy of the gradient (sub-

gradient) computed using the adjoint model are also presented in Appendix

A. Numerical results obtained for the optimal control problem of 1-D Eu-

ler equations are displayed in the Tables and Figures of section 7. Section 7

also discusses the evolution of the cost functional for both methods of mini-
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mization, both models and both time horizons considered. Finally section 8

presents the summary and conclusions.
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2 Governing equations

The one-dimensional unsteady equations of gas dynamics (Euler equations)

can be written in conservation law form as:

Ut + F(U)x = 0 (1)

where

U =




ρ

m

e




, F(U) =




m

m2

ρ
+ P

(
m
ρ

)
(e+ P )




(2)

ρ is the density, u is the velocity, m = ρu is momentum, P is the pressure

and e is the internal energy per unit volume. The variables are related by

e = ρε +
1

2
ρu2, where ε =

P

(γ − 1)ρ
is the internal energy per internal mass

with γ the ratio of specific heats (which is taken to be 1.4).

The ”shock-tube problem” can be described in the following way: a tube, filled

with gas, is initially divided by a membrane into two sections. The gas has

a higher density and pressure in one half of the tube than in the other half,

with zero velocity everywhere. The initial conditions for density, velocity and

pressure are similar to the values for the Sod shock-tube problem [60]:

ρleft = 1.0 > ρright = 0.125, uleft = uright = 0.0, pleft = 1.0 > pright = 0.1

where the subscripts left and right correspond to the initial position with

respect to the membrane. At time t = 0 the membrane is suddenly removed

and the gas is allowed to flow. We expect a net motion in the direction of lower
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pressure. Assuming the flow is uniform across the tube, there is variation in

only one direction and the 1-D Euler equations apply. One should calculate

the flow variables: pressure, density and velocity as a function of time and

space.

The solution of this Riemann problem for Euler equations consists of 5 distinct

regions (see Figures 3 and 4). The description of these regions follows with

the corresponding region index in the parentheses: low pressure and density

region (region 1), area between shock and contact discontinuity (region 2),

area between contact discontinuity and rarefaction wave (region 3), rarefaction

wave region (region R), high pressure and density region (region 4).

The exact solution can be found explicitly as a function of x and t (Liepmann

and Roshko [42]). It is given by the following equations with indices 1, 2, 3, 4, R

related to the corresponding 5 regions described above.
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P

ρ

u



=







P4

ρ4

u4




=




Phigh

ρhigh

uhigh




, x < −a4t + c




PR

ρR

uR



=




PR

ρR

uR




, −a4t + c ≤ x ≤
(

γ4 + 1
2 u3 − a4

)
t + c




P3

ρ3

u3




=




P2

ρ2

u2




,

(
γ4 + 1

2 u3 − a4

)
t + c ≤ x ≤ u2t + c




P2

ρ2

u2




=




φ

ρ2

u2




, u2t + c < x < a1

(
γ1 − 1
2γ1

+ γ1 + 1
2γ1

P2
P1

) 1
2

t + c




P1

ρ1

u1




=




Plow

ρlow

ulow




, a1

(
γ1 − 1
2γ1

+ γ1 + 1
2γ1

P2
P1

) 1
2

t + c ≤ x
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where a2
i = γiPi

ρi
, γi = γ for i = 1, . . . , 4

and where φ is given implicitly by

P4

P1
=

φ

P1

(
1 − (γ4 − 1)(a1/a4)(φ/P1 − 1)

√
2γ1

√
2γ1 + (γ1 + 1)(φ/P1 − 1

) −2γ4
γ4 − 1 (3)

The remaining variables : ρ2, u2 and ρ3 are given by

ρ2 = ρ1
P2

P1

(1 + γ1−1
γ1+1

P1

P2

1 + γ1−1
γ1+1

P2

P1

)
(4)

u2 = a1

(
P2

P1
− 1

)√√√√ 2γ1

(γ1 + 1)P2

P1
+ (γ1 − 1)

(5)

ρ3 = ρ4(
P3

P4
)

1
γ4 (6)

and, in the rarefaction wave, the quantities PR, ρR and uR are given by

PR = P4

(
1 − γ4 − 1

2

uR

a4

) 2γ4
γ4−1

(7)

ρR = ρ4

(
1 − γ4 − 1

2

uR

a4

) 2
γ4−1

(8)

uR =
(
u3 − u4
γ4+1

2
u3

)(
x− c

t

)
+
a4u3 − (a4 − γ+4+1

2
u3)u4

γ4+1
2
u3

(9)

The subscripts for the variables u2, pR, etc match the corresponding region of

the solution in which they are located (e.g. pR is the value of the pressure in

the rarefaction region).
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3 Numerical models

The main difficulties encountered when solving numerically the shock-tube

problem of gas dynamics (and, in general, for any problem which has a non-

smooth solution) appear in the regions of discontinuities. The numerical so-

lution may be smoothed in those regions (e.g. due to introduction of a dis-

sipation term) or it can sharpen discontinuities (using high-resolution meth-

ods). For this reason we chose one numerical model from each of the above

mentioned categories: namely a model with artificial viscosity (AVM) and a

high-resolution model (HRM with a Riemann solver.

As a footnote we mention that for very accurate numerical solutions adaptive

mesh refinement AMR may be used in conjunction with Riemann solvers

(e.g. Leveque [41] for Euler equations). Our experience with a model AMR

in the framework of sensitivity analysis for discontinuous flows was presented

in Homescu and Navon [29].

The main goal of our research is to perform optimal control using either smooth

or nonsmooth optimization techniques for minimizing the cost functional. The

minimization requires availability of either the gradient or the subgradients

of the said cost functional obtained using the adjoint model derived from the

forward model (either AVM or HRM models).

The first model (by T.J. Cowan [12]) uses finite elements which are piecewise

constant in time and piecewise linear in space. The elements are discontinuous

in time but continuous in space. By using discontinuous discretization in time

we were able to march sequentially through time and solve for only a fraction

of the total solution at one time. To improve the stability of the method a least-
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squares operator is added to the basic Galerkin formulation. In order to ob-

tain non-oscillatory approximations to discontinuities discontinuity-capturing

operators have been developed within the framework of this Galerkin/least

squares method. For more details about this modified discontinuous Galerkin

method the reader is referred to Shakib et al. [59].

An artificial viscosity term was included to stabilize the numerical solution

and it has the effect of spreading flow discontinuities over several computa-

tional cells. The method employs a high-order scheme for the smooth regions

of the flow combined with a low-order solution which is employed near the

discontinuities. The above combination is described in Lohner et al. [44] as

MC-ML method (with the high-order scheme using a consistent mass matrix

while the low-order scheme employs a lumped mass matrix).

We describe below the second model (using a code from the package CLAW-

PACK written by R. Leveque [40], [41]) which employs Roe’s approximate

Riemann solver combined with an entropy fix.

Consider a standard form of a homogeneous conservation law:

qt(x, t) + f(q(x, t))x = 0 (10)

The basic algorithm depends on a Riemann solver that, for each set of data

(qL, qR) returns a set of Mw waves W p and speeds λp satisfying

Mw∑
p=1

Wp = qR − qL ≡ ∆q

It also returns the left-going and right-going flux differences A−∆q and A+∆q
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which satisfy the relationship:

A−∆q + A+∆q = f(qR) − f(qL) (11)

The Roe solver employed here consists of solving a particular linear system

qt + Aiqx = 0 (12)

where Ai is the Roe matrix depending on data (qi−1, qi). The solution consists

of waves of the form Wp
i = λp

i r
p
i where rp

i is the p−th eigenvector of Ai,

which propagate with speeds λp
i , the corresponding eigenvalue of Ai. The flux

differences are defined as

A+∆qi =
∑

λp
i >0

λp
iWp

i

A−∆qi =
∑

λp
i <0

λp
iWp

i

Since the analytical solution includes a rarefaction wave, an entropy fix which

modifies the flux differences (without changing the waves) was included (oth-

erwise the Roe linearization violates the entropy condition).
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4 Theoretical setting of the optimal control problem

We solve the following optimal control problem

minimize the cost functional J(q, z) subject to z ∈ Uad (OPT)

where z is the control, Uad is the space of adnissible controls and q = q(z) is

the entropy solution of the system of conservation laws (Euler 1-D equations

described in the previous section):

∂q

∂t
+
∂F (q)

∂x
= 0 (13)

q(x, 0) = z(x) (14)

with 0 ≤ x ≤ 1 and 0 ≤ t ≤ TW (TW being the length of the assimilation

window).

Since the solution of the system (13) may develop discontinuities after a finite

time weak solutions should be considered. An additional entropy condition

must be imposed to select the “physically” relevant weak solution.

An entropy function EF is defined for which an additional conservation law

holds for smooth solutions that becomes an inequality for discontinuous so-

lutions (Leveque [40], Godlewski and Raviart [22]). For the Euler equations

of gas dynamics (which are employed for this research) there exists a phys-

ical quantity called the entropy known to be constant along particle paths

in smooth flow and to jump to higher value as the gas crosses a shock. The

correct weak solution is picked out using a property of the entropy, namely

that it can never jump to a lower value (this approach was employed for the

high resolution model described in the previous section).
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For the system of gas dynamics equations, which is a strictly hyperbolic sym-

metrizable nonlinear system of conservation laws, entropy functions can be

found (e.g. Godlewski and Raviart [22], Leveque [40] ).

We introduce the definition of the entropy solution (Godlewski and Raviart

[22]) :

A weak solution q of (13)-(14) is called an entropy solution if q satisfies, for all

entropy functions EF of (13) and for all test functions φ ∈ C1
0 ([0, 1]× [0,∞)),

φ ≥ 0,

∞∫
t=0

x=1∫
x=0

(
EF(q)

∂φ

∂t
+ F (q)

∂φ

∂x

)
dxdt+

x=1∫
x=0

EF(z(x))φ(x, 0)dx ≥ 0 (15)

We will follow here the approach of Ulbrich [66] to derive existence results for

optimal controls. His work, related to scalar laws of conservation with source

terms, can be extended to our case (the 1-D system of Euler equations without

source terms).

For our problem the control vector z(x) is:

z(x) =




ρ(x, 0)

m(x, 0)

e(x, 0)




=




ρ(x, 0)

ρ(x, 0)u(x, 0)

P (x, 0)

(γ − 1)
+

1

2
ρ(x, 0)(u(x, 0))2




with ρ the density, u the velocity, m = ρu, P the pressure and γ the ratio of

specific heats.

Since z is obtained using the bounded initial values of the pressure, velocity

and density we may consider that the controls are in
(
L∞[0, 1]

)3

. If the control
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problem (OPT) is particularized to the optimal control prblem for 1-D Euler

equations for gas dynamics (described in Section 2) the existence of the optimal

controls is obtained as a consequence of four properties derived below.

(P1) The function F , which appears in the system of conservation laws (13),

is locally Lipschitz.

(P2) The admissible set Uad is bounded in
(
L∞[0, 1])3 and closed in

(
L1

loc([0, 1]
)3

.

(P3) If we denote by BV ((0, 1)) the space of functions of bounded variations

on the interval (0, 1) and using the fact that the embedding
(
BV (Ω)

)3

− >
(
L1(Ω)

)3

is compact for any open bounded set Ω ⊂ (0, 1) we obtain that Uad

is compact in
(
L1

loc[0, 1]
)3

.

In our research the cost functional J for the optimal control problem (OPT)

assumes two possible forms.

The first expression of the cost functional is

J(q, z) =

1∫
0

(q(x, TW ) − qobs(x, TW ))2dx (16)

with qobs ∈ L∞([0, 1]) the observations distributed at assimilation time TW .

The second cost functional is defined as

J(q, z) =

t=TW∫
t=0

x=1∫
x=0

(q(x, t) − qobs(x, t))2dxdt (17)

with qobs ∈
(
L∞([0, 1] × (0, TW ))

)3

the observations at assimilation times

0 ≤ t ≤ TW .
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For both forms: (16), (17) we have the following property:

(P4) The cost functional J is (at least) sequentially lower semicontinuous.

Using the properties (P1)-(P4) one can prove that the optimal control problem

(OPT) has a solution ẑ ∈ Uad in a similar way to the proof of existence of

optimal controls obtained by Ulbrich [66].

First we prove that if J satisfies P4) then

z ∈ (Uad ⊂
(
L1

loc[0, 1]
)3

) ↪→ J(q, z) (18)

is sequentially lower semicontinuous.

Indeed let the sequence (zk) ⊂ Uad converge in
(
L1

loc[0, 1]
)3

to z0. We have that

z0 ∈ Uad using property (P2). We have also that q(zk) → q(z0) (Godlewski

and Raviart [22]). It follows from property P4) that

limk→∞J(q(z
k), zk) ≥ J(q(z0), z0)

which establishes the lower semicontinuity of the operator defined in (18).

Finally let (zj) be a minimizing sequence for the optimal control problem

(OPT). Using compactness of Uad there exists a subsequence which converges

to ẑ ∈ Uad. We have proven that the operator (18) is sequentially lower semi-

continuous which implies that ẑ is a solution for the optimal control problem

(OPT) and this concludes the proof of existence of solutions for (OPT).

20



5 Minimization algorithms

In order to minimize the above described cost functional we employed both

nonsmooth and smooth optimization algorithms. A description of specific al-

gorithms from each class implemented in this research is provided in the next

tw subsections.

5.1 Nonsmooth Optimization

Since the gradient of a nonsmooth function f exists only almost anywhere we

have to replace the gradient by the generalized gradient

∂f(x) = conv{g| there exists a sequence(xi)i∈N such that lim
i→∞

xi = x,

f differentiable at xi, i ∈ N, and lim
i→∞

∇f(xi) = g}

where “conv” is the notation for the convex hull.

We assume that we can compute the value of the function and an arbitrary

subgradient g ∈ ∂f(x) (i.e. one element of the generalized gradient) at any

point in the domain.

The most efficient globally convergent algorithms for nonconvex nonsmooth

optimization are based on versions of the bundle methods (e.g. Lemarechal

[38], Bonnans et al. [7], Schramm and Zowe [58], Makela and Neittaanmaki

[47]). We employed a hybrid method (described in Vlcek and Luksan [68]

and Luksan and Vlcek [46]) which combines the characteristics of the variable

metric method and the bundle method.

The algorithm generates a sequence of basic points (xk)k∈N and a sequence of
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trial points (yk)k∈N satisfying

xk+1 = xk + tkLdk, yk+1 = xk + tkRdk

with y1 = x1, where tkR ∈ (0, tmax], tkL ∈ [0, tkR] are appropriately chosen

stepsizes, dk = −Hkg̃k is a direction vector, g̃k is an aggregate subgradient

and the matrix Hk accumulates information about the previous subgradients

and represents an approximation of the inverse Hessian matrix if the function

f is smooth.

If the descent condition f(yk+1) ≤ f(xk) − cLt
k
Rwk is satisfied with suitable

tkR, where cL ∈ (0, 0.5) is fixed and −wk < 0 represents the desirable amount

of descent, then xk+1 = yk+1 (descent step). Otherwise a null step is taken

which keeps the basic points unchanged but accumulates information about

the minimized function.

The aggregation is defined in the following way: denoting bym the lowest index

j satisfying xj = xk (index of the iteration after last descent step) and having

the basic subgradient gm ∈ ∂f(xk), the trial subgradient gk+1 ∈ ∂f(yk+1), and

the current aggregate subgradient g̃k, we define g̃k+1 as a convex combination

of these subgradients:

g̃k+1 = λk,1gm + λk,2gk+1 + λk,3g̃k

where the multipliers λk can be determined easily by minimizing a simple

quadratic function which depends on these three subgradients and two sub-

gradient locality measures (this approach replaces the solution of a rather

complicated quadratic programming problem which appears in the standard

bundle method Lemarechal [38]).
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The matrices Hk are generated using a symmetric rank-one update after the

null steps (to preserve the property of being bounded and other characteristics

required for the global convergence) or the standard BFGS update after the

descent steps (for both types of updates see Fletcher [16]).

5.2 L-BFGS Unconstrained optimization algorithm

We also tested the L-BFGS method (Nocedal [54], Liu and Nocedal [43],

Nocedal and Wright [55]) which performs the unconstrained minimization of

a smooth nonlinear function for which the gradient is available. L-BFGS is a

limited memory method based on the well-known BFGS (Broyden-Fletcher-

Goldfarb-Shanno) algorithm.

The main idea of this method is to use curvature information from only the

mostrecent iterations to construct the Hessian approximation. Instead of stor-

ing fully dense n × n approximations it saves just a few vectors of length n

that represent the approoximations implicitly.

Each step of the original BFGS method has the form

xk+1 = xk − αkHk∇Jk, k = 0, 1, 2, . . .

where αk is the step length and J is the cost functional. Hk is updated at each

ietration by means of the formula

Hk+1 = V T
k HkVk + βksks

T
k (19)

where

βk =
1

yT
k sk

VK = I − βkyks
T
k (20)
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and

sk = xk+1 − xk yk = ∇Jk+1 −∇Jk (21)

We say that the matrixHk+1 is obtained by updatingHk using the pair (sk, yk).

For L-BFGS a modified version of Hk is stored implicitly, by using a certain

number (say m) of the vector pairs (sl, yl) that are used in the formulae (19)-

(21).

The product Hk∇Jk can be obtained by performing a sequence of inner prod-

ucts and vector summations involving ∇Jk and the pairs (sl, yl). After the

new iterate is computed, the oldest vector pair in the set of pairs (sl, yl) is

deleted and replaced by the new pair (sk, yk) obtained from the current step

(21). In this way the set of vector pairs includes curvature information from

the m most recent iterations (usually 3 ≤ m ≤ 10).

For numerical experiments using the L-BFGS method the reader is referred

to Zou et al. [73].

We would like to conclude this section discussing our preference for L-BFGS

over other smooth minimization algorithms. One may argue that for our case

the number of control parameters may not justify the selection of a limited

memory method. We consider that our approach (using the adjoint method

for the gradient computation) may be easily and succesfully implemented for

optimal control problems with a much greater number of control variables. In

that case improvements in the efficiency of the numerical optimization will be

determined not only by choosing the adjoint method over other methods for

the gradient calculation but also by selecting a limited memory minimization

algorithm.
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6 Detection of discontinuities in data

In the setting of smooth optimization one may consider that, by eliminat-

ing some discontinuities from the computation of the cost functional and its

gradient (or subgradient) one may obtain a function which is smoother (i.e.

more suitable for smooth optimization). Several approaches can be found in

literature for the detection of discontinuities.

The discontinuity locking system (DLS) is employed for differential-algebraic

equations (DAE) by Birta and Oren [6], Park and Barton [57], Mao and

Petzold [48], to cite but a few. The idea for this approach (DLS) is to lock

the function evaluator for the initial-value problem solver so that the equations

evaluated are fixed while an integration step is being taken, thus presenting a

smooth vector field to the solver.

The approach we employ here is a modified application of a discrete regular-

ization method proposed by Lee and Pavlidis [36] which is presented below.

Let (xi, yi)i=0···n be the set of data points with xi < xi+1. We want to find the

n+ 1 quantities zi that minimize a combination of the discrete curvature and

the discrete difference between observation and desired data:

n∑
i=0

αi

(
zi+1 − zi

xi+1 − xi
− zi − zi−1

xi − xi−1

)2

+ β
n∑

i=0

(zi − yi)
2 (22)

with α0 = αn = 0 and αi = 1 for i = 1, · · · , n− 1.

Differentiating (22) with respect to zk and setting the derivatives to zero yields

a system of n+ 1 equations with n+ 1 equations, namely:

Pk0zk+2 − (Pk1 + Pk0 + Pk−1,0)zk+1 + (Pk1 + Pk2 + 2Pk−1,0 + β)zk
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−(Pk2 + Pk3 + Pk−1,0)zk−1 + Pk3zk−2 = βyk

where

Pk0 =
αk+1

(xk+2 − xk+1)(xk+1 − xk)

Pk1 =
αk+1 + αk

(xk+1 − xk)2

Pk2 =
αk−1 + αk

(xk − xk−1)2

Pk3 =
αk−1

(xk − xk−1)(xk−1 − xk−2)

and z−2 = z−1 = zn+1 = zn+2 = 0.

The parameter β is chosen such that it satisfies:

β � 1

mink (xk+1 − xk)2

which implies diagonal dominance for the system of equations (23). To find

discontinuities in the function or for its derivative we look at zero crossings of

the error between the observation and the desired data

zi − yi (23)

and at zero crossings of the approximate curvature

zi+1 − zi

xi+1 − xi
− zi − zi−1

xi − xi−1
(24)

Slope discontinuities are characterized by successive zero crossings of type (23)

and function discontinuities are characterized by zero crossings of type (23)

and (24).

For our problem we are interested in eliminating only the points which are

associated with the shocks (this is a trade-off between obtaining a smoother
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function and preserving as much as possible the discontinuous character of

the problem for a given time interval). If one would like to single out a region

of the solution (among the five regions described in section 2) which has the

greatest influence during numerical optimization one would select the points

where the shock occurs.

The detection of shock points was performed by considering only points with

approximate curvatures above a certain threshold value. This approach was

suggested to us by the fact that the curvature for the analytical solution is

very steep in the shock region.
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7 Numerical results

The main goal for this research was to control the location of the discontinuities

by matching the numerical flow to a desired flow. The cost functional was taken

to be the (weighted) difference between the numerical and the desired solution.

We chose the desired flow to be the exact solution of the analytical problem.

We wanted our research to include many characteristics of the class of the op-

timal control problems with discontinuities. Since one of the most important

features for this class of problems is the character of nonsmoothness for the

cost functional, one may argue that successful minimization of a very nons-

mooth cost functional in 1-D with a small number of control variables will

determine a greater level of confidence for the extension of this approach to

problems in higher dimensions and with a much larger number of control vari-

ables. We consider that our choice of observations contributed to a greater

nonsmoothness of the cost functional and, as a consequence, to improve the

generality of the conclusions derived from this research.

For many problems (including ours) the problem of finding a “matching” flow

at a given time is equivalent to the problem of finding the corresponding vector

of initial conditions ( the initial conditions serve as the control variables in

the optimal control setting).

For the practical applications of this approach (namely controlling the loca-

tion of the discontinuities) it is more important to consider the impact on the

flow parameters due to the change of shock location rather than the explicit

description of the new discontinuity location. For this reason we concentrated

our research efforts on matching the flow to a desired flow rather than intro-
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ducing the explicit shock location as a variable in the optimal control setup

(as performed by Cliff et al. [11] for duct flow with quasi 1-D Euler equations).

As presented in Appendix A our method uses the discrete (forward) model to

obtain the tangent linear model and then the adjoint model which provides the

gradient or a subgradient of the cost functional to the smooth (nonsmooth)

minimizer. If the location of the discontinuities were to be introduced as an ex-

plicit variable then the original code will have to be modified to accommodate

the new requirements, a change requiring complex adjustments.

For each of the two numerical models chosen for study in this article (artificial

viscosity model AVM or high-resolution model HRM) we employed uncon-

strained optimization methods (L-BFGS algorithm for smooth optimization

and PVAR algorithm for nonsmooth optimization) described in section 5.

The control variables were chosen to be the initial parameters to the left and

to the right of the membrane: pressure pL, pR and density ρL, ρR. The desired

observations were obtained as exact solutions of the shock-tube problem at

times t = 0.15 or t = 0.24 starting with prescribed initial conditions (which

will be referred to as the first set of parameters

(ρL = 1.1, pL = 1.1, ρR = 0.2, pR = 0.2)

and respectively the second set of parameters

(ρL = 1.2, pL = 1.2, ρR = 0.3, pR = 0.3)

The initial guess for both sets of desired observations and for both optimization

methods was taken to be

(ρL = 1.0, pL = 1.0, ρR = 0.1, pR = 0.1)
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characteristic for Sod shock-tube problem ([60]). The initial values for veloci-

ties to the left and to the right of the membrane were taken to be zero. Figures

(5)-(8) show on the same graph the observations and the numerical solution

obtained at the same time tfinal for the AVM orHRM model with the initial

guess for the control variables serving as the initial conditions.

Comparing the initial guess with the desired values for the control parameters

one may argue that the distance between them is very small which suggests

a trivial optimization problem. This remark would be valid for the case of

smooth functions fow which a small change in the initial conditions implies a

rather small change in the output values. However, a careful study of the cost

functionals described below shows that the small perturbation in the initial

conditions (of order 10−1) determines a difference in the outputs of order 102

or 103.

As discussed in the section 4 (existence of solutions for the optimal control

problem) we consider two expressions for the cost functional, with either ob-

servation at the end of the assimilation window or distributed observations in

time.

If the observation was obtained at the end of the time window (t = TW ) the

following discrete form of the cost functional was considered:

J(U(·, 0),P(·, 0), ρ(·, 0))=
Npoints∑

i=1

(
WU(i) × (Unum(i) −Uobs(i))2

+WP(i) × (Pnum(i) −Pobs(i))2

+Wρ × (ρnum(i) − ρobs(i))2
)
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where

U(x, 0) =




0.0, x < 0.5

0.0, x > 0.5

P(x, 0) =




pL, x < 0.5

pR, x > 0.5

ρ(x, 0) =




ρL, x < 0.5

ρR, x > 0.5

with (ρL, pL, ρR, pR) the control variables described above,Npoints is the num-

ber of points for space discretization, WU,WP,Wρ are the weights attached

to points, Unum,Pnum, ρnum are the fields of velocity, pressure and density at

time tfinal while Uobs,Pobs, ρobs are the observations for velocity, pressure and

density.

For distributed observations the discrete form of the cost functional is:

J(U(·, 0),P(·, 0), ρ(·, 0))=
Nobs∑
j=1

Npoints∑
i=1

(
WU(i) ×

(
Unum

(j) (i) −Uobs
(j) (i)

)2

+WP(i) ×
(
Pnum

(j) (i) −Pobs
(j) (i)

)2
(25)

+Wρ ×
(
ρnum

(j) (i) − ρobs
(j) (i)

)2
)

where in addition to the notations described above for the previous cost func-

tional we have Nobs the number of instances during the assimilation window

for which we consider the observations, Unum
(j) ,Pnum

(j) , ρnum
(j) are the fields of ve-

locity, pressure and density at time t(j), (1 ≤ j ≤ Nobs) while Uobs
(j) ,P

obs
(j) , ρ

obs
(j)

are the observations for velocity, pressure and density at the same observation

times t(j).

The control variables employed for this research were the initial values for

presure and density. The desired value for the initial velocity is 0.0 (both to

the left and to the right of the membrane) and for this reason we did not

consider the initial value of the velocity among the control variables. Another

reason for selecting the initial values of the velocity to be zero is related to the
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physical aspects of the shock-tube problem. If the initial values for the velocity

are considered control variables then during the minimization their updates

may have values which are different than zero (either positive or negative

values). The result may be either not physical or the corresponding variables

may develop bifurcation points for which special additional issues should be

addressed (Cacuci [8]).

The numerical results for both models (AVM and HRM) using either one

of the optimization methods (L-BFGS and PVAR) are presented in Figures

(9)-(27) as well as entries in the Tables (1)-(8). Figures (9)-(19) present the

evolution of the cost functional and of the norm of the gradient (or subgradi-

ent) for the cost functional. The norms employed are the discrete versions of

the norms in L2 (gradient) and in L∞ (subgradient). Figures (20)-(27) show

the numerical solution obtained as a result of the optimal control and the

values of the optimized control parameters are presented in Tables (1)-(8).

We considered two time windows for the optimal control problem: TW = 0.15

or TW = 0.24 (in nondimensional units) which were chosen such that at the

end of the time window the flow exhibits all five regions of discontinuities

discussed in Section 2. If one increases the time window from TW = 0.24 to

time = 0.3 one can see from the Figure 29 that several characteristics of the

discontinuities have already disappeared. For these reasons our choices of time

windows are representative of the shocked flow problem.

For the HRM model the optimized values of the control parameters are in

excellent agreement with the parameters’ desired values for both sets of ob-

servations and for both assimilation windows if the nonsmooth optimization

package PVAR was employed. Figures (9) and (10) show a decrease of more
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than 2 orders of magnitude for the cost functional. The optimal values of the

control parameters

(ρL, pL, ρR, pR)

obtained as a result of nonsmooth optimization (the column PVAR in Tables

(1)-(4) display a very good agreement with the desired parameters. See also

Figures (20)-(21) for a comparison between the numerical optimized solution

and the observations.

The optimization has essentially converged in about 25 iterations (for the

first set of observations) and in about 60 iterations (for the second set of

observations) for the same prescribed convergence criterion.

For the model HRM we also employed a cost functional with distributed (in

time and space) observations for the larger time window TW = 0.24. The opti-

mized values of the control parameters obtained as a result of the nonsmooth

minimization PVAR are shown as entries in the column PVAR(d.c.) (e.g.

distributed controls) in Tables (2)-(4).

It can be seen from the Tables that a very good agreement was obtained with

the desired values of the parameters. The corresponding Figures show that

the flow obtained with the optimized control parameters as initial conditions

matches very closely the observations and, in the same time, that the new

location of the discontinuities matches the desired location.

One may argue that the results obtained are slightly better for distributed

observations if one considers the third or fourth digit after the decimal point,

which proves that we have already obtained excellent optimized results (al-

most identical to the desired values of the parameters) for a cost functional
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computed using only final time observations. The graphs (9) and (10) show

the evolution of the distributed observations cost functional and the norm of

its subgradient versus the number of minimization iterations.

For the same model (HRM) the L-BFGS minimization was employed for

both time windows. This method converged only for the shorter time window

(TW = 0.15) for which we obtained similar results to PVAR as seen in the

columns LBFGS andPVAR in Tables (1)-(3). For the larger time window the

L-BFGS minimization did not perform successfully. It failed completely for

the first set of observations (although the failure was not due to the minimizer

as much as a consequence of the fact that some optimization updates did not

qualify as correct physical solutions for the forward model, an aspect which is

discussed below). For the second set of observations the optimized results did

not converge to the desired parameters (Table (4)). This failure suggests that

the the computation of the gradient by the adjoint method is more impacted

by the presence of discontinuities when a larger time window is considered.

For many numerical models which smooth the discontinuities we may consider

that the cost functional is “numerically” smoother. For this reason we also

tested unconstrained smooth minimization methods using the gradient de-

rived from the adjoint model obtained using a forward code with an artificial

viscosity term AVM). The evolution of the cost functional and that of the

norm of its gradient for the AVM model are displayed in Figures (13)-(19)

while the optimized results derived from solving the optimal control problem

are shown in Tables (5)-(8).

For the AVM model the nonsmooth optimization method PVAR performed

successfully for both sets of above mentioned observations as was the case for

34



the HRM model. The main difference was observed in the memory and CPU

time requirements). The HRM model employs much fewer points and time

steps compared to the AVM model: for comparable accuracy the number of

mesh points for HRM model was 200 while it was 500 for AVM; respectively

for the time window TW = 0.24 the HRM forward model required 192 time

steps while the AVM forward model required 1000 timesteps).

The cost functional of the AVM model decreased by 3 orders of magnitude

(attaining a similar order of magnitude as that obtained for the HRM model

but starting at a larger value of the cost functional due to the higher number of

mesh points. The number of iterations required for convergence of the AVM

model was almost the same as that for theHRMmodel, the only improvement

being observed for the time window TW = 0.15 and for the second set of

observations (in fact for the time window TW = 0.24 the number of iterations

increased slightly compared to HRM model). A sharper decrease is observed

for the norm of the gradient due to the fact that the discontinuities in the

forward AVM model are smeared causing a smoother input of the adjoint

model.

The L-BFGS unconstrained minimization was successful in minimizing the

cost functional for both sets of observations only for the time window TW =

0.15. The evolution of the cost functional and the norm of its gradient are

shown in Figure (19). For the time window TW = 0.24 this method was suc-

cessful only for the second set of observations as seen in Figure (18) and Table

(8) respectively. For the first set of observations the results obtained using the

algorithm L-BFGS did not converge to the desired parameters (Table (6)),

but to an output which was consequently utilized as an initial guess for the

PVAR method. The evolution of the cost functional in this case is shown
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in Figure (30). If we compare it with Figure (13) we notice that, while the

total number of iterations increased, the number of iterations which were ef-

fectively used for achieving the minimization of the cost functional decreased

from 25 iterations to 12 iterations (thereafter the decrease of the cost func-

tional “stalls”).

We would like to describe in more detail the “ failure” of the L-BFGS method

for our problem. For some cases (e.g. for HRM model using the first set of

observations and time window TW = 0.24) the minimization per se performed

successfully (i.e. a new step size was obtained and the vector of control vari-

ables was updated) but the updated vector of control variables did not qualify

as a solution from the physical point of view although the requirements for

an update from the optimization point of view (i.e. decrease of the cost func-

tional) were satisfied. A typical example of optimization update encountered

during the “failed” L-BFGS minimization may serve for better understanding

of possible causes for failure in our case: the control parameters were updated

to new values for which the forward model could not compute the numeri-

cal flow and, as a consequence, the cost functional and its gradient were not

available for the next minimization iteration.

We applied scaling for the gradient of the cost functional in the cases when

L-BFGS unconstrained optimization failed. We did not consider scaling for

the cases with convergence to the desired parameters but we may assume

that by employing scaling in thosecases one would achieve convergence in

fewer minimization steps (although very little improvement will be seen for

the optimized control parameters since they are in excellent agreement with

the desired parameters even without scaling).
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The scaling was chosen such that all components of the gradient have numer-

ical values of order one. An example of gradient scaling characteristic for all

the cases considered is presented here: the original gradient was the vector

(50.95, 66236.07, 37.82, −66323.43)

and after scaling the new vector gradient became

(5.09, 6.62, 3.78, −6.63)

The results of L-BFGS optimization with scaled gradient are presented in

the column L-BFGS scaled of the Tables (2), (4) and (6). We notice that

L-BFGS optimization algorithm with scaling did not fail as for the case of

L-BFGS optimization algorithm without scaling (the column L-BFGS in

the same Tables). But the method did not converge to the desired values of

control parameters.

Since the main reason for the poor performance of L-BFGSmay be attributed

to the presence of discontinuities we tested a method whereby we selectively

applied weights to the points of discontinuities. These points were found by

employing a discontinuity detection method described in Section 6.

The solution for shock-tube problem comprises of several distinct regions in-

cluding contact discontinuities, rarefaction waves and shocks. The choice of

the points where the weights were applied was based on the trade-off between

the desire for a smoother function and the requirement of preserving as much

as possible of the properties for the original problem. For this reason we de-

cided upon assigning the weights only to the points where the shock occurs.

Figure (28) shows the “shock” points selected from the entire number of space

points.
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Different weights (weight = 0.0, weight = 1.0, weight = 25.0) were considered

in the computation the cost functional and its gradient (weight = 0.0 means

removal of these points from the cost functional and its gradient computation,

for weight = 1.0 all the mesh points are considered to have the same influence

respectively for weight = 25.0 the influence of the shock is dominant).

These weights were applied to the cost functional and its gradient only if

the AVM model was employed for the forward model. At each minimization

iteration the method of discontinuity detection was reapplied and the corre-

sponding shock points were found (the update for the control vector gives new

initial conditions e.g. the shock changes its location in the forward model and

consequently in the adjoint model).

For both sets of observations and for both methods of optimization the weighted

minimization with weight = 25.0 failed for time windows TW = 0.15 and

TW = 0.24. The non smoothness of the cost functional was accentuated in

such a way that even the method of nonsmooth optimization (which pre-

viously performed in a very robust way) had severe difficulties to perform

adequately and did not converge.

In the case of weight = 0.0 a successful minimization was obtained for both

sets of observations and for both time windows as seen in the column L-

BFGS(w = 0) of Tables (5)-(8) (even for the case of time window TW = 0.24

and first set of observations, for which L-BFGS did not converge previously).

The evolution of the cost functional and the behavior of the norm of its gradi-

ent are presented in Figures (15) and (16). Comparing them with the evolution

of the same quantities described in Figures (18) and (19) we observe that the

number of minimization iterations decreased by a factor of two. When we com-
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pared the optimized values of the control parameters in Tables (5)-(8) for the

case weight = 0.0 with the same values for the case “no weight considered”

(which, in fact, is equivalent to assignment of a unit weight) we obtained very

satisfactorily results for both cases.

We tested the weighted cost functional with weight = 0.0 in the case of

nonsmooth optimization for the time window TW = 0.15 and for both sets

of observations. Although a small reduction in the number of iterations was

obtained we did not consider that the magnitude of this reduction justifies

this approach for the larger time window (in addition, by eliminating the

shock points from the cost functional computation the method of nonsmooth

minimization may disregard some nonsmooth characteristics of the problem

which may prove very useful from the physical point of view).
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8 Summary and Conclusions

We solved an optimal control problem for a flow which includes several types

of discontinuities (namely we carried out a flow matching for a 1-D Riemann

problem for Euler equations: shock-tube problem). The optimal controls con-

sidered were the initial conditions at the left and at the right of the membrane

for pressure and density. Existence results were proven for the solution of the

described optimal control problem.

Here flow matching was equivalent to relocation of discontinuities to a desired

location. Since in all practical control applications discontinuities are captured

using either high-resolution models or models which smooth the solution we

employed here two numerical models representative of both approaches.

The cost functional was taken to be the (weighted) difference between the

numerical and the desired solution. The observations were taken either at the

end of the time window or we had observations distributed in space and time

within the assimilation time window.

For each forward code its corresponding adjoint model was then employed

for computing the gradient (or a subgradient) of the cost functional required

for carrying out the minimization of the cost functional (either nonsmooth

or smooth algorithms for optimization). The two assimilation windows for

minimization were chosen such that the flow with discontinuities retained all

its characteristics at the end of each time window. The flow changes some of

these characteristics if we were to use a slightly larger time window.

The method of nonsmooth optimization (PVAR) employed for minimizing
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the cost functional was found to be very robust. For each of the different

sets of observations employed we obtained optimized values of the control

parameters which were in very good agreement with the desired results. The

method of smooth optimization (LBFGS) provided good results only in the

case of the shorter time window and failed for the longer time window.

For the artificial viscosity model we tested a method of weights (which were

attached to the points were the shock occurs) for the cost functional and its

gradient. The shock points were identified using a method of discontinuities

detection described in Section 5. When the weights were chosen to be 0.0 (i.e.

removal of the shock region) the number of iterations required for attaining

a prescribed convergence when using the smooth minimization LBFGS was

reduced by a factor of two.

A very useful characteristic of the methodology for optimal control for dis-

continuous flow presented in this article is the ease with which it can be

implemented in applications where the forward model is already discretized.

Although this research was performed for a 1-D space and time problem, we

consider that one can make a very good argument for the extension of the

present methodology to models in higher space dimensions (due to the fact

that many types of discontinuities encountered in higher dimensions appear

also in the solution of this 1-D optimal control problem). Extending this ap-

proach to optimal control problems with discontinuities in 2-D or 3-D makes

the adjoint method even more appealing computationally, due to the much

larger number of control parameters involved.

A very important topic which will be addressed in future research is related

to the issue of noisy observations. One may expect in this case that the cost
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functional will have new components which will account for the effect of the

noise.

We consider our research is a only small step towards the complete solution

of optimal control of problems with discontinuities. Although the number of

research works discussing numerical aspects for optimal control problems with

discontinuities is extremely small we are confident that, given the importance

of this subject, many other researchers will dedicate their efforts to advancing

the knowledge for this class of problems

42



9 Appendix :Computation of the gradient (a subgradient) of the

cost functional using the adjoint method

Assuming that the cost functional has the following form:

J[X,Λ] =
1

2

R∑
k=0

[X(tk) −Xobs(tk)]
TW(tk)[X(tk) −Xobs(tk)] (26)

with W(tk) being a diagonal weighting matrix, t0 ≤ tk ≤ tR, [t0, tR] the mini-

mization window, R the number of time steps in the minimization window and

Λ the vector of control parameters respectively, the gradient (a subgradient)

of the cost functional with respect to the control parameters: (∇ΛJ[Λ])T is

computed using the adjoint method.

The notions of gradient or subgradient are employed here in the numerical

sense (the analytical Riemann problem has only subgradients due to the pres-

ence of discontinuities). As result of the adjoint method we obtained the nu-

merical gradient in the case of smoothed model and respectively one numerical

subgradient in the case of the high-resolution model.

We define the adjoint equations for the adjoint variables Λ̂(k):

Λ̂(k)(t0) = QT
k Λ̂

(k)(tk), for k = 1, · · · , R (27)

If the adjoint variable Λ̂(k)(t) at time tk is initialized as:

Λ̂(k)(tk) =W(tk)[X(tk) −Xobs(tk)]
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then the gradient of the cost function with respect to the control parameters

can be obtained as in Navon et al. [53]:

∇ΛJ[X] =
R∑

k=0

Λ̂(k)(tk)

If we linearize the nonlinear model about the current model solution we obtain

the tangent linear model (TLM). The transpose of the TLM is the adjoint

model.

If we view the tangent linear model as the result of the multiplication of a

number of operator matrices:A1A2 · · ·AM where each matrixAi, i = 1, · · · ,M
represents either a subroutine or a single DO-loop, then the adjoint model can

be viewed as being a product of adjoint subproblems: AT
MA

T
M−1 · · ·AT

1 .

The correctness of the adjoint of each operator was checked using the following

identity:

(AQ)T (AQ) = QT (AT (AQ))

where Q represents the input of the original code and A can be either a single

DO loop or a subroutine. All subroutines of the adjoint model were subjected

to this test.

The accuracy of the gradients calculated by the adjoint method should be

at the level of machine precision. Errors could result due to coding mistakes,

round-off errors or the presence of non differentiable functions.

For a smooth cost functional the correctness of the adjoint model is checked

by examining the first-order approximations to a nonlinear perturbation of
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the cost functional (see Navon et al. [53]):

Φ(η) =
J(X+ ηh)) − J(X)

ηhT∇J(X)
(28)

where ||h|| = 1, η scalar and ∇J(X) is the gradient of the cost functional

J(X) with respect to X computed using the adjoint code.

For a differentiable cost functional the gradient derived from the adjoint model

can be assumed to be completely accurate (up to the machine error) when

lim
η→0

|Φ(η)| = 1. A validity region of the gradient test is normally obtained

for 10−3 ≥ η ≥ ε (where ε is the machine accuracy). For η > 10−3 we have

truncation error and for η near the machine accuracy roundoff errors prevail.

In our case the exact observations employed for the cost functional contain dis-

continuities which determine the nonsmooth character of the cost functional.

We considered the gradient obtained from the adjoint model to be sufficiently

accurate if the following tolerances were satisfied

lim
η→0

|Φ(η)| = δ (29)

for 10−3 ≥ η ≥ 10−10

where δ is a constant number which depends on the problem parameters.The

results of the gradient check test are displayed in Figures (1) and (2).

From these graphs we can notice that the gradient ratio tends to a constant

number in all cases which decreases slightly as we increase the time window.
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11 Captions

TABLES

• Table (1): Optimization results for the high-resolution model for time=0.15 and

first set of observations

• Table (2): Optimization results for the high-resolution model for time=0.24 and

first set of observations

• Table (3): Optimization results for the high-resolution model for time=0.15 and

second set of observations

• Table (4): Optimization results for the high-resolution model for time=0.24 and

second set of observations

• Table (5): Optimization results for the artificial viscosity model for time=0.15

and first set of observations

• Table (6): Optimization results for the artificial viscosity model for time=0.24

and first set of observations

• Table (7): Optimization results for the artificial viscosity model for time=0.15

and second set of observations

• Table (8): Optimization results for the artificial viscosity model for time=0.24

and second set of observations
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FIGURES

• Figure (1): The accuracy check for the gradient for the numerical model with

dissipation for time=0.15 (top) and time=0.24 (bottom)

• Figure (2): The accuracy check for the gradient for the high-resolution numerical

model for time=0.15 (top) and time=0.24 (bottom)

• Figure (3): Numerical (�) and analytical (red line) solution of high-resolution

model for the shock-tube problem at time=0.24 for a) pressure, b) density and

c) velocity

• Figure (4): Numerical (�) and analytical (red line) solution of artificial viscosity

model for the shock-tube problem at time=0.24 for a) pressure, b) density and

c) velocity

• Figure (5): Initial guess of high-resolution model(�) and exact observation (red

line) for the shock-tube problem at time=0.24 using the first set of observations

a) pressure, b) density and c) velocity

• Figure (6): Initial guess for artificial viscosity model (�) and exact observation (red

line) for the shock-tube problem at time=0.24 using the first set of observations

a) pressure, b) density and c) velocity

• Figure (7): Initial guess of high-resolution model(�) and exact observation (red

line) for the shock-tube problem at time=0.24 using the second set of observations

a) pressure, b) density and c) velocity

• Figure (8): Initial guess for artificial viscosity model (�) and exact observation (red

line) for the shock-tube problem at time=0.24 using the second set of observations

a) pressure, b) density and c) velocity

• Figure (9): Evolution of the cost functional and subgradient norm during nons-

mooth minimization with the high-resolution model for first set of observations
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(at time=0.15 (a,b) and at time=0.24 (c,d))

• Figure (10): Evolution of the cost functional and subgradient norm during nons-

mooth minimization with the high-resolution model for second set of observations

(at time=0.15 (a,b) and at time=0.24(c,d))

• Figure (11): Evolution of the cost functional and subgradient norm during nons-

mooth minimization with the high-resolution model at time =0.24 for first set(a,b)

and second set of distributed observations (c,d)

• Figure (12): Evolution of the cost functional and subgradient norm during LBFGS

minimization with the high-resolution model for time=0.15 (first set of observa-

tions (a,b) and second set of observations (c,d))

• Figure (13): Evolution of the cost functional and gradient norm during nonsmooth

minimization with the artificial viscosity model for first set of observations (at

time=0.15 (a,b) and at time=0.24 (c,d))

• Figure (14): Evolution of the cost functional and gradient norm during nonsmooth

minimization with the artificial viscosity model for second set of observations (at

time=0.15 (a,b) and at time=0.24(c,d))

• Figure (15): Evolution of the cost functional and gradient norm during LBFGS

minimization with the artificial viscosity model with weight=0.0 for time=0.15

(first set of observations (a,b) and second set of observations (c,d))

• Figure (16): Evolution of the cost functional and gradient norm during LBFGS

minimization with the artificial viscosity model with weight=0.0 for time=0.24

(first set of observations (a,b) and second set of observations (c,d))

• Figure (17): Evolution of the cost functional and gradient norm during nonsmooth

minimization with the artificial viscosity model with weight=0.0 for time=0.15

(first set of observations (a,b) and second set of observations (c,d))
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• Figure (18): Evolution of the cost functional and gradient norm during LBFGS

minimization with the artificial viscosity model for time=0.24 and second set of

observations

• Figure (19): Evolution of the cost functional and gradient norm during LBFGS

minimization with the artificial viscosity model for time=0.15 (first set of obser-

vations (a,b) and second set of observations (c,d))

• Figure (20): Desired solution (first set of observations) (red line) and numerical

solution (�) after nonsmooth optimization of high-resolution model at time=0.24

for a) pressure, b) density and c) velocity

• Figure (21): Desired solution (second set of observations) (red line) and numerical

solution (�) after nonsmooth optimization of high-resolution model at time=0.24

for a) pressure, b) density and c) velocity

• Figure (22): Desired solution (second set of observations) (red line) and numerical

solution (�) after LBFGS optimization of high-resolution model at time=0.24 for

a) pressure, b) density and c) velocity

• Figure (23): Desired solution (first set of observations) (red line) and numerical

solution (�) after nonsmooth optimization of artificial velocity model at time=0.24

for a) pressure, b) density and c) velocity

• Figure (24): Desired solution (second set of observations) (red line) and numerical

solution (�) after nonsmooth optimization of artificial velocity model at time=0.24

for a) pressure, b) density and c) velocity

• Figure (25): Desired solution (first set of observations) (red line) and numerical

solution (�) after LBFGS optimization of artificial velocity model at time=0.24

for a) pressure, b) density and c) velocity

• Figure (26): Desired solution (second set of observations) (red line) and numerical
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solution (�) after LBFGS optimization of artificial velocity model at time=0.24

for a) pressure, b) density and c) velocity

• Figure (27): Desired solution (first set of observations) (red line) and numerical

solution (�) after LBFGS optimization (with weight=0.0) of artificial velocity

model at time=0.24 for a) pressure, b) density and c) velocity

• Figure (28): The result of finding discontinuities (red filled triangles) for the

numerical solution of artificial velocity model at time=0.24 for a) pressure, b)

density and c) velocity

• Figure (29): Numerical (�) and analytical (red line) solution of high-resolution

model for the shock-tube problem at time=0.30 for a) pressure, b) density and

c) velocity

• Figure (30): Evolution of the cost functional and gradient norm during nonsmooth

minimization with the initial guess from the LBFGS output for the artificial

viscosity model for time=0.24 and first set of observations
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Table 1

Optimization results for the high-resolution model for time=0.15 and first set of

observations

Parameter Desired LBFGS PVAR

ρL 1.1 1.10143 1.10059

pL 1.1 1.10251 1.10187

ρR 0.2 0.19934 0.19942

pR 0.2 0.19865 0.19884

Table 2

Optimization results for the high-resolution model for time=0.24 and first set of

observations

Parameter Desired LBFGS PVAR LBFGS scaled PVAR (d.c.)

ρL 1.1 Failed 1.09815 1.04032 1.10088

pL 1.1 Failed 1.08966 0.99664 1.10915

ρR 0.2 Failed 0.19993 0.13887 0.20122

pR 0.2 Failed 0.19894 0.99628 0.19886
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Table 3

Optimization results for the high-resolution model for time=0.15 and second set of

observations

Parameter Desired LBFGS PVAR

ρL 1.2 1.20161 1.20052

pL 1.2 1.20342 1.20278

ρR 0.3 0.29712 0.29752

pR 0.3 0.29973 0.29953

Table 4

Optimization results for the high-resolution model for time=0.24 and second set of

observations

Parameter Desired LBFGS PVAR LBFGS scaled PVAR (d.c.)

ρL 1.2 1.03479 1.19406 1.38023 1.20689

pL 1.2 0.85757 1.19203 0.84461 1.20698

ρR 0.3 0.35072 0.30308 0.37357 0.30294

pR 0.3 0.25325 0.29946 0.26728 0.29962
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Table 5

Optimization results for the artificial viscosity model for time=0.15 and first set of

observations

Parameter Desired LBFGS LBFGS (w=0) LBFGS (w=25) PVAR

ρL 1.1 1.09712 1.10031 Failed 1.09685

pL 1.1 1.09947 1.10459 Failed 1.09933

ρR 0.2 0.20432 0.20514 Failed 0.20439

pR 0.2 0.19756 0.19786 Failed 0.19782

Table 6

Optimization results for the artificial viscosity model for time=0.24 and first set of

observations

Parameter Desired LBFGS LBFGS LBFGS PVAR PVAR LBFGS

w=0 w=25 Input LBFGS scaled

ρL 1.1 1.02638 1.09742 Failed 1.09737 1.09741 1.03685

pL 1.1 1.00347 1.10173 Failed 1.09966 1.09961 0.96042

ρR 0.2 0.18012 0.20004 Failed 0.20357 0.20344 0.13276

pR 0.2 0.19296 0.20154 Failed 0.19874 0.19867 0.35517
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Table 7

Optimization results for the artificial viscosity model for time=0.15 and second set

of observations

Parameter Desired LBFGS LBFGS (w=0) LBFGS (w=25) PVAR

ρL 1.2 1.19784 1.19327 Failed 1.19768

pL 1.2 1.19856 1.18962 Failed 1.19778

ρR 0.3 0.30582 0.29983 Failed 0.30583

pR 0.3 0.29714 0.30134 Failed 0.29702

Table 8

Optimization results for the artificial viscosity model for time=0.24 and second set

of observations

Parameter Desired LBFGS LBFGS (w=0) LBFGS (w=25) PVAR

ρL 1.2 1.19832 1.19872 Failed 1.19764

pL 1.2 1.19846 1.19641 Failed 1.19825

ρR 0.3 0.30615 0.30373 Failed 0.30527

pR 0.3 0.29891 0.29778 Failed 0.29735
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Fig. 1. The accuracy check for the gradient for the numerical model with dissipation

for time=0.15 (top) and time=0.24 (bottom)
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Fig. 2. The accuracy check for the gradient for the high-resolution numerical model

for time=0.15 (top) and time=0.24 (bottom)
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(a) (b)

(c)

Fig. 3. Numerical (�) and analytical (red line) solution of high-resolution model for

the shock-tube problem at time=0.24 for a) pressure, b) density and c) velocity.
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(a) (b)

(c)

Fig. 4. Numerical (�) and analytical (red line) solution of artificial viscosity model

for the shock-tube problem at time=0.24 for a) pressure, b) density and c) velocity.
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(a) (b)

(c)

Fig. 5. Initial guess of high-resolution model(�) and exact observation (red line) for

the shock-tube problem at time=0.24 using the first set of observations a) pressure,

b) density and c) velocity.
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(a) (b)

(c)

Fig. 6. Initial guess for artificial viscosity model (�) and exact observation (red

line) for the shock-tube problem at time=0.24 using the first set of observations a)

pressure, b) density and c) velocity.
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(a) (b)

(c)

Fig. 7. Initial guess of high-resolution model(�) and exact observation (red line)

for the shock-tube problem at time=0.24 using the second set of observations a)

pressure, b) density and c) velocity.
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Fig. 8. Initial guess for artificial viscosity model (�) and exact observation (red line)

for the shock-tube problem at time=0.24 using the second set of observations a)

pressure, b) density and c) velocity.
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(c) (d)

Fig. 9. Evolution of the cost functional and subgradient norm during nonsmooth

minimization with the high-resolution model for first set of observations (at

time=0.15 (a,b) and at time=0.24 (c,d)).
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Fig. 10. Evolution of the cost functional and subgradient norm during nonsmooth

minimization with the high-resolution model for second set of observations (at

time=0.15 (a,b) and at time=0.24(c,d)).
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Fig. 11. Evolution of the cost functional and subgradient norm during nonsmooth

minimization with the high-resolution model at time =0.24 for first set(a,b) and

second set of distributed observations (c,d).
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(c) (d)

Fig. 12. Evolution of the cost functional and subgradient norm during LBFGS min-

imization with the high-resolution model for time=0.15 (first set of observations

(a,b) and second set of observations (c,d)).
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Fig. 13. Evolution of the cost functional and gradient norm during nonsmooth mini-

mization with the artificial viscosity model for first set of observations (at time=0.15

(a,b) and at time=0.24 (c,d)).
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Fig. 14. Evolution of the cost functional and gradient norm during nonsmooth

minimization with the artificial viscosity model for second set of observations (at

time=0.15 (a,b) and at time=0.24(c,d)).
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Fig. 15. Evolution of the cost functional and gradient norm during LBFGS mini-

mization with the artificial viscosity model with weight=0.0 for time=0.15 (first set

of observations (a,b) and second set of observations (c,d)).
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Fig. 16. Evolution of the cost functional and gradient norm during LBFGS mini-

mization with the artificial viscosity model with weight=0.0 for time=0.24 (first set

of observations (a,b) and second set of observations (c,d)).
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Fig. 17. Evolution of the cost functional and gradient norm during nonsmooth min-

imization with the artificial viscosity model with weight=0.0 for time=0.15 (first

set of observations (a,b) and second set of observations (c,d)).
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Fig. 18. Evolution of the cost functional and gradient norm during LBFGS minimiza-

tion with the artificial viscosity model for time=0.24 and second set of observations

.
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Fig. 19. Evolution of the cost functional and gradient norm during LBFGS mini-

mization with the artificial viscosity model for time=0.15 (first set of observations

(a,b) and second set of observations (c,d)).
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Fig. 20. Desired solution (first set of observations) (red line) and numerical solu-

tion (�) after nonsmooth optimization of high-resolution model at time=0.24 for a)

pressure, b) density and c) velocity.
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Fig. 21. Desired solution (second set of observations) (red line) and numerical solu-

tion (�) after nonsmooth optimization of high-resolution model at time=0.24 for a)

pressure, b) density and c) velocity.
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(c)

Fig. 22. Desired solution (second set of observations) (red line) and numerical so-

lution (�) after LBFGS optimization of high-resolution model at time=0.24 for a)

pressure, b) density and c) velocity.

84



(a) (b)

(c)

Fig. 23. Desired solution (first set of observations) (red line) and numerical solution

(�) after nonsmooth optimization of artificial velocity model at time=0.24 for a)

pressure, b) density and c) velocity.
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(c)

Fig. 24. Desired solution (second set of observations) (red line) and numerical solu-

tion (�) after nonsmooth optimization of artificial velocity model at time=0.24 for

a) pressure, b) density and c) velocity.
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(c)

Fig. 25. Desired solution (first set of observations) (red line) and numerical solu-

tion (�) after LBFGS optimization of artificial velocity model at time=0.24 for a)

pressure, b) density and c) velocity.
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Fig. 26. Desired solution (second set of observations) (red line) and numerical solu-

tion (�) after LBFGS optimization of artificial velocity model at time=0.24 for a)

pressure, b) density and c) velocity.
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Fig. 27. Desired solution (first set of observations) (red line) and numerical solu-

tion (�) after LBFGS optimization (with weight=0.0) of artificial velocity model at

time=0.24 for a) pressure, b) density and c) velocity.
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(c)

Fig. 28. The result of finding discontinuities (red filled triangles) for the numerical

solution of artificial velocity model at time=0.24 for a) pressure, b) density and c)

velocity.
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(c)

Fig. 29. Numerical (�) and analytical (red line) solution of high-resolution model

for the shock-tube problem at time=0.30 for a) pressure, b) density and c) velocity.
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Fig. 30. Evolution of the cost functional and gradient norm during nonsmooth min-

imization with the initial guess from the LBFGS output for the artificial viscosity

model for time=0.24 and first set of observations .
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