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Abstract

This work proposes and analyzes a sparse grid stochastic collocation method for solving
elliptic partial differential equations with random coefficients and forcing terms (input data of
the model). This method can be viewed as an extension of the Stochastic Collocation method
proposed in [Babuška-Nobile-Tempone, Technical report, MOX, Dipartimento di Matematica,
2005] which consists of a Galerkin approximation in space and a collocation at the zeros of
suitable tensor product orthogonal polynomials in probability space and naturally leads to the
solution of uncoupled deterministic problems as in the Monte Carlo method. The full tensor
product spaces suffer from the curse of dimensionality since the dimension of the approximating
space grows exponentially fast in the number of random variables. If the number of random
variables is moderately large, this work proposes the use of sparse tensor product spaces uti-
lizing either Clenshaw-Curtis or Gaussian interpolants. For both situations this work provides
rigorous convergence analysis of the fully discrete problem and demonstrates: (sub)-exponential
convergence of the “probability error” in the asymptotic regime and algebraic convergence of the
“probability error” in the pre-asymptotic regime, with respect to the total number of collocation
points. The problem setting in which this procedure is recommended as well as suggestions for
future enhancements to the method are discussed. Numerical examples exemplify the theoretical
results and show the effectiveness of the method.

Key words: Collocation techniques, stochastic PDEs, finite elements, uncertainty quantifica-
tion, sparse grids, Smolyak algorithm, multivariate polynomial interpolation.
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Introduction

Mathematical modeling and computer simulations are nowadays widely used tools to predict the
behavior of physical and engineering problems. Whenever a particular application is considered,
the mathematical models need to be equipped with input data, such as coefficients, forcing terms,
boundary conditions, geometry, etc.

However, in many applications, such input data may be affected by a relatively large amount
of uncertainty. This can be due to an intrinsic variability in the physical system as, for instance,
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in the mechanical properties of many bio-materials, polymeric fluids, or composite materials, the
action of wind or seismic vibrations on civil structures, etc.

In other situations, uncertainty may come from our difficulty in characterizing accurately the
physical system under investigation as in the study of groundwater flows, where the subsurface
properties such as porosity and permeability in an aquifer have to be extrapolated from measure-
ments taken only in few spatial locations.

Such uncertainties can be included in the mathematical model adopting a probabilistic setting,
provided enough information is available for a complete statistical characterization of the physical
system. In this framework, the input data are modeled as random variables, like in the case where
the input coefficients are piecewise constant and random over fixed subdomains, or more generally,
as random fields with a given spatial (or temporal) correlation structure.

Therefore, the goal of the mathematical and computational analysis becomes the prediction
of statistical moments (mean value, variance, covariance, etc.) or even the whole probability dis-
tribution of some responses of the system (quantities of physical interest), given the probability
distribution of the input random data.

A random field can often be expanded as an infinite combination of random variables by means,
for instance of the so called Karhunen-Loève [23] or Polynomial Chaos (PC) expansions [34, 38].
Although it is properly described only by means of an infinite number of random variables, whenever
the realizations are slowly varying in space, with a correlation length comparable to the size of the
domain, only a few terms in the above mentioned expansion are typically needed to describe the
random field with sufficient accuracy. Therefore, for this type of application, it is reasonable to
limit the analysis to just a few random variables in the expansion (see e.g. [2, 16]).

In this work we focus on elliptic partial differential equations whose coefficients and forcing
terms are described by a finite dimensional random vector (finite dimensional noise assumption,
cf. Section 1.1), either because the problem itself can be described by a finite number of random
variables or because the input coefficients are modeled as truncated random fields.

The most popular approach to solve mathematical problems in a probabilistic setting is the
Monte Carlo method (see e.g. [15] and references therein). The Monte Carlo method is easy to
implement and allows one to reuse available deterministic codes. Yet, the convergence rate is
typically very slow, although with a mild dependence on the number on sampled random variables.

In the last few years, other approaches have been proposed, which in certain situations feature
a much faster convergence rate. We mention, among others, the Spectral Galerkin method [4,
5, 16, 19, 22, 25, 29, 37], Stochastic Collocation [3, 24, 31, 36], perturbation methods or Neumann
expansions [1, 17,20,32,35].

For certain classes of problems, the solution may have a very regular dependence on the input
random variables. For instance, it was shown in [3] and [4] that the solution of a linear elliptic PDE
with diffusivity coefficient and/or forcing term described as truncated expansions of random fields
is analytic in the input random variables. In such situations, Spectral Galerkin or Stochastic Col-
location methods based on orthogonal tensor product polynomials feature a very fast convergence
rate.

In particular, our earlier work [3] proposed a Stochastic Collocation/Finite Element method
based on standard finite element approximations in space and a collocation on a tensor grid built
upon the zeros of orthogonal polynomials with respect to the joint probability density function of
the input random variables. It was shown that for an elliptic PDE the error converges exponentially
fast with respect to the number of points employed in each probability direction.

The Stochastic Collocation can be easily implemented and leads naturally to the solution of
uncoupled deterministic problems as for the Monte Carlo method, even in presence of input data
which depend nonlinearly on the driving random variables. It can also treat efficiently the case
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of non independent random variables with the introduction of an auxiliary density and handle for
instance cases with lognormal diffusivity coefficient, which is not bounded in Ω ×D but that has
bounded realizations.

When the number of input random variables is small, Stochastic Collocation is a very effective
numerical tool.

On the other hand, approximations based on tensor product spaces suffer from the curse of
dimensionality since the number of collocation points in a tensor grid grows exponentially fast in
the number of input random variables.

If the number of random variables is moderately large, one should rather consider sparse tensor
product spaces as first proposed by Smolyak [30] and further investigated by e.g. [6,16,18,36], which
will be the primary focus of this paper. The use of sparse grids allows one to reduce dramatically
the number of collocation points, while preserving a high level of accuracy.

Motivated by the above, this work analyzes a sparse grid Stochastic Collocation method for solv-
ing elliptic partial differential equations whose coefficients or forcing terms are described through a
finite number of random variables. The sparse tensor product grids are built upon either Clenshaw-
Curtis or Gaussian abscissas. For both situations this work provides a rigorous convergence analysis
of the fully discrete problem and demonstrates (sub)-exponential convergence of the “probability
error” in the asymptotic regime and algebraic convergence of the “probability error” in the pre-
asymptotic regime, with respect to the total number of collocation points used in the sparse grid.
This work also addresses the case where the input random variables come from suitably truncated
expansions of random fields and discusses how the size of the sparse grid can be algebraically related
to the number of random variables retained in the expansion in order to have a discretization error
of the same order as that of the error due to the truncation of the input random fields.

The problem setting in which the sparse grid Stochastic Collocation method is recommended
as well as suggestions for future enhancements to the method are discussed.

The outline of the paper is the following: in Section 1 we introduce the mathematical problem
and the main notation used throughout. In section 2 we focus on applications to linear elliptic PDEs
with random input data. In Section 3 we provide an overview of various collocation techniques and
describe the sparse approximation method to be considered as well as the different interpolation
techniques to be employed. In Section 4 we provide a complete error analysis of the method
considered. Finally, in Section 5 we present some numerical results showing the effectiveness of the
proposed method.

1 Problem setting

We begin by focusing our attention on an elliptic operator L, linear or nonlinear, on a domain
D ⊂ Rd, which depends on some coefficients a(ω, x) with x ∈ D, ω ∈ Ω and (Ω,F , P ) a complete
probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events and P : F → [0, 1]
is a probability measure. Similarly the forcing term f = f(ω, x) can be assumed random as well.

Consider the stochastic elliptic boundary value problem: find a random function, u : Ω×D → R,
such that P -almost everywhere in Ω, or in other words almost surely (a.s.), the following equation
holds:

L(a)(u) = f in D (1.1)

equipped with suitable boundary conditions. Before introducing some assumptions we denote by
W (D) a Banach space of functions v : D → R and define, for q ∈ [1,∞], the stochastic Banach
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spaces

Lq
P (Ω; W (D)) =

{
v : Ω → W (D) | v is strongly measurable and

∫
Ω
‖v(ω, ·)‖q

W (D)dP (ω) < +∞
}

and

L∞P (Ω; W (D)) =
{

v : Ω → W (D) | v is strongly measurable and P − ess sup
ω∈Ω

‖v(ω, ·)‖2
W (D) < +∞

}
.

Of particular interest is the space L2
P (Ω; W (D)), consisting of Banach valued functions that have

finite second moments.
We will now make the following assumptions:

A1) the solution to (1.1) has realizations in the Banach space W (D), i.e. u(·, ω) ∈ W (D) almost
surely and ∀ω ∈ Ω

‖u(·, ω)‖W (D) ≤ C‖f(·, ω)‖W ∗(D)

where we denote W ∗(D) to be the dual space of W (D), and C is a constant independent of
the realization ω ∈ Ω.

A2) the forcing term f ∈ L2
P (Ω; W ∗(D)) is such that the solution u is unique and bounded in

L2
P (Ω; W (D)).

Here we give two example problems that are posed in this setting:

Example 1.1 The linear problem{
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,
(1.2)

with a(ω, ·) uniformly bounded and coercive, i.e.

there exists amin, amax ∈ (0,+∞) such that P (ω ∈ Ω : a(ω, x) ∈ [amin, amax]∀x ∈ D) = 1

and f(ω, ·) square integrable with respect to P , satisfies assumptions A1 and A2 with W (D) =
H1

0 (D) (see [3]).

Example 1.2 Similarly, for k ∈ N+, the nonlinear problem{
−∇ · (a(ω, ·)∇u(ω, ·)) + u(ω, ·)|u(ω, ·)|k = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,
(1.3)

with a(ω, ·) uniformly bounded and coercive and f(ω, ·) square integrable with respect to P , satisfies
assumptions A1 and A2 with W (D) = H1

0 (D) ∩ Lk+2(D) (see [26]).

1.1 On Finite Dimensional Noise

In some applications, the coefficient a and the forcing term f appearing in (1.1) can be described
by a random vector [Y1, . . . , YN ] : Ω → RN , as in the following examples. In such cases, we will
emphasize such dependence by writing aN and fN .
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Example 1.3 (Piecewise constant random fields) Let us consider again problem (1.2) where
the physical domain D is the union of non-overlapping subdomains Di, i = 1, . . . , N . We consider
a diffusion coefficient that is piecewise constant and random on each subdomain, i.e.

aN (ω, x) = amin +
N∑

i=1

σi Yi(ω)1Di(x).

Here 1Di is the indicator function of the set Di, σi, amin are positive constants, and the random
variables Yi are nonnegative with unit variance.

In other applications the coefficients and forcing terms in (1.1) may have other type of spatial
variation that is amenable to describe by an expansion. Depending on the decay of such expansion
and the desired accuracy in our computations we may retain just the first N terms.

Example 1.4 (Karhunen-Loève expansion) We recall that any second order random field g(ω, x),
with continuous covariance function cov[g] : D ×D → R, can be represented as an infinite sum of
random variables, by means, for instance, of a Karhunen-Loève expansion [23]. For mutually un-
correlated real random variables {Yi(ω)}∞i=1 with zero mean and unit variance, i.e. E[Yi] = 0 and
E[YiYj ] = δij for i, j ∈ N+ we let

g(ω, x) = E[g](x) +
∞∑
i=1

√
λi bi(x) Yi(ω)

where {λi}∞i=1 is a sequence of non-negative decreasing eigenvalues and {bi}∞i=1 the corresponding
sequence of orthonormal eigenfunctions satisfying

Tgbi = λibi, (bi, bj)L2(D) = δij for i, j ∈ N+.

The compact and self-adjoint operator Tg : L2(D) → L2(D) is defined by

Tgv(·) =
∫

D
cov[g](x, ·) v(x) dx ∀v ∈ L2(D).

The truncated Karhunen-Loève expansion gN , of the stochastic function g, is defined by

gN (ω, x) = E[g](x) +
N∑

i=1

√
λi bi(x) Yi(ω) ∀N ∈ N+.

The infinite random variables are uniquely determined by

Yi(ω) =
1√
λi

∫
D

(g(ω, x)− E[g](x)) bi(x) dx.

Then by Mercer’s theorem (cf [28, p. 245]), it follows that

lim
N→∞

{
sup
D

E
[
(g − gN )2

]}
= lim

N→∞

{
sup
D

( ∞∑
i=N+1

λib
2
i

)}
= 0.

Observe that the N random variables in (1.4), describing the random data, are then weighted
differently due to the decay of the eigen-pairs of the Karhunen-Loève expansion. The decay of
eigenvalues and eigenvectors has been investigated e.g. in the works [16] and [32].
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The above examples motivate us to consider problems whose coefficients are described by finitely
many random variables. Thus, we will seek a random field uN : Ω × D → R, such that a.s., the
following equation holds:

L(aN )(uN ) = fN in D, (1.4)

We assume that equation (1.4) admits a unique solution uN ∈ L2
P (Ω; W (D)). We then have, by

the Doob–Dynkin’s lemma (cf. [27]), that the solution uN of the stochastic elliptic boundary value
problem (1.4) can be described by uN = uN (ω, x) = uN (Y1(ω), . . . , YN (ω), x). We underline that
the coefficients aN and fN in (1.4) may be an exact representation of the input data as in Example
1.3 or a suitable truncation of the input data as in Example 1.4. In the latter case, the solution uN

will also be an approximation of the exact solution u in (1.1) and the truncation error u− uN has
to be properly estimated, see section 4.2.

Remark 1.5 (Nonlinear coefficients) In certain cases, one may need to ensure qualitative prop-
erties on the coefficients aN and fN and may be worth while to describe them as nonlinear functions
of Y . For instance, in Example 1.1 one is required to enforce positiveness on the coefficient aN (ω, x),
say aN (ω, x) ≥ amin for all x ∈ D, a.s. in Ω. Then a better choice is to expand log(aN − amin).
The following standard transformation guarantees that the diffusivity coefficient is bounded away
from zero almost surely

log(aN − amin)(ω, x) = b0(x) +
∑

1≤n≤N

√
λnbn(x)Yn(ω), (1.5)

i.e. one performs a Karhunen-Loève expansion for log(aN − amin), assuming that aN > amin

almost surely. On the other hand, the right hand side of (1.4) can be represented as a truncated
Karhunen-Loève expansion

fN (ω, x) = c0(x) +
∑

1≤n≤N

√
µncn(x)Yn(ω).

Remark 1.6 It is usual to have fN and aN independent, because the forcing terms and the param-
eters in the operator L are seldom related. In such a situation we have aN (Y (ω), x) = aN (Ya(ω), x)
and fN (Y (ω), x) = fN (Yf (ω), x), with Y = [Ya, Yf ] and the vectors Ya, Yf are independent.

For this work we denote Γn ≡ Yn(Ω) the image of Yn, where we assume Yn(ω) to be bounded.
Without loss of generality we can assume Γn = [−1, 1]. We also let ΓN =

∏N
n=1 Γn and assume

that the random variables [Y1, Y2, . . . , Yn] have a joint probability density function ρ : ΓN → R+,
with ρ ∈ L∞(ΓN ). Thus, the goal is to approximate the function uN = uN (y, x), for any y ∈ ΓN

and x ∈ D. (see [3], [4])

Remark 1.7 (Unbounded Random Variables) By using a similar approach to the work [3]
we can easily deal with unbounded random variables, such as Gaussian or exponential ones. For
the sake of simplicity in the presentation we focus our study on bounded random variables only.

1.2 Regularity

Before discussing various collocation techniques and going through the convergence analysis of such
methods, we need to state some regularity assumptions on the data of the problem and consequent
regularity results for the exact solution uN . We will perform a one-dimensional analysis in each
direction yn, n = 1, . . . , N . For this, we introduce the following notation: Γ∗n =

∏N
j=1

j 6=n
Γj , y∗n will

denote an arbitrary element of Γ∗n. We require the solution to problem (1.1) to satisfy the following
estimate:
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Assumption 1.8 For each yn ∈ Γn, there exists τn > 0 such that the function uN (yn, y∗n, x) as a
function of yn, uN : Γn → C0(Γ∗n;W (D)) admits an analytic extension u(z, y∗n, x), z ∈ C, in the
region of the complex plane

Σ(Γn; τn) ≡ {z ∈ C, dist(z, Γn) ≤ τn}. (1.6)

Moreover, ∀z ∈ Σ(Γn; τn),
‖uN (z)‖C0(Γ∗n;W (D)) ≤ λ (1.7)

with λ a constant independent of n.

The previous assumption should be verified for each particular application. In particular, this
has implications on the allowed regularity of the input data, e.g. coefficients, loads, etc., of the
stochastic PDE under study. In the next section we recall some theoretical results, which were
proved in [3, Section 3], for the linear problem introduced in Example 1.1.

2 Applications to linear elliptic PDEs with random input data

In this section we give more details concerning the linear problem described in Example 1.1. Prob-
lem (1.2) can be written in a weak form as: find u ∈ L2

P (Ω; H1
0 (D)) such that∫

D
E[a∇u · ∇v] dx =

∫
D

E[fv] dx ∀ v ∈ L2
P (Ω; H1

0 (D)). (2.1)

A straightforward application of the Lax-Milgram theorem allows one to state the well posedness
of problem (2.1). Moreover, the following a priori estimates hold

‖u‖H1
0 (D) ≤

CP

amin
‖f(ω, ·)‖L2(D) a.s. (2.2)

and

‖u‖L2
P (Ω;H1

0 (D)) ≤
CP

amin

(∫
D

E[f2] dx

)1/2

, (2.3)

where CP denotes the constant appearing in the Poincaré inequality:

‖w‖L2(D) ≤ CP ‖∇w‖L2(D) ∀w ∈ H1
0 (D).

Once we have the input random fields described by a finite set of random variables, i.e. a(ω, x) =
aN (Y1(ω), . . . , YN (ω), x), and similarly for f(ω, x), the ”finite dimensional” version of the stochastic
variational formulation (2.1) has a “deterministic” equivalent which is the following: find uN ∈
L2

ρ(Γ
N ;H1

0 (D)) such that∫
ΓN

ρ (aN∇uN ,∇v)L2(D) dy =
∫

ΓN

ρ (fN , v)L2(D) dy, ∀ v ∈ L2
ρ(Γ

N ;H1
0 (D)). (2.4)

Observe that in this work the gradient notation, ∇, always means differentiation with respect to
x ∈ D only, unless otherwise stated. The stochastic boundary value problem (2.1) now becomes
a deterministic Dirichlet boundary value problem for an elliptic partial differential equation with
an N−dimensional parameter. For convenience, we consider the solution uN as a function uN :
ΓN → H1

0 (D) and we use the notation uN (y) whenever we want to highlight the dependence on
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the parameter y. We use similar notations for the coefficient aN and the forcing term fN . Then, it
can be shown that problem (2.1) is equivalent to∫

D
aN (y)∇uN (y) · ∇φ dx =

∫
D

fN (y)φ dx, ∀φ ∈ H1
0 (D), ρ-a.e. in ΓN . (2.5)

For our convenience, we will suppose that the coefficient aN and the forcing term fN admit a
smooth extension on the ρ-zero measure sets. Then, equation (2.5) can be extended a.e. in ΓN

with respect to the Lebesgue measure (instead of the measure ρdy).
It has been proved in [3] that problem (2.5) satisfies the analyticity result stated in Assumption

1.8. For instance, if we take the diffusivity coefficient as in Example 1.3 and a deterministic load
the size of the analyticity region is given by

τn =
amin

4σn
. (2.6)

On the other hand, if we take the diffusivity coefficient as a truncated expansion like in Remark
1.5, then the analyticity region Σ(Γn; τn) is given by

τn =
1

4
√

λn‖bn‖L∞(D)

(2.7)

Observe that, in the latter case, as
√

λn‖bn‖L∞(D) → 0 for a regular enough covariance function (see
[16]) the analyticity region increases as n increases. This fact introduces, naturally, an anisotropic
behavior with respect to the “direction” n. This effect will not be exploited in the numerical
methods proposed in the next sections but is the subject of ongoing research.

3 Collocation techniques

We seek a numerical approximation to the exact solution of (1.4) in a suitable finite dimensional
subspace. To describe such a subspace properly, we introduce some standard approximation sub-
spaces, namely:

• Wh(D) ⊂ W (D) is a standard finite element space of dimension Nh, which contains con-
tinuous piecewise polynomials defined on regular triangulations Th that have a maximum
mesh-spacing parameter h > 0. We suppose that Wh has the following deterministic approx-
imability property: for a given function ϕ ∈ W (D),

min
v∈Wh(D)

‖ϕ− v‖W (D) ≤ C(s;ϕ) hs, (3.1)

where s is a positive integer determined by the smoothness of ϕ and the degree of the ap-
proximating finite element subspace and C(s;ϕ) is independent of h.

Example 3.1 Let D be a convex polygonal domain and W (D) = H1
0 (D). For piecewise

linear finite element subspaces we have

min
v∈Wh(D)

‖ϕ− v‖H1
0 (D) ≤ c h ‖ϕ‖H2(D).

That is, s = 1 and C(s;ϕ) = ‖ϕ‖H2(D), see for example [8].
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We will also assume that there exists a finite element operator πh : W (D) → Wh(D) with the
optimality condition

‖ϕ− πhϕ‖W (D) ≤ Cπ min
v∈Wh(D)

‖ϕ− v‖W (D), ∀ϕ ∈ W (D), (3.2)

where the constant Cπ is independent of the mesh size h.

• Pp(ΓN ) ⊂ L2
ρ(Γ

N ) is the span of tensor product polynomials with degree at most p = (p1, . . . , pN )
i.e. Pp(ΓN ) =

⊗N
n=1 Ppn(Γn), with

Ppn(Γn) = span(yk
n, k = 0, . . . , pn), n = 1, . . . , N.

Hence the dimension of Pp(ΓN ) is Np =
∏N

n=1(pn + 1).

Stochastic collocation entails the sampling of approximate values πhuN (yk) = uN
h (yk) ∈ Wh(D), to

the solution uN of (1.4) on a suitable set of abscissas yk ∈ ΓN .

Example 3.2 If we examine the linear PDE for example, then we introduce the semi-discrete
approximation uN

h : ΓN → Wh(D), obtained by projecting equation (2.5) onto the subspace Wh(D),
for each y ∈ ΓN , i.e.∫

D
aN (y)∇uN

h (y) · ∇φh dx =
∫

D
fN (y)φh dx, ∀φh ∈ Wh(D), for a.e. y ∈ ΓN . (3.3)

Notice that the finite element functions uN
h (y) satisfy the optimality condition (3.2), for all y ∈ ΓN .

Then the construction of a fully discrete approximation, uN
h,p ∈ C0(ΓN ;Wh(D)), is based on a

suitable interpolation of the sampled values. That is

uN
h,p(y, ·) =

∑
k

uN
h (yk, ·)lpk(y), (3.4)

where, for instance, the functions lpk can be taken as the Lagrange polynomials (see Section 3.1 and
3.2).

This formulation can be used to compute the mean value or variance of u, as:

E[u](x) ≈ uN
h ≡

∑
k

uN
h (yk, x)

∫
ΓN

lpk(y)ρ(y)dy

and
Var[u](x) ≈

∑
k

(
uN

h (yk, x)− uN
h

)2 ∫
ΓN

lpk(y)ρ(y)dy.

Several choices are possible for the interpolation points. We will discuss two of them, namely
Clenshaw-Curtis and Gaussian in Sections 3.2.1 and 3.2.2 respectively. Regardless of the choice
of interpolating knots, the interpolation can be constructed by using either full tensor product
polynomials, see Section 3.1, or the space of sparse polynomials, see Section 3.2.
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3.1 Full tensor product interpolation

In this section we briefly recall interpolation based on Lagrange polynomials. Let i ∈ N+ and
{yi

1, . . . , y
i
mi
} ⊂ [−1, 1] be a sequence of abscissas for Lagrange interpolation on [−1, 1].

For u ∈ C0(Γ1;W (D)) and N = 1 we introduce a sequence of one-dimensional Lagrange inter-
polation operators U i : C0(Γ1;W (D)) → Vmi(Γ

1;W (D))

U i(u)(y) =
mi∑
j=1

u(yi
j) · lij(y), ∀u ∈ C0(Γ1;W (D)), (3.5)

where lij ∈ Pmi−1(Γ1) are Lagrange polynomials of degree pi = mi − 1 and

Vm(Γ1;W (D)) =

{
v ∈ C0(Γ1;W (D)) : v(y, x) =

m∑
k=1

ṽk(x)lk(y), {ṽk}m
k=1 ∈ W (D)

}
.

Here of course we have, for i ∈ N+,

lij(y) =
mi∏
k=1
k 6=j

(y − yi
k)

(yi
j − yi

k)

and formula (3.5) reproduces exactly all polynomials of degree less than mi. Now, in the multivari-
ate case N > 1, for each u ∈ C0(ΓN ;W (D)) and the multi-index i = (i1, . . . , iN ) ∈ NN

+ we define
the full tensor product interpolation formulas

IN
i u(y) =

(
U i1 ⊗ · · · ⊗U iN

)
(u)(y) =

mi1∑
j1=1

· · ·
miN∑
jN=1

u
(
yi1

j1
, . . . , yiN

jN

)
·
(
li1j1 ⊗ · · · ⊗ liNjN

)
. (3.6)

Clearly, the above product needs (mi1 · · ·miN ) function values, sampled on a grid. These formulas
will also be used as the building blocks for the Smolyak method, described next.

3.2 The Smolyak method

Here we follow closely the work [7] and describe the Smolyak isotropic formulas A (q, N). The
Smolyak formulas are just linear combinations of product formulas (3.6) with the following key
properties: only products with a relatively small number of knots are used and the linear combi-
nation is chosen in such a way that an interpolation property for N = 1 is preserved for N > 1.
With U 0 = 0 define

∆i = U i −U i−1 (3.7)

for i ∈ N+. Moreover, we put |i| = i1 + · · · + iN for i = (i1, i2, . . . , iN ) ∈ NN
+ . Then the Smolyak

algorithm is given by
A (q, N) =

∑
|i|≤q

(
∆i1 ⊗ · · · ⊗∆iN

)
(3.8)

for integers q ≥ N . Equivalently, formula (3.8) can be written as (see [33])

A (q, N) =
∑

q−N+1≤|i|≤q

(−1)q−|i|
(

N − 1
q − |i|

)
·
(
U i1 ⊗ · · · ⊗U iN

)
. (3.9)
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To compute A (q, N)(u), one only needs to know function values on the ”sparse grid”

H (q, N) =
⋃

q−N+1≤|i|≤q

(
ϑi1 × · · · × ϑiN

)
(3.10)

where ϑi =
{
yi
1, . . . , y

i
mi

}
⊂ [−1, 1] denotes the set of points used by U i. Note that the Smolyak

algorithm, as presented, is isotropic and we will later discuss possible improvements that can be
made to further reduce the number of points used to compute U i.

3.2.1 Clenshaw-Curtis Formulas

We first suggest to use the Smolyak algorithm based on polynomial interpolation at the extrema
of Chebyshev polynomials. For any choice of mi > 1 these knots are given by

yi
j = − cos

(
π(j − 1)
mi − 1

)
, j = 1, . . . ,mi. (3.11)

In addition, we define yi
1 = 0 if mi = 1. It remains to specify the numbers mi of knots that

are used in formulas U i. In order to obtain nested sets of points, i.e., ϑi ⊂ ϑi+1 and thereby
H (q, N) ⊂ H (q + 1, N), we choose

m1 = 1 and mi = 2i−1 + 1, for i > 1. (3.12)

For such a choice of mi we arrive at Clenshaw-Curtis formulas, see [10]. It is important to choose
m1 = 1 if we are interested in optimal approximation in relatively large N , because in all other
cases the number of points used by A (q, N) increases too fast with N .

A variant of the Clenshaw-Curtis formulas are the Filippi formulas in which the abscissas at the
boundary of the interval are omitted [18]. In either case the degree mi− 1 of exactness is obtained.

3.2.2 Gaussian formulas

We also propose to apply the Smolyak formulas based on polynomial interpolation at the zeros of
the orthogonal polynomials with respect to a weight ρ. This naturally leads to the Gauss formulas
that have a maximum degree of exactness of 2mi− 1. However, these Gauss-Legendre formulas are
in general not nested. Regardless, as in the Clenshaw-Curtis case, we choose

m1 = 1 and mi = 2i−1 + 1, for i > 1.

The natural choice of the weight ρ should be the probability density of the random variables Yi(ω)
for all i. Yet, in the general multivariate case, if the random variables Yi are not independent, the
density ρ does not factorize, i.e.

ρ(y1, . . . , yn) 6=
N∏

n=1

ρn(yn).

To this end, we first introduce an auxiliary probability density function ρ̂ : ΓN → R+ that can be
seen as the joint probability of N independent random variables, i.e. it factorizes as

ρ̂(y1, . . . , yn) =
N∏

n=1

ρ̂n(yn), ∀y ∈ ΓN , and is such that
∥∥∥∥ρ

ρ̂

∥∥∥∥
L∞(ΓN )

< ∞. (3.13)

For each dimension n = 1, . . . , N let the mn Gaussian abscissas be the roots of the mn degree
polynomial that is ρ̂n-orthogonal to all polynomials of degree mn − 1 on the interval [−1, 1].
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4 Error analysis

Collocation methods can be used to approximate the solution uN ∈ C0(ΓN ;W (D)) using finitely
many function values. By Assumption 1.8, uN admits an analytic extension. Further, each func-
tion value will be computed by means of a finite element technique. We define the numerical
approximation uN

h,p = A (q, N)πhuN . Our aim is to give a priori estimates for the total error

ε = u− uN
h,p = u−A (q, N)πhuN

where the operator A (q, N) is described by (3.8) and πh is the finite element projection operator
described by (3.2). We will investigate the error

‖u−A (q, N)πhuN‖ ≤ ‖u− uN‖︸ ︷︷ ︸
(I)

+ ‖uN − πhuN‖︸ ︷︷ ︸
(II)

+ ‖πh(uN −A (q, N)uN )‖︸ ︷︷ ︸
(III)

(4.1)

evaluated in the natural norm L2
P (Ω; W (D)). Since the error functions in (II) and (III) are finite

dimensional the natural norm is equivalent to L2
ρ(Γ

N ;W (D)). By controlling the error in this
natural norm we also control the error in the expected value of the solution, for example:∥∥E[u− uN

h,p]
∥∥

W (D)
≤ E

[∥∥u− uN
h,p

∥∥
W (D)

]
≤
∥∥u− uN

h,p

∥∥
L2

P (Ω;W (D))
.

The quantity (I) controls the truncation error for the case where the input data aN and fN are
suitable truncations of random fields. This contribution to the total error will be considered in
Section 4.2. The quantity (I) is otherwise zero if the representation of aN and fN is exact, as
in Example 1.3. The second term (II) controls the convergence with respect to h, i.e. the finite
element error, which will be dictated by standard approximability properties of the finite element
space Wh(D), given by (3.1), and the regularity in space of the solution u (see e.g. [8,9]). Specifically,

‖uN − πhuN‖L2
ρ(ΓN ;W (D)) ≤ Cπhs

(∫
ΓN

C(s;u)2ρ(y) dy

)1/2

by the finite element approximability property (3.1).
The full tensor product convergence results are given by [3, Theorem 1] and therefore, we will

only concern ourselves with the convergence results when implementing the Smolyak algorithm
described in Section 3.2. Namely, our primary concern will be to analyze the interpolation error
(III)

‖πh(uN −A (q, N)uN )‖L2
ρ(ΓN ;W (D)) ≤ Cπ ‖uN −A (q, N)uN‖L2

ρ(ΓN ;W (D))

where Cπ is defined by the finite element optimality condition (3.2). Hence, in the next sections
we estimate the interpolation error

‖uN −A (q, N)uN‖L2
ρ(ΓN ;W (D)) ,

for both the Clenshaw-Curtis and Gaussian versions of the Smolyak algorithm.

4.1 Analysis of the interpolation error

There are techniques to get error bounds for Smolyak’s algorithm for N > 1 from those for the case
N = 1. Therefore, we first address the case N = 1. Let us first recall the best approximation error
for a function v : Γ1 → W (D) which admits an analytic extension in the region Σ(Γ1; τ) = {z ∈

12



C, dist(z, Γ) < τ} of the complex plane, for some τ > 0. We will still denote the extension by v;
in this case, τ represents the distance between Γ1 ⊂ R and the nearest singularity of v(z) in the
complex plane. Since we assume Γ1 = [−1, 1] and hence bounded, we present the following result,
whose proof can be found in [3, Lemma 7] and which is an immediate extension of the result given
in [12, Chapter 7, Section 8]:

Lemma 4.1 Given a function v ∈ C0(Γ1;W (D)) which admits an analytic extension in the region
of the complex plane Σ(Γ1; τ) = {z ∈ C, dist(z, Γ1) ≤ τ} for some τ > 0, there holds

Emi ≡ min
w∈Vmi

‖v − w‖C0(Γ1;W (D)) ≤
2

%− 1
e−mi log(%) max

z∈Σ(Γ1;τ)
‖v(z)‖

W (D)

where 1 < % =
2τ

|Γ1|
+

√
1 +

4τ2

|Γ1|2
.

Remark 4.2 (Approximation with unbounded random variables) A related result with
weighted norms holds for unbounded random variables whose probability density decays as the Gaus-
sian density at infinity (see [3]).

In the multidimensional case, the size of the analyticity region will depend, in general, on the
direction n and it will be denoted by τn, as in (2.7). The same holds for the decay coefficient %n.
In what follows, we set

% ≡ min
n

%n. (4.2)

As stated in Section 3.2, the Smolyak construction treats all directions equally and is therefore
an isotropic algorithm. Moreover, the convergence analysis presented in Sections 4.1.1 and 4.1.2
does not exploit possible anisotropic behaviors of problem (1.1). Therefore, we can expect a slower
convergence rate for such problems that exhibit strong anisotropic effects. See Section 5 where we
explore numerically the consequences of introducing an anisotropy into the model problem described
by Example 1.1.

Example 4.3 For the linear problem described in Section 2 it was shown in the work [3] that for
a multi-index p = (p1, . . . , pN ), a tensor product polynomial interpolation on Gaussian abscissas
achieves exponential convergence in each direction Yn and the error can be bounded as

‖uN − IN
p uN‖L2

ρ(ΓN ;W (D)) ≤ C

N∑
n=1

%n
−pN . (4.3)

The constant C in (4.3) is independent of N and, using (2.7), we have

%n =
2τn

|Γn|
+

√
1 +

4τn
2

|Γn|2

≥ 1 +
2τn

|Γn|
.

(4.4)

where τn can be estimated e.g. as in (2.6) and (2.7).
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4.1.1 Clenshaw-Curtis interpolation estimates

In this section we develop error estimates for interpolating functions u ∈ C0(ΓN ;W (D)) that admit
an analytic extension as described by Assumption 1.8 using the Smolyak formulations based on the
choice (3.11) and (3.12) described in Section 3.2.1. We remind the reader that in the global estimate
(4.1) we need to bound the interpolation error (III) in the L2

ρ(Γ
N ;W (D)) norm. Yet, this norm is

always bounded by the L∞(ΓN ;W (D)). Namely, for all v ∈ L∞(ΓN ;W (D)) we have

‖v‖L2
ρ(ΓN ;W (D)) ≤ ‖v‖L∞(ΓN ;W (D)).

In our notation the norm ‖ · ‖∞,N is shorthand for ‖ · ‖L∞(ΓN ;W (D)) and will be used henceforth.
We also define IN : ΓN → ΓN as the identity operator on an N -dimensional space.

We begin by letting Em be the error of the best approximation to functions u ∈ C0(Γ1;W (D))
by functions w ∈ Vm. Similarly to [7], since U i is exact on Vmi−1 we can apply the general formula∥∥u−U i(u)

∥∥
∞,1

≤ Emi−1(u) · (1 + Λmi) (4.5)

where Λm is the Lebesgue constant for our choice (3.11). It is known that

Λm ≤ 2
π

log(m− 1) + 1 (4.6)

for m ≥ 2, see [13].
Using Lemma 4.1, the best approximation to functions u ∈ C0(Γ1;W (D)) that admit an analytic

extension as described by Assumption 1.8 is bounded by:

Emi(u) ≤ C %−mi (4.7)

where C is a constant dependent on τ defined in Lemma 4.1. Hence (4.5)-(4.7) implies∥∥(I1 −U i)(u)
∥∥
∞,1

≤ C log(mi)%−mi ≤ C i%−2i
,∥∥(∆i)(u)

∥∥
∞,1

=
∥∥(U i −U i−1)(u)

∥∥
∞,1

≤
∥∥(I1 −U i)(u)

∥∥
∞,1

+
∥∥(I1 −U i−1)(u)

∥∥
∞,1

≤ E i%−2i−1

for all i ∈ N+ with positive constants C and E depending on u but not on i.

Lemma 4.4 For functions u ∈ L2
ρ(Γ

N ;W (D)) that admit an analytic extension as described by
Assumption 1.8 we obtain

‖(IN −A (q, N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ CFN Ψ(q, N)%−

p(q,N)
2 (4.8)

where

p(q, N) :=
{

N 2q/N , if q > Nχ,
(q −N) log(2) · 2χ, otherwise,

, (4.9)

Ψ(q, N) :=

{
1 if N = 1
min

{
q2N−1, q3 eq2

}
otherwise,

(4.10)

and χ =
(

1+log(2)
log(2)

)
.
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Proof. First we define, for j ≥ 1 and s ≥ d, the two functions

f(s, j) :=
1
2

(
j2s/j + 2q−N+j+2−s

)
and

g(s, j) :=
∑

i∈N+ ,|i|=s

j∏
n=1

in.

We begin by claiming that

‖(IN −A (q, N)) (u)‖∞,N ≤ C

N−1∑
j=1

Ej
q−N+j∑

s=j

g(s, j) (q −N + j + 1− s) %−f(s,j)

+ ‖(I1 −A (q −N + 1, 1))(u)‖∞,N (4.11)

where, for the trivial case, we get

‖(I1 −A (q −N + 1, 1))(u)‖∞,N =
∥∥(I1 −U q−N+1)(u)

∥∥
∞,N

≤ C(q−N+1)%−2q−N+1 ≤ Cq%−2q−N+1
.

This error estimate is computed inductively. For N > 1 we use recursively,

IN+1 −A (q + 1, N + 1) = IN+1 −
∑
|i|≤q

(
N⊗

n=1

∆in ⊗U q+1−|i|

)

=
∑
|i|≤q

(
N⊗

n=1

∆in ⊗
(
I1 −U q+1−|i|

))
+ (IN −A (q, N))⊗ I1.

Furthermore,∥∥∥∥∥∥
∑
|i|≤q

(
N⊗

n=1

(∆in)(u)⊗
(
I1 −U q+1−|i|

)
(u)

)∥∥∥∥∥∥
∞,N

≤
∑
|i|≤q

N∏
n=1

∥∥(∆in)(u)
∥∥
∞,N

∥∥∥(I1 −U q+1−|i|)(u)
∥∥∥
∞,N

≤ CEN
∑
|i|≤q

(
N∏

n=1

in

)
%−

PN
n=1 2in−1

(q + 1− |i|) %−2q+1−|i|

≤ CEN
∑
|i|≤q

(
N∏

n=1

in

)
(q + 1− |i|) %−

1
2(N2|i|/N+2q+2−|i|)

≤ CEN
q∑

s=N

g(s,N) (q + 1− s) %−f(s,N)

where we have used the convexity estimate

%−
PN

n=1 2in ≤ %−N2|i|/N
.
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Then, by the inductive assumption (4.11),

‖((IN −A (q, N))⊗ I1) (u)‖∞,N ≤ C

N−1∑
j=1

Ej
q−N+j∑

s=j

g(s, j) (q −N + j + 1− s) %−f(s,j)

+ ‖(I1 −A (q −N + 1, 1))(u)‖∞,N .

Therefore,

‖(IN+1 −A (q + 1, N + 1))(u)‖∞,N ≤ C
N∑

j=1

Ej
q−N+j∑

s=j

g(s, j) (q −N + j + 1− s) %−f(s,j)

+ ‖(I1 −A (q −N + 1, 1))(u)‖∞,N .

and (4.11) is proved. Set F = max{1, E} to obtain

‖(IN −A (q, N)) (u)‖∞,N ≤ C
N−1∑
j=1

(max{1, E})N
q−N+j∑

s=j

g(s, j) (q −N + j + 1− s) %−f(s,j)

+ ‖(I1 −A (q −N + 1, 1))(u)‖∞,N

≤ CFN
N−1∑
j=1

q−N+j∑
s=j

g(s, j) (q −N + j + 1− s) %−f(s,j)

+ ‖(I1 −A (q −N + 1, 1))(u)‖∞,N .

(4.12)

We now turn our attention to finding a maximum for %−f(s,j) on the set {(s, j) : j ≤ s ≤
q −N + j and 1 ≤ j ≤ N − 1}. Clearly

∂f

∂s
=
(
2s/j − 2q−N+j+2−s

)
log(2) = 0

implies that s = s(j) = j + j(q−N+1)
j+1 , which satisfies for any j ∈ N+

j ≤ s(j) ≤ q −N + 1 + j.

Hence,
max

j≤s≤q−N+j
%−f(j,s) = %−f(j,s(j))

≤ %−h(j)

where h(j) = (j + 1)2(q−N+1)/(j+1). Then we get

dh

dj
= 2(q−N+1)/(j+1)

(
1− (q −N + 1) log(2)

j + 1

)
= 0

which yields j = (q −N + 1) log(2)− 1. For q sufficiently large, the minimum of h(j) falls outside
the interval [1, N − 1] and the function h(j) is decreasing on this interval. Therefore, there are two
cases to consider. The first being the situation when q > N

(
1+log(2)
log(2)

)
= Nχ and the second when

N ≤ q ≤ Nχ. In either case
max

1≤j≤N−1
%−h(j) = %−p(q,N),
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hence
max

1≤j≤N−1

j≤s≤q−N+j

%−f(j,s) ≤ %−p(q,N).

In conclusion we have, for q ≥ N

‖(IN −A (q, N)) (u)‖∞,N ≤ CFN%−p(q,N)
N−1∑
j=1

q−N+j∑
s=j

g(s, j)(q −N + j + 1− s)

= CFN%−p(q,N) κ + ‖(I1 −A (q −N + 1, 1))(u)‖∞,N

(4.13)

and

κ =
N−1∑
j=1

q−N+j∑
s=j

g(s, j)(q −N + j + 1− s)

=
N−1∑
j=1

q−N+j∑
s=j

(q −N + j + 1− s)
∑

i∈Nj
+, |i|=s

(
j∏

n=1

in

)

≤
N−1∑
j=1

q−N+j∑
s=j

(q −N + j + 1− s)
∑

i∈Nj
+, |i|=s

(
|i|
j

)j

=
N−1∑
j=1

q−N+j∑
s=j

(q −N + j + 1− s)
(

s

j

)j (s− 1
j − 1

)

≤ (q −N + 1)
N−1∑
j=1

q−N+j∑
s=j

(
q −N + j

j

)j (s− 1)j−1

(j − 1)!

≤ (q −N + 1)(q −N)
N−1∑
j=1

(q − 1)j (q −N + j)j−1

(j − 1)!

≤ (q −N + 1)(q −N)
N−1∑
j=1

(q − 1)2j−1

(j − 1)!

= (q −N + 1)(q −N)(q − 1)
N−2∑
j=0

(q − 1)2j

j!
.

(4.14)

Since the sum
∑N−2

j=0
(q−1)2j

j! can be bounded by e(q−1)2 or by (q−1)2N−2

q(q−2) , then in either case κ ≤
Ψ(q, N). Finally, from (4.12) and using (4.13) and (4.14) we conclude that

‖(IN −A (q, N)) (u)‖∞,N ≤ CFN Ψ(q, N)%−
p(q,N)

2 + %−2q−N+1
. (4.15)

We also observe that Ψ(q, N) ≥ 1 and by straightforward calculations

2q−N+1 ≥ p(q, N)
2

, ∀N ≥ 1, q ≥ N,

to conclude that
%−2q−N+1 ≤ Ψ(q, N)%−

p(q,N)
2

and this completes the proof. �
Now we relate the number of collocation points n = n(q, N) = #H (q, N) to the level q of the

Smolyak algorithm. We state the result in the following lemma.
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Lemma 4.5 Using the Smolyak interpolant described by (3.8) where the abscissas are the Clenshaw-
Curtis knots, described in Section 3.2.1, the total number of points required at level q satisfies the
following bounds:

2q−N+1 ≤ n ≤ 2qqN

(N − 1)!
. (4.16)

Proof. The proof follows immediately but will be shown for completeness. By using formula
(3.8) and exploiting the nested structure of the Clenshaw-Curtis abscissas the number of points
n = n(q, N) = #H (q, N) can be counted in the following way:

n =
∑
|i|≤q

N∏
n=1

r(in), where r(i) :=


1 if i = 1
2 if i = 2
2i−2 if i > 2

. (4.17)

If we take i1 = i2 = . . . = iN−1 = 1 then to satisfy the constraint |i| ≤ q we required iN ≤ q−N +1.
Then we get

2q−N−1 ≤ n =
∑
|i|≤q

N∏
n=1

r(in) ≤
∑
|i|≤q

2|i| ≤
q∑

j=N

∑
|i|=j

2j =
q∑

j=N

2j

(
j − 1
N − 1

)

≤
q∑

j=N

2q (q − 1)N−1

(N − 1)!

≤ 2qqN

(N − 1)!

which completes the proof. �
The next Theorem relates the error bound (4.8) to the number of collocation points n =

n(q, N) = #H (q, N), described by Lemma 4.5.

Theorem 4.6 Assume the conditions of Lemma 4.4 and Lemma 4.5, and define the function

γ(n, N) = log2(n) + N + 1,

then for N ≤ q < Nχ

‖(IN −A (q, N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ CFN Ψ(γ(n, N), N)

(
(2γ(n, N))N

n (N − 1)!

)Θ
2

log(%)

(4.18)

and for q ≥ Nχ

‖(IN −A (q, N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ CFN Ψ(γ(n, N), N) %

−N
2

[(N−1)!]1/N n1/N

γ(n,N) . (4.19)

where Θ = 2χ and n = n(q, N) is the number of knots that are used by A (q, N) and Ψ was defined
in (4.10).

Proof. Recall that the error bound will be separated into two estimates depending on the domain
of definition of (4.9). First for N ≤ q < Nχ and using (4.16) we arrive at

log(n) + log((N − 1)!) ≤ q log(2) + N log(q)
≤ q log(2) + N log γ(n, N)
= (q −N) log(2) + N log(2γ(n, N)).
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Hence,

q −N ≥ log(n) + log((N − 1)!)−N log(2γ(n, N))
log(2)

and using (4.9) implies that

p(q, N) ≥ (log(n) + log((N − 1)!)−N log(2γ(n, N))) ·Θ

= Θ log
(

n (N − 1)!
(2γ(n, N))N

)
.

Therefore, using (4.16) we deduce that

‖(IN −A (q, N)) (u)‖∞,N ≤ CFN Ψ(γ(n, N), N) %
−Θ log

“
(N−1)!+n

(2γ(n,N))N

”

= CFN Ψ(γ(n, N), N)
(

e
− log(%) log

“
(N−1)!+n

(2γ(n,N))N

”)Θ

= CFN Ψ(γ(n, N), N)
(

(2γ(n, N))N

n(N − 1)!

)Θ·log(%)

(4.20)

and we recover (4.18).
On the other hand, for q ≥ Nχ and using (4.16) we find that(

2qqN

(N − 1)!

)1/N

≥ n1/N

which implies that

2q/N ≥ (n(N − 1)!)1/N

γ(n, N)
and

p(q, N) ≥ N [(N − 1)!]1/N n1/N

γ(n, N)
.

Therefore, again with (4.16) we conclude that

‖(IN −A (q, N)) (u)‖∞,N ≤ CFN Ψ(γ(n, N), N)%−
N
2

[(N−1)!]1/N n1/N

γ(n,N) . (4.21)

and we recover (4.19). �

4.1.2 Gaussian interpolation estimates

Similarly to the previous section we now develop error estimates for interpolating functions u ∈
C0(ΓN ;W (D)) that admit an analytic extension as described by Assumption 1.8 using the Smolyak
formulations based on Gaussian abscissas described in Section 3.2.2. As before, we remind the
reader that in the global estimate (4.1) we need to bound the interpolation error (III) in the norm
L2

ρ(Γ
N ;W (D)). Yet, the Gaussian points defined in Section 3.2.2 are constructed for the more

appropriate density ρ̂ =
∏N

n=1 ρ̂n and we have

‖v‖L2
ρ(ΓN ;W (D)) ≤

∥∥∥∥ρ

ρ̂

∥∥∥∥
L∞(ΓN )

· ‖v‖L2
ρ̂(ΓN ;W (D)) for all v ∈ C0(ΓN ;W (D)).

In what follows we will use the shorthand notation ‖ · ‖ρ̂,N for ‖ · ‖L2
ρ̂(ΓN ;W (D)). Utilizing the work

of Erdös and Turán [14] we present the following lemma:
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Lemma 4.7 For every function u ∈ C0(Γ1;W (D)) the interpolation error satisfies

‖u−U i(u)‖ρ̂,1 ≤ 2
√

Cρ̂ inf
w∈Vmi

‖u− w‖∞,1.

where Cρ̂ =
∫

Γ1

ρ̂(y) dy.

Proof. We have, indeed, for any v ∈ Vmi

‖u−U i(u)‖2
ρ̂,1 =

∥∥u− v + (v −U i(u))
∥∥2

ρ̂,1

=
∥∥u− v + U i(v − u)

∥∥2

ρ̂,1

≤ 2
(
‖u− v‖2

ρ̂,1 +
∥∥U i(u− v)

∥∥2

ρ̂,1

) (4.22)

where we observe that ∀v ∈ Vmi , it holds U i(v) = v. Then it is easy to see that

‖u− v‖2
ρ̂,1 ≤

∫
Γ1

ρ̂(y) |(u− v)(y)|2 dy

≤ ‖u− v‖2
∞,1

∫
Γ1

ρ̂(y) dy = Cρ̂ ‖u− v‖2
∞,1

and ∥∥U i(u− v)
∥∥2

ρ̂,1
=

∥∥∥∥∥∥
mi∑
j=1

(u− v)(yi
j)l

i
j(y)

∥∥∥∥∥∥
2

ρ̂,1

≤
mi∑

j,j′=1

∣∣(u− v)(yi
j)
∣∣ ∣∣(u− v)(yi

j′)
∣∣ ∫

Γ1

ρ̂(y)lij(y)lij′(y) dy

≤ ‖u− v‖2
∞,1

mi∑
j=1

∫
Γ1

ρ̂(y)(lij(y))2 dy =
(∫

Γ1

ρ̂(y)dy

)
‖u− v‖2

∞,1

where we exploit the orthogonality of the Lagrange polynomial basis. Then from (4.22) we conclude
that

‖u−U i(u)‖2
ρ̂,1 ≤ 4

(∫
Γ1

ρ̂(y)dy

)
‖u− v‖2

∞,1

and the result follows directly. �
Similar to Section 4.1.1 we let Em be the error of the best approximation to functions u ∈

C0(Γ1;W (D)) that admit an analytic extension as described by Assumption 1.8 by functions
w ∈ Vm. Then, from Lemma 4.7 we begin with

∥∥u−U i(u)
∥∥

ρ̂,1
≤ 2

√(∫
Γ1

ρ̂(y)dy

)
Emi−1(u). (4.23)

Again, from Lemma 4.1 the best approximation is bounded by :

Emi(u) ≤ C %−mi (4.24)

where C is a constant dependent on τ defined in Lemma 4.1. Hence (4.23) and (4.24) imply∥∥(I1 −U i)(u)
∥∥

ρ̂,1
≤ C̃ %−2i

,
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∥∥(∆i)(u)
∥∥

ρ̂,1
=
∥∥(U i −U i−1)(u)

∥∥
ρ̂,1

≤
∥∥(I1 −U i)(u)

∥∥
ρ̂,1

+
∥∥(I1 −U i−1)(u)

∥∥
ρ̂,1

≤ Ẽ %−2i−1

for all i ∈ N+ with positive constants C̃ and Ẽ depending on u but not on i. We then present the
following lemma and theorem whose proofs follow, with minor changes, those given in Lemma 4.4
and Theorem 4.6 respectively.

Lemma 4.8 For functions u ∈ L2
ρ(Γ

N ;W (D)) that admit an analytic extension as described by
Assumption 1.8 we obtain

‖(IN −A (q, N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ ‖ρ/ρ̂‖L∞(ΓN ) C̃F̃N Ψ̃(q, N)%−

p(q,N)
2 (4.25)

where

p(q, N) :=
{

N 2q/N , if q > Nχ,
(q −N) log(2) · 2χ, otherwise

, (4.26)

Ψ̃(q, N) :=
{

1 if N = 1
min

{
qN−2, qeq

}
otherwise

(4.27)

and χ =
(

1+log(2)
log(2)

)
.

Now we relate the number of collocation points n = n(q, N) = #H (q, N) to the level q of the
Smolyak algorithm. We state the result in the following lemma:

Lemma 4.9 Using the Smolyak interpolant described by (3.9) where the abscissas are the Gaussian
knots described in Section 3.2.2, the total number of points required at level q satisfies the following
bounds:

2q−N ≤ n ≤ 2qqN

(N − 1)!
. (4.28)

Proof. The proof follows immediately but will be shown for completeness. By using formula (3.9),
where we collocate using the Gaussian abscissas the number of points n = n(q, N) = #H (q, N),
can be counted in the following way:

n =
∑
|i|≤q

N∏
n=1

r̃(in), where 2i−1 ≤ r̃(i) :=
{

1 if i = 1
2i−1 + 1 if i ≥ 2

. (4.29)

If we take i1 = i2 = . . . = iN−1 = 1, then to satisfy the constraint |i| ≤ q we required iN ≤ q−N +1.
Then we get

2q−N ≤ 2q−N + 1 ≤ n =
∑
|i|≤q

N∏
n=1

r̃(in) ≤
∑
|i|≤q

2|i| ≤
q∑

j=N

∑
|i|=j

2j =
q∑

j=N

2j

(
j − 1
N − 1

)

≤
q∑

j=N

2q (q − 1)N−1

(N − 1)!

≤ 2qqN

(N − 1)!

which completes the proof. �
Finally, the next Theorem relates the error bound (4.25) to the number of collocation points

n = n(q, N) = #H (q, N), described by Lemma 4.9.
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Theorem 4.10 Assume the conditions of Lemma 4.8 and 4.9, and define the function

γ̃(n, N) = log2(n) + N,

then for N ≤ q < Nχ there holds

‖(IN −A (q, N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ ĈF̃N Ψ̃(γ̃(n, N), N)

(
(2γ̃(n, N))N

n(N − 1)!

)Θ
2

log(%)

(4.30)

and for q ≥ Nχ

‖(IN −A (q, N)) (u)‖L2
ρ(ΓN ;W (D)) ≤ ĈF̃N Ψ̃(γ̃(n, N), N)%−

N
2

[(N−1)!]1/N n1/Neγ(n,N) , (4.31)

where Θ = 2χ, Ĉ = C̃ ‖ρ/ρ̂‖L∞(ΓN ) and n = n(q, N) is the number of knots that are used by

A (q, N) and Ψ̃ was defined in (4.27).

4.2 Influence of truncation errors

In this Section we consider the case where the coefficients aN and fN from (1.4) are suitably
truncated random fields. In this case the truncation error u−uN is nonzero and contributes to the
total error. Such contribution should be considered as well as the relationship between this error
and the discretization error.

To this end, if we take the level q to be dimension dependent, i.e. q = αN where α ≥ χ is some
constant, then we can estimate the total error ‖u−A (q, N)(uN )‖L2

P (Ω;W (D)) in terms of N only.
Consider first the case of Gaussian abscissas described in Section 3.2.2. The following theorem
holds:

Theorem 4.11 Let q = αN such that α ≥ χ and ζ(N) is a monotonic decreasing function of N
such that ζ(N) → 0 as N → ∞. Further define β(α) = α + log(F̃ ) − log(%) 2α−1, α̃ the solution
to β(α̃) = 0 and α > max{χ, α̃}. Under the assumptions of Lemma 4.8 and Theorem 4.10 and the
further assumption that

‖u− uN‖L2
P (Ω;W (D)) ≤ ζ(N)

where u ∈ L2
P (Ω; W (D)) and uN ∈ L2

ρ(Γ
N ;W (D)), we get

‖u−A (q, N)(uN )‖L2
P (Ω;W (D)) ≤ ζ(N) + αĈN eβ(α)N (4.32)

Proof. We begin by writing the total error when approximating u ∈ C0(Ω; W (D)) by its N -
dimensional interpolant A (q, N)(uN ). That is, we want to understand

‖u−A (q, N)(uN )‖L2
P (Ω;W (D)) ≤ ‖u− uN‖L2

P (Ω;W (D)) + ‖(IN −A (q, N)(uN ))‖L2
P (Ω;W (D))

= ‖u− uN‖L2
P (Ω;W (D))︸ ︷︷ ︸

(I)

+ ‖(IN −A (q, N)(uN ))‖L2
ρ(ΓN ;W (D))︸ ︷︷ ︸

(II)
(4.33)
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By the assumption, the first term (I) is bounded by ζ(N) for all N and from Lemma 4.8, and by
the assumption q = αN ≥ χN , the second term (II) can be bounded by

‖(IN −A (q, N)) (uN )‖L2
ρ(ΓN ;W (D)) ≤ ĈF̃Nq eq%−

N
2

2q/N

≤ ĈF̃NαN eαN%−N 2α−1

≤ αĈF̃NN eαN−log(%)N 2α−1

= αĈN eN(α+log( eF )−log(%) 2α−1)

= αĈN eβ(α)N

(4.34)

where β(α) = α + log(F̃ ) − log(%) 2α; such that, for sufficiently large α, β(α) is negative. With
α > max{χ, α̃} equation (4.34) becomes

‖(IN −A (q, N)) (uN )‖L2
ρ(ΓN ;W (D)) ≤ αĈN eβ(α)N ,

which substituted into the total error (4.33) yields

‖u−A (q, N)(u)‖L2
P (Ω;W (D)) ≤ ‖u− uN‖L2

P (Ω;W (D)) + ‖(IN −A (q, N)(uN ))‖L2
ρ(ΓN ;W (D))

≤ ζ(N) + αĈN eβ(α)N

as required by (4.32). �
We want to understand the cases where (II) is negligible when compared with (I). In Theorem

4.11 we assume that the truncation error ‖u− uN‖L2
P (Ω;W (D)) is bounded by ζ(N) for all N . The

function ζ(N) is typically related to the decay of the eigenvalues if one truncates the noise with a
Karhunen-Loève expansion (see [16]). For example, if

‖u− uN‖L2
P (Ω;W (D)) ≤ θN−r, for r > 0,

for some constant θ, then

‖u−A (q, N)(u)‖L2
P (Ω;W (D)) ≤ θN−r︸ ︷︷ ︸

(I)

+αĈN eβ(α)N︸ ︷︷ ︸
(II)

.

In such a situation the Smolyak error (II) is asymptotically negligible with respect to the truncation
(I) as N → ∞. Therefore, the isotropic Smolyak algorithm is an efficient interpolation scheme to
choose in computational experiments. On the other hand, if

‖u− uN‖L2
P (Ω;W (D)) ≤ θe−γN where γ > β(α)

then
‖u−A (q, N)(u)‖L2

P (Ω;W (D)) ≤ θe−γN︸ ︷︷ ︸
(I)

+αĈN eβ(α)N︸ ︷︷ ︸
(II)

,

which implies that the truncation error (I) is dominated by the Smolyak error (II). In this case
the Smolyak algorithm is an inadequate interpolation scheme and improvements to this algorithm
must be investigated. We recommend the development of an anisotropic version of the Smolyak
algorithm to facilitate faster convergence of such problems.
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Remark 4.12 In the situation in which the Clenshaw-Curtis abscissas are used, the term (II) in
(4.33) can be bounded as

‖(IN −A (q, N)(uN ))‖L2
ρ(ΓN ;W (D)) ≤ C FNq2eq2

%−
N
2

2q/N

= Cq2eN log(F )+q2−N
2

log %2q/N
.

In the presence of the term q2, global convergence can only be achieved if one takes q = N1+α with
α > 0.

5 Numerical Examples

This section illustrates the convergence of the sparse collocation method for the stochastic linear
elliptic problem in two spatial dimensions, as described in Section 2. The computational results are
in accordance with the convergence rate predicted by the theory. We will also use this problem to
compare the convergence of the isotropic Smolyak method with that of the anisotropic full tensor
product method described by [3] using the adaptive algorithm described in the work [5, Section 9].

The problem is to solve{
−∇ · (aN (ω, ·)∇u(ω, ·)) = fN (ω, ·) in D × Ω,

u(ω, ·) = 0 on ∂D × Ω.
(5.1)

with D =
{
x = (x, z) ∈ R2 : 0 ≤ x, z ≤ 1

}
. For this numerical example we take a deterministic

load fN (ω, x, z) = cos(x) sin(z) and construct the random diffusion coefficient aN (ω, x) with one-
dimensional spatial dependence as

log(aN (ω, x̃)− 0.5) = 1 + σ

N∑
n=1

(√
πL

2

)1/2

e
−(n−1)2π2L2

8 cos((n− 1)x̃) Yn(ω) (5.2)

where x̃ ∈ [0, 2π], σ = 1. Therefore, for x ∈ [0, Lp] we simply shift coordinates such that

x̃ =
2πx

Lp
and L =

Lc

Lp

where Lp = 1 is the length of the x spatial direction. The parameter Lc appearing in (5.2) dictates
the decay of the terms in the expansion and is related to a “physical correlation length”. Small
values of Lc will be related with slow decay in (5.2).

The random variables {Yn(ω)}∞n=1 are independent, have zero mean and unit variance, i.e.
E[Yn] = 0 and E[YnYm] = δnm for n, m ∈ N+, and are taken uniform in the interval [−

√
3,
√

3].
Expansion (5.2) is related to a Karhunen-Loève expansion of a one-dimensional random field with
stationary covariance

cov[log(aN − 0.5)](x1, x2) = σ2 exp
(
−(x1 − x2)2

L2
c

)
.

To formulate the constant % defined by (4.2) for the problem (5.1) we investigate a lower bound for
%n. That is (see (4.4))

%n ≥ 1 +
1

4
√

3

(
2√
πL

)1/2

e
(n−1)2π2L2

8

= 1 +
1
2

(
1

6
√

πL

)1/2

e
(n−1)2π2L2

8
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and therefore

% = min
n

%n ≥ 1 +

√
1

24
√

πL
. (5.3)

To illustrate the behavior of the sparse collocation method constructed from either Clenshaw-
Curtis or Gaussian abscissas we assume the random variables Yn are bounded with uniform den-
sities. The corresponding collocation points are then sparse cartesian products determined by the
roots of either Chebyshev or Legendre polynomials using the Smolyak method described in Sec-
tion 3.2. Recall from Section 3.2.1 that the Clenshaw-Curtis abscissas are nested and therefore, in
practice, we exploit this fact and construct the Smolyak interpolant using formula (3.8). Therefore,
the number of points n = n(q, N) = #H (q, N) can be counted as in formula (4.17). On the other
hand, the Gaussian abscissas described in Section 3.2.2 are not nested, and to reduce the number
of points necessary to build the Smolyak interpolant one utilizes the variant of (3.8), given by (3.9).
In doing this, we can count the number of points n used by the Smolyak interpolant as in formula
(4.29).

The finite element space for the spatial discretization is the span of continuous functions that
are piecewise polynomials with degree two over a uniform triangulation of D with 1089 unknowns.
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Figure 1: The rate of convergence of the Smolyak algorithm for a given correlation length Lc = 1/64
using both the Gaussian and Clenshaw-Curtis abscissas. For the values N = 5 and N = 10 in (5.2)
we plot: on the left, log(ε) versus the number of collocation points and on the right, log(ε) versus
the logarithm of the number of collocation points.

Observe, in general, that the collocation method only requires the solution of uncoupled deter-
ministic problems over the set of collocation points, even in the presence of a diffusivity coefficient
which depends nonlinearly on the random variables as in (5.2). This is a significant advantage that
the collocation method offers compared to the classical Stochastic-Galerkin finite element method
as considered in [4] or [16,19,25,37]. To study the convergence of the isotropic Smolyak algorithm
we consider a problem with a fixed dimension N and investigate the behavior when the level q of
the interpolation in the Smolyak algorithm is increased linearly. The computational results for the
L2(D) approximation error to the expected value, E[u], are shown in Figure 1. Here we consider
two cases, namely N = 5 and N = 10 for the finite sum (5.2). To estimate the computational error
in the q-th level we approximate E[ε] ≈ E[A (q, N)πhuN −A (q+1, N)πhuN ] using either Gaussian
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Figure 2: The convergence of the Smolyak algorithm in N = 5 and N = 10 dimensions for
correlation lengths Lc = 1, 1/4, 1/16 and 1/64, using both Gaussian and Clenshaw-Curtis abscissas.

or Clenshaw-Curtis abscissas. The results reveal, as expected, that for a small non-degenerate
correlation length, i.e. Lc = 1/64, the error decreases (sub)-exponentially, as the level q increases.
We also observe that the convergence rate is dimension dependent and slightly deteriorates as N
increases.

To investigate the performance of the algorithm by varying the correlation length L we also
include the cases where Lc = 1/16, Lc = 1/4 and Lc = 1 for both N = 5 and N = 10, seen in Figure
2. We notice that the larger correlation lengths have negative effects on the rate of convergence.
This can be explained by examining % defined by (5.3). From this we see that the coefficient %
appearing in the estimates (4.18)-(4.19) and (4.30)-(4.31), is approaching 1 as L becomes large.
Hence, the effect of increasing L is a deterioration of the rate of convergence. Therefore, our final
interest is to compare our isotropic sparse tensor product method with an anisotropic full tensor
product method, proposed in [5].

The anisotropic full tensor product algorithm can be described in the following way: given
a tolerance tol the method computes a multi-index p = (p1, p2, . . . , pN ), corresponding to the
order of the approximating polynomial spaces Pp(Γ). This adaptive algorithm increases the tensor
polynomial degree with an anisotropic strategy: it increases the order of approximation in one
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direction as much as possible before considering the next direction. Table 1 and Table 2 show the
values of components of the 5-dimensional multi-index p for different values of tol, corresponding
to Lc = 1 and Lc = 1/64 respectively. These tables help give insight into the anisotropic behavior
of each particular problem. Observe, in particular, for the case Lc = 1/64 the algorithm predicts a
multi-index p which is equal in all directions, i.e. an isotropic tensor product space.

A convergence plot for Lc = 1 and Lc = 1/64 can be constructed by examining each row of
Table 1 and Table 2 respectively, and plotting the number of points in the tensor product grid
versus the error in expectation. We estimate the error in expectation by E[e] ≈ E[uh,p−uh,p̃], with
p̃ = (p1 + 1, p2 + 1, . . . , pN + 1).

tol N = 1 N = 2 N = 3 N = 4 N = 5
1.0e-02 p1 = 1 p2 = 1 p3 = 1 p4 = 1 p5 = 1
1.0e-03 p1 = 2 p2 = 1 p3 = 1 p4 = 1 p5 = 1
1.0e-04 p1 = 2 p2 = 2 p3 = 1 p4 = 1 p5 = 1
1.0e-05 p1 = 3 p2 = 2 p3 = 2 p4 = 2 p5 = 1
1.0e-06 p1 = 3 p2 = 3 p3 = 3 p4 = 2 p5 = 2
1.0e-07 p1 = 5 p2 = 4 p3 = 3 p4 = 3 p5 = 2
1.0e-08 p1 = 5 p2 = 5 p3 = 3 p4 = 3 p5 = 3
1.0e-09 p1 = 6 p2 = 6 p3 = 4 p4 = 4 p5 = 3
1.0e-10 p1 = 7 p2 = 7 p3 = 4 p4 = 4 p5 = 3
1.0e-11 p1 = 8 p2 = 8 p3 = 5 p4 = 5 p5 = 4
1.0e-12 p1 = 8 p2 = 8 p3 = 6 p4 = 5 p5 = 4

Table 1: The five components of the multi-index p used as the input information for the anisotropic
full tensor product algorithm when solving problem (5.1) with a correlation length Lc = 1.

tol N = 1 N = 2 N = 3 N = 4 N = 5
1.0e-03 p1 = 1 p2 = 1 p3 = 1 p4 = 1 p5 = 1
1.0e-06 p1 = 2 p2 = 2 p3 = 2 p4 = 2 p5 = 2
1.0e-09 p1 = 3 p2 = 3 p3 = 3 p4 = 3 p5 = 3
1.0e-12 p1 = 4 p2 = 4 p3 = 4 p4 = 4 p5 = 4

Table 2: The five components of the multi-index p used as the input information for the anisotropic
full tensor product algorithm when solving problem (5.1) with a correlation length Lc = 1/64.

To study the advantages and/or disadvantages to collocating in a sparse tensor product space
as opposed to the anisotropic full tensor product space we show, in Figure 3, the convergence of
both methods when solving problem (5.1), using correlation lengths Lc = 1 and Lc = 1/64 with
N = 5. Figure 3 reveals that for Lc = 1/64 the isotropic Smolyak method converges faster than
the anisotropic full tensor product method. This is due to a slower decay of the terms in expansion
(5.2) and hence, an almost equal weighting of all 5 random variables. On the contrary, the opposite
conclusions can be drawn from the comparison for Lc = 1. Since, in this case, the rate of decay of
the expansion is faster, the anisotropic full tensor method weighs heavily these important modes
and, therefore achieves a faster convergence.
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Figure 3: A 5-dimensional comparison of the Smolyak method versus the anisotropic full tensor
product algorithm when solving problem (5.1).

6 Conclusions

In this work we proposed and analyzed a sparse grid stochastic collocation method for solving
elliptic partial differential equations whose coefficients and forcing terms depend on a finite num-
ber of random variables. The sparse grids are constructed from the Smolyak algorithm, utilizing
either Clenshaw-Curtis or Gaussian abscissas. The method leads to the solution of uncoupled
deterministic problems and, as such, is fully parallelizable like a Monte Carlo method.

This method extends the work proposed in [3] where a stochastic collocation method on tensor
product grids was proposed. The use of sparse grids considered in the present work (as opposed to
full tensor grids), reduces considerably the curse of dimensionality and allows us to treat effectively
problems that depend on a moderately large number of random variables, while keeping a high level
of accuracy.

Upon assumption that the solution depends analytically on each random variable (which is
a reasonable assumption for a certain class of applications, see [3, 4]), we have provided a full
convergence analysis and demonstrated (sub)-exponential convergence of the “probability error” in
the asymptotic regime and algebraic convergence of the “probability error” in the pre-asymptotic
regime, with respect to the total number of collocation points used in the sparse grid.

The main theoretical results are given in Theorem 4.6 and Theorem 4.10 and confirmed numer-
ically by the examples presented in Section 5.

The method is very effective for problems whose input data depend on a moderate number
of random variables, which “weigh equally” in the solution. For such an isotropic situation the
displayed convergence is faster than standard collocation techniques built upon full tensor product
spaces.

On the other hand, the convergence rate deteriorates when we attempt to solve highly anisotropic
problems, such as those appearing when the input random variables come e.g. from KL-type trun-
cations of “smooth” random fields. In such cases, a full anisotropic tensor product approximation,
as proposed in [3,5], may still be more effective for a small or moderate number of random variables.

28



Future directions of this research will include the development of an anisotropic version of
the Sparse Grid Stochastic Collocation method, which will combine an optimal treatment of the
anisotropy of the problem while reducing the curse of dimensionality via the use of sparse grids.
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[22] O. P. Le Mâıtre, O. M. Knio, H. N. Najm, and R. G. Ghanem. Uncertainty propagation using
Wiener-Haar expansions. J. Comput. Phys., 197(1):28–57, 2004.
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