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Lehmer’s number λ ≈ 1.17628 is the largest
real root of the polynomial

fλ(x) = x10 +x9−x7−x6−x5−x4−x3 +x+1.

This number appears in various contexts in num-
ber theory and topology as the (sometimes con-
jectural) answer to natural questions involving
notions of “minimality” and “small complexity”.

Its story begins within number theory.
Lehmer’s number λ is the conjectural answer to

Question: What is the smallest size of an alge-
braic integer greater than one?

Since two algebraic integers are algebraically con-
jugate if they are roots of the same minimal poly-
nomial, any natural notion of the size of an al-
gebraic integer should be constant on conjugacy
classes. Given an irreducible monic integer poly-
nomial f , the Mahler measure of f , or M(f), is
the absolute value of the product of roots with
norm greater than one. By size of an algebraic
integer α we mean the Mahler measure of the
minimal polynomial of α. The Mahler measure
of α is one if and only if α is a root of unity. Since
Lehmer’s number λ is the only root of fλ outside
the unit circle, λ is its own Mahler measure.

A related notion of size is the maximal norm
of algebraic integers conjugate to α, which we
will call the length of α. By this definition, the
length of an algebraic integer can be arbitrarily
close to one (e.g., consider n

√
2 for n large). It is

not known whether the same is true for Mahler
measures. Lehmer in [1] formulated the problem
in this way:

Question: Given any δ > 0, is there an algebraic
integer whose Mahler measure is strictly between
1 and 1 + δ?

Algebraic integers with small Mahler measure
were important to Lehmer in his study of prime
number generating functions. Using computing
machines he built himself he found the small-
est Mahler measures for even degrees up to 10.

Recent computer searches by D. Boyd, M. Moss-
inghoff and G. Rhin verify that Lehmer’s number
λ is the smallest Mahler measure greater than one
for all degrees up to 40 (see Mossinghoff’s website
[2]).

Lehmer’s number λ has special number theo-
retic properties. First, the coefficients of its min-
imal polynomial fλ are the same when read from
the left or from the right. We call such a poly-
nomial reciprocal, since this implies that the set
of algebraic conjugates of λ contains all its recip-
rocals. Second, Lehmer’s number λ is the only
one of its algebraic conjugates that lies outside
the unit circle. Such an algebraic integer is ei-
ther called a Salem number (reciprocal case) or a
Pisot number (non-reciprocal case).

What is known about Lehmer’s question re-
stricted to Salem and Pisot numbers is simi-
lar to what is known for more general Mahler
measures. For non-reciprocal polynomials f , C.
Smyth showed in 1970 that

M(f) ≥M(x3 − x− 1) = θ(≈ 1.32472) > λ.

This generalizes A. Siegel’s result that θ is the
smallest Pisot number, and shows that θ is also
the smallest Mahler measure of non-reciprocal
polynomials, reducing Lehmer’s question to the
reciprocal case. Similarly, Lehmer’s number is
both the smallest known Salem number and the
smallest known Mahler measure greater than one.

Lehmer’s question is equivalent to asking
whether an algebraic integer with small length
must have a correspondingly large number of al-
gebraic conjugates outside the unit circle. The
number of exterior conjugates can be thought of
as the complexity of α.

Lehmer’s questions and its offshoots have nat-
ural analogs in geometry and topology. For ex-
ample, D. Lind, K. Schmidt, T. Ward and oth-
ers have studied the logarithm of a multi-variable
version of Mahler measure as the topological en-
tropy of an associated dynamical system on the
n-dimensional torus. D. Silver and S. Williams
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showed that the Mahler measure of the Alexan-
der polynomial of a knot or link complement is
the growth rate of its classical torsion numbers.

There is evidence for the minimality of
Lehmer’s number among Mahler measures in the
contexts of mapping classes, fibered links, and
Coxeter systems. Lehmer’s number itself can be
found in the cross-section of these fields of study.

An irreducible mapping class is an isotopy
class of homeomorphisms of a compact oriented
surface to itself so that no power preserves a non-
trivial subsurface. By the Thurston-Nielsen clas-
sification, irreducible mapping classes are either
periodic (analogous to roots of unity) or are of
a type called pseudo-Anosov. There is a natu-
ral notion of length greater than one for pseudo-
Anosov mapping classes: if φ is pseudo-Anosov,
the surface has a local Euclidean structure (with
singularities) so that φ expands by a real number
α > 1 in one direction and contracts by α−1 in
another. The number α is called the (geometric)
dilatation of φ.

The dilatations α are special algebraic inte-
gers, called Perron numbers, and are roots of
reciprocal monic integer polynomials. The log-
arithm of α is the length of a geodesic deter-
mined by φ in Teichmuller space. As with lengths
of algebraic integers, the dilatations of mapping
classes on surfaces of genus g can be made arbi-
trarily close to one as g grows large. More pre-
cisely, R. Penner showed that the minimal dilata-
tion αg for a genus g surface satisfies the asymp-
totic relation log(αg) � 1

g .

One source of mapping classes comes from
fibered knots and links. A knot or link K in S3

is fibered if its complement is the mapping torus
for a mapping class φ defined on a surface S that
spans K in S3. The Alexander polynomial of K
is the characteristic polynomial of the action of φ
on the first homology of S. Its largest root, the

homological dilatation of φ, is bounded above by
the geometric dilatation. By a theorem of T. Ka-
nenobu, any reciprocal monic integer polynomial
is the Alexander polynomial of a fibered link. In
particular, Lehmer’s number λ is the homologi-
cal dilatation of the (-2,3,7)-pretzel knot (shown
in Fig.1, center), and is the Mahler measure of its
Alexander polynomial.

One can also associate mapping classes to
simply-laced Coxeter systems. Given a simple
graph Γ with ordered vertices, there is an associ-
ated linear transformation called the Coxeter el-
ement of Γ. From bipartite graphs Γ that are
neither spherical nor affine, W. Thurston con-
structed an associated pseudo-Anosov mapping
class so that the homological and geometric di-
latations are both equal to the spectral radius of
the Coxeter element. The monodromy φ of the
(-2,3,7)-pretzel knot is the mapping class asso-
ciated to the Coxeter graph E10 (Fig.1, right),
and is the product of positive Dehn twists along
simple-closed curves dual to E10 on a genus 5 sur-
face (Fig.1, left). Thus, Lehmer’s number is the
geometric dilatation of φ, and the spectral radius
of the Coxeter element of E10.

Results from graph theory imply that to find
Coxeter elements with small spectral radius it
suffices to look at simple extensions of spherical
and affine Coxeter graphs. C. McMullen showed
further that the spectral radius of any element
of a Coxeter group is either one or greater than
Lehmer’s number λ. This answers Lehmer’s ques-
tion not only for Coxeter systems, but also for the
corresponding subclasses of mapping classes and
fibered links.
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Figure 1. Manifestations of Lehmer’s number as mapping class, pretzel knot, and
Coxeter graph.


