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Introduction

Pancreatic islets exhibit bursting oscillations, which consist of 
periodic episodes of electrical activity followed by quiescence. 
These oscillations are accompanied by oscillations in the free 
cytosolic Ca2+ concentration, which drives pulses of insulin secre-
tion from β-cells.1-3 Voltage clamp studies have shown that islet 
β-cells exhibit a slowly activating K+ current, K

slow
, that develops 

during simulated electrical activity and is Ca2+ dependent.4,5 This 
current is not blocked by blockers of small-conductance (SK) or 
large-conductance (BK) Ca2+-activated K+ cannels, K(Ca), and 
has a single-channel conductance of an intermediate size. Later 
studies showed that roughly half of the K

slow
 current is mediated 

by a slow rise in the ATP-sensitive K+, K(ATP), current.6 Most 
recently, it was demonstrated that the other significant compo-
nent of K

slow
 is mediated by SK4 Ca2+-activated K+, K(Ca), chan-

nels.7 Thus, it appears that Ca2+ acts indirectly through K(ATP) 
and directly through SK4 to produce the K

slow
 current. Since 

this hyperpolarizing current builds up during repetitive burst-
like spiking, it is likely the key current driving the so-called ‘fast 
bursting’ in islets.8 Using a mathematical model of pancreatic 
β-cells,9 we analyze how the factors that comprise K

slow
 can con-

tribute to bursting. That is, the factors that start each burst and 
those that stop each burst. The model contains three variables 
that change on slow time scales: the cytosolic Ca2+ concentra-
tion, [Ca2+]

c
, endoplasmic reticulum (ER) Ca2+ concentration, 

[Ca2+]
er
, and the ratio of ADP to ATP (a). The ADP/ATP ratio 

determines the number of open K(ATP) channels; a larger ratio 
yields a larger K(ATP) conductance. This ratio is determined 
by the glucose concentration and, in part, by the cytosolic Ca2+ 
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concentration.10-14 Thus, the contribution that the K(ATP) cur-
rent makes to bursting is determined by the contribution that 
changes in the variable a make. Ca2+ acts directly to activate the 
SK4 channels, so SK4 conductance reflects the Ca2+ concentra-
tion in the cytosol, which in part reflects slow changes in the ER 
Ca2+ concentration.15-17 Thus, the contribution that the SK4 cur-
rent makes to bursting is determined by the contributions that 
changes in the variables [Ca2+]

c
 and [Ca2+]

er
 make.

The Ca2+ in the ER affects the membrane in several potential 
ways. First, it acts as a filter for Ca2+ from the cytosol, taking up 
Ca2+ when the cell is spiking and [Ca2+]

c
 is elevated and releasing 

Ca2+ during the silent phase of a burst when [Ca2+]
c
 is at a low 

value.15-17 This effect is incorporated into our model. Second, the 
ER releases Ca2+ into the cytosol when inositol-1,4,5-trisphosphate  
[Ins(1,4,5)P

3
] receptors or ryanodine receptors in the ER mem-

brane are activated. This Ca2+ release can directly affect the 
membrane through actions on Ca2+-activated K+ channels and 
indirectly through effects on the ADP/ATP ratio. Finally, the 
subsequent decline in [Ca2+]

er
 can activate store operated current 

(reviewed in ref. 18). In the model, we assume that no Ins(1,4,5)
P

3
 or ryanodine receptor agonists are present.
In this paper, we examine how the two components of K

slow
 

can contribute to bursting, and demonstrate with the model that 
their contributions can vary in non-obvious ways depending on 
the maximal conductances of the K(ATP) and SK4 currents, as 
well as the time scales of the slow variables. We employ the domi-
nance factor technique developed recently to quantify the contri-
butions made by the slow variables to bursting.19 The model that 
we use is one of many that have been developed for pancreatic 
β-cells.20-35 The dominance factor technique can be applied to 
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is represented by a “slow variable” in mathematical models. The 
mathematical model we use9 contains three slow variables: the 
Ca2+ concentration in the cytosol, [Ca2+]

c
, and in the endoplas-

mic reticulum, [Ca2+]
er
, and the ratio of ADP to ATP (a). The 

K(ATP) current is proportional to a:

   (1)

where ḡ 
K(ATP)

 is the maximal conductance of the channels and V
K
 

is the K+ Nernst potential. The SK4 current depends on [Ca2+]
c
,

(2).

The cytosolic Ca2+ concentration is determined by Ca2+ influx 
and pumping through the plasma membrane, and cycling of 
Ca2+ into and out of the ER. It is through this latter pathway 
that the Ca2+ concentration in the ER affects [Ca2+]

c
, which in 

turn influences a due to ATP utilization by pumps (see Eq. 12 
in Materials and Methods).12 Therefore, instead of looking at 
the conductances, we look at the dynamics of the slow variables 
which underlie the conductances.

Bursting oscillations with different periods are produced for 
different values of the maximal conductance of the SK4 current 
( ḡ 

K(Ca)
) in the model. This maximal conductance is the conduc-

tance when all K(Ca) channels in the cell are open. Figure 2 
shows bursting obtained with the model for two different val-
ues of ḡ 

K(Ca)
. The left column (A–D) shows bursting with a high 

value of ḡ 
K(Ca)

 (1,500 pS). In this case, the bursting has a period 
of ~1 sec (Fig. 2A), and [Ca2+]

c
 increases during the active and 

decreases during the silent phase of the burst (Fig. 2B). However, 
[Ca2+]

er
 and a are almost constant since they change slowly and 

the bursts are very short (Fig. 2C and D). In this case, it is clear 
that variations in [Ca2+]

c
 control the termination of both the 

active and silent phases of the burst. For a low value of ḡ 
K(Ca)

 
(500 pS), the burst period is ~70 sec (Fig. 2E). [Ca2+]

c
 quickly 

reaches a plateau during the active phase and has a component 
that quickly declines during the silent phase (Fig. 2F). A second 
component reflects the dynamics of ER Ca2+ handling.15-17 The 
other two slow variables, [Ca2+]

er
 and a, exhibit saw tooth-like 

oscillations that are characteristic of variables that drive burst-
ing.36 Thus, [Ca2+]

er
 and a likely play large roles in the bursting 

oscillation. How large? Do they contribute differentially to the 
active and silent phases?

Using the method of quantification described in Watts et 
al. we determine the contributions that each of the three slow 
variables make to bursting for different values of ḡ 

K(Ca)
 (Eq. 17 

in Materials and Methods). Briefly, the contribution of the vari-
able to the termination of the active phase and silent phase is 
determined by increasing the time constant for one of the slow 
variables at the beginning of the phase. This increase in the time 
constant slows down the variable, and if the activity-dependent 
change in this variable contributes to the termination of the 
phase, then the phase duration increases.37

most of these, which have more than one slow variable acting on 
the membrane potential.

Results

K
slow

 conductances reveal little about the control of burst-
ing. Our aim is to understand how the components of K

slow
 can 

contribute to bursting. Can we determine which component 
starts and stops each burst by looking at the conductances? 
Figure 1 shows the model conductances for the K(ATP) (g

K(ATP)
)  

(Fig. 1B) and SK4 (g
K(Ca)

) currents (Fig. 1C). The K(ATP) con-
ductance is always larger than the SK4 conductance, so one might 
conclude that the K(ATP) current controls both phases of burst-
ing. Certainly, if this current were blocked the model cell would 
not burst, but would spike continuously. However, this does not 
mean that the time-dependent variation in the K(ATP) conduc-
tance plays a role in starting and stopping the bursts. If instead 
one looked only at the amplitude of the conductance variations, 
one would reach the opposite conclusion, since the amplitude of 
the SK4 conductance variation (~40 pS) is much greater than 
that of the K(ATP) conductance variation (~4 pS). Of course, the 
K(ATP) conductance varies on the time scale of the burst, while 
the SK4 current enters and leaves its elevated plateau on a much 
shorter timescale. Therefore, one might again conclude that the 
K(ATP) current controls the bursting. Clearly then, even if the 
conductances were known at time points throughout the burst, it 
would not be obvious how to use this information to understand 
what turns the bursts on and off. This ambiguity motivates the 
different approach that we use.

Slow processes differentially regulate the phases of bursting. 
Bursting electrical oscillations are driven by the gradual buildup 
and decline of one or more slow processes. Each of these processes 

Figure 1. Time-dependent membrane potential (A) and conductances 
of the K(ATP) (B) and K(Ca) (C) currents. The K(ATP) conductance (B) is 
always larger than the K(Ca) conductance (C). However, the change in 
the K(Ca) conductance is greater than the change in the K(ATP) conduc-
tance.
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phase decreases (Fig. 5C). This is surprising, since one might 
expect that increasing the maximal conductance for the K(ATP) 
current would give a more control over both the silent phase and 
active phase, but it partially loses control of the silent phase. It 
is interesting to note that the silent phase also acted in a non-
intuitive way when ḡ 

K(Ca)
 was increased (Fig. 4B). With ḡ 

K(Ca)
 set 

to a higher value (700 pS) so that the bursting was much faster, 
increasing ḡ 

K(ATP)
 had a similar effect on the dominance factors 

(Fig. 5B and D). The duration of the silent phase rises signifi-
cantly with the increase of ḡ 

K(ATP)
, as does the dominance factor. 

The duration of the active phase changes little, yet there is a sub-
stantial shift of control from mostly [Ca2+]

er
 to equal contribu-

tions of [Ca2+]
er
 and a.

Other parameters that affect the contribution and dominance 
factors are the time constants of the slow variables. These param-
eters determine how rapidly the variables change (a large time 
constant τ means a slow rate of change). Figure 6A shows the 
effect on the dominance factor of increasing the time constant for 
a (τ

a
) with ḡ 

K(Ca)
 = 600 pS and ḡ 

K(ATP)
 = 500 pS. As τ

a
 is increased 

a becomes slower and contributes less to the termination of the 
active phase (white bars) and silent phase (gray bars). It is inter-
esting to note that a always has substantial influence over the 
silent phase, even when τ

a
 is very large. Figure 6B shows the 

effect of increasing τ
er
. As τ

er
 is increased, [Ca2+]

er
 gets slower and 

the dominance factor decreases. Therefore, a gains control over 
both the active phase (white bars) and silent phase (gray bars).

Figure 3 shows the contribution that each 
slow variable makes to the termination of the 
active and silent phases of bursting. As ḡ 

K(Ca)
 

is increased, the period of bursting decreases  
(Fig. 3A). Figure 3B shows the contribution fac-
tors of the slow variables for the termination of 
the active phase. For low values of ḡ 

K(Ca)
, [Ca2+]

er 

(gray bar) and a (black bar) both contribute to 
the termination of the active phase. As ḡ 

K(Ca)
 is 

increased, the contribution of a declines (the 
black bar gets smaller). For even larger values 
of ḡ 

K(Ca)
, [Ca2+]

c
 is the only sole variable con-

tributing to active phase termination (white 
bar). This shift in control from [Ca2+]

er
 and a to 

[Ca2+]
c
 is expected since increasing ḡ 

K(Ca)
 accen-

tuates the Ca2+-activated K+ current. Similarly, 
Figure 3C shows the contribution factors for 
the termination of the silent phase. The contri-
butions of a and [Ca2+]

er
 start out equal for low 

values of ḡ 
K(Ca)

, then a gains control as ḡ 
K(Ca)

 is 
increased. This is unexpected; increasing ḡ 

K(Ca)
 

actually leads to an increase in the role played 
by the ADP/ATP ratio to bursting. Only when 
ḡ 

K(Ca)
 >1,100 pS does [Ca2+]

c
 gain control of 

the silent phase, as it does for the active phase. 
Therefore, for low values of ḡ 

K(Ca)
 both phases of 

bursting are controlled by [Ca2+]
er
 and a, while 

for high values of ḡ 
K(Ca)

, the direct feedback of 
Ca2+ onto SK4 channels is the only component 
of K

slow
 contributing to bursting in the model.

One way to summarize the relative contributions to bursting 
of two slow variables (such as [Ca2+]

er
 and a for small values of 

ḡ 
K(Ca)

) is to use a measure called the dominance factor (DF) for 
each phase (Eq. 18 of Materials and Methods). A dominance 
factor of 1 indicates that [Ca2+]

er
 dominates, while a dominance 

factor of -1 indicates that a dominates. The results using the 
dominance factor are shown in Figure 4. As ḡ 

K(Ca)
 is increased, 

the period of bursting decreases (Fig. 4A). Also, control of the 
termination of the active phase switches from mostly a to mostly 
[Ca2+]

er
. Control of the silent phase shows the opposite trend, 

from equal contributions at low ḡ 
K(Ca)

 to mostly controlled by a 
for higher values of ḡ 

K(Ca)
 (Fig. 4B). It appears, then, that the 

control of the active and silent phases is not linked; one slow vari-
able can primarily control the active phase while another can pri-
marily control the silent phase. The distribution of control varies 
with SK4 channel conductance, and thus burst period.

Effect of parameters on the dominance factor. The contri-
bution that the slow variables make to bursting depends upon 
parameter values. Figure 4 demonstrated how control over the 
termination of the active and silent phases changed as ḡ 

K(Ca)
 was 

varied. In Figure 5 we show the effect of varying ḡ 
K(ATP)

 on the 
dominance factors (while fixing ḡ 

K(Ca)
). As ḡ 

K(ATP)
 is increased 

the duration of the silent phase also increases (black dots), while 
the duration of the active phase decreases (white dots) slightly 
(Fig. 5A). Likewise, the dominance factor for the silent phase 
increases with ḡ 

K(ATP)
, but the dominance factor for the active 

Figure 2. Bursting with [Ca2+]c in control, ḡ. K(Ca) = 1,500 pS (A–D). [Ca2+]c is increasing during 
the active phase and decreasing during the silent phase (B), while [Ca2+]er (C) and a (D) 
remain constant. Bursting with [Ca2+]er and a sharing control, ḡ. K(Ca) = 500 pS (E–H). [Ca2+]c 

quickly reaches its maximum during the active phase and its minimum during the silent 
phase (F), but [Ca2+]er (G) and a (H) slowly increase during the active phase and decrease 
during the silent phase. Notice the much longer time scale for this latter form of bursting. In 
all cases, ḡ. K(ATP) = 500 pS.
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Discussion

Using a mathematical model of the pancreatic β-cell,9 we 
addressed the question of how the two known components of 
the K

slow
 current can contribute to bursting oscillations in islets. 

We first argued that the time-dependent conductances of the 

currents provide ambiguous information about the control of 
bursting. A better approach is to examine the variables that 
underlie the conductances. Using an analysis technique devel-
oped earlier in reference 19, we showed that control of the phases 
of bursting is adjustable. In particular, it depends on the values 
of maximal conductances and the rate of change of the variables 
underlying the currents. We showed that for low values of ḡ 

K(Ca)
, 

[Ca2+]
er
 and a shared control of the bursting, in other words, 

both the active phase and silent phase duration were affected 
similarly by a change in the time constants of a and [Ca2+]

er
, 

while for larger values [Ca2+]
c
 had control (Fig. 3). We also 

showed that the active and silent phases of bursting do not have 
to be controlled by the same variable (Fig. 4). For example, when 
ḡ 

K(Ca)
 = 700 pS and ḡ 

K(ATP)
 = 500 pS, the active phase is mostly 

controlled by [Ca2+]
er
, while the silent phase is mostly controlled 

by a. This situation is altered when ḡ 
K(Ca)

 is much lower (25 pS), 
in which case the active phase is mostly controlled by a and both 
a and [Ca2+]

er
 control the silent phase.

We also show that as parameters are varied, the contribu-
tions of a and [Ca2+]

er
 change in non-intuitive ways. As ḡ 

K(Ca)
 is 

increased, a gains more control over the silent phase. As ḡ 
K(ATP)

 
is increased, [Ca2+]

er
 gains more control over the silent phase. 

Understanding the basis for these non-intuitive results requires 
an analysis of how the slow variables act on the fast variables 
such as voltage. This type of analysis was used previously to 
examine a simpler model for β-cell bursting.19

Our results could not have been obtained by looking at the 
conductances of the channels; a different approach had to be 
used. It is also difficult or impossible to do this analysis experi-
mentally, since it requires an acute increase in the time constants 
that are typically not controllable. This highlights one advantage 
of mathematical models, where all parameters are controllable. 
Parameters that can be modified in the lab through pharmaco-
logical means, such as the ionic conductances, may also change 
the burst mechanism (Figs. 3–5). However, one could not tell 
just by looking at the voltage trace. For example, Figure 4A 
shows a quantitative change in the durations of the active and 
silent phases of bursting as ḡ 

K(Ca)
 is increased. This can be seen 

experimentally. However, the dominance factor also changes 
(Fig. 4B), reflecting a modification of the burst mechanism. As 
another example, Figure 5B shows little change in the active 
phase duration as ḡ 

K(ATP)
 is varied, yet control of the active phase 

shifted from mostly [Ca2+]
er
 to equal contributions from [Ca2+]

er
 and a. These changes would be hard to see without the aid of a 

mathematical model.
It has been shown that islet bursting can be fast, slow or 

compound. There is a great deal of evidence for a metabolic 
oscillator that is responsible for slow bursting and for packag-
ing fast bursts into episodes during compound bursting. This is 
described by the Dual Oscillator Model.8 Here we have focused 
on fast bursting, so our model does not include the machinery 
for glycolytic oscillations. Also, some islets exhibit endogenous 
metabolic oscillations, while others do not.38 Those that do 
not can exhibit fast bursting, but in some cases a change in 
the glucose concentration can convert the fast bursts to com-
pound bursts, presumably due to activation of the glycolytic 

Figure 3. Slow variable contributions to the active and silent phases of 
bursting. (A) The durations of the active and silent phases decrease as  
ḡ. K(Ca) is increased. (B) Contribution factors for the three slow variables: 
[Ca2+]c, [Ca2+]er, and a to the termination of the AP. (C) Contribution fac-
tors for the termination of the SP. For low values of ḡ.  K(Ca), [Ca2+]er and a 
share control of the bursting. However, for high values of ḡ. K(Ca), [Ca2+]c is 
in control of both the active and silent phases. For some values of ḡ. K(Ca) 
the contribution factor was greater than 1 and the bar is cut off.

Figure 4. Using the dominance factor to analyze the control of burst-
ing. (A) As ḡ. K(Ca) is increased, the duration of both the active and silent 
phases decreases. (B) As ḡ. K(Ca) is increased, the active phase dominance 
factor (DF) increases, while the silent phase DF decreases. For the AP, 
control shifts from a to [Ca2+]er, while a is always primarily responsible 
for the SP duration (ḡ. K(ATP) = 500 pS).
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 (8)

 (9).

C
m
 is the membrane capacitance, the ḡ  parameters are the 

maximal conductances, the τ parameters are time constants, and 
V

Ca
 and V

K
 are reversal potentials. The variable ω is the fraction 

of K(Ca) channels activated by cytosolic Ca2+:

 (10).

The steady-state activation functions depend on voltage:

 
 (11).

The equilibrium function, a∞([Ca2+]
c
), depends on the cyto-

solic Ca2+ concentration:

oscillator.39 When glycolytic oscillations are 
present, the model variable a will vary peri-
odically due to this endogenous oscillation, 
but will also retain its dependence of Ca2+. 
Thus, the analysis presented here should be 
thought of as an investigation of fast burst-
ing that stands alone or is part of a com-
pound oscillation.

The dominance factor technique applied 
here could be applied to any β-cell model 
with more than one slow variable. Examples 
include the recent models of Diederichs20 and 
Fridlyand.21,22 The many models developed 
over the past three decades20-35 are simplifi-
cations of actual β-cells, which have many 
ionic currents and signaling pathways and are 
very heterogeneous.40,41 Yet, these models can 
reveal dynamic interactions that are hard to 
extract from the data alone. In this report, we 
demonstrate that the slow processes under-
lying the K

slow
 current collaborate in burst 

production. The quantitative relationship 
of these processes to burst production varies 
with parameter values and undoubtedly varies 
between models. However, the central point 
of adjustable collaboration to burst production 
should be valid for models that are more com-
plex than the one used here.

Materials and Methods

Mathematical model. We use a relatively sim-
ple model of pancreatic β-cells9 which consists of a Ca2+ current, 
I

Ca
, a delayed rectifier K+ current, I

K
, a Ca2+-dependent K+ current 

(SK4), I
K(Ca)

, and a nucleotide-sensitive K+ current, I
K(ATP)

. The 
differential equations for membrane potential, V, delayed rectifier 
activation, n, cytosolic free Ca2+ concentration, [Ca2+]

c
, ER Ca2+ 

concentration, [Ca2+]
er
, and the ADP/ATP ratio, a, are as follows:

 (3)

 (4)

 (5)

 (6)

 (7)

with ionic currents:

Figure 5. Changes in durations and the dominance factors while changing ḡ. K(ATP) and keeping 
ḡ. K(Ca) constant. (A and B) As ḡ.  K(ATP) is increased, the SP duration increases, while the AP duration 
decreases. (C and D) As ḡ. K(ATP) is increased, the active phase DF decreases, while the silent 
phase DF increases. (ḡ.  K(Ca) = 25 pS for A and C, while ḡ. K(Ca) = 700 pS for B and D).
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 (16),

where f
cyt

 and f
er
 are the fractions of free Ca2+ in 

the cytosol and ER, respectively, and V
cyt

 and 
V

er
 are the volumes of the cytoplasmic and ER 

compartments. Parameter values are given in 
Table 1. Model equations were solved numeri-
cally using the CVODE algorithm imple-
mented in the XPPAUT software package.42 
Computer codes are available as freeware from  
www.math.fsu.edu/~bertram/software/islet.

Contribution factors and dominance factors. 
The method used to quantify the contribution that 
a slow process makes to bursting was described pre-
viously in reference 19. Briefly, we determine the 
contribution that each slow variable makes to the 
active (AP) and silent (SP) phases of bursting by 

increasing the time constant, τ
x
, for one of the slow variables at the 

beginning of the phase by δτ
x
. This increase in the time constant 

slows down the slow variable, and if the activity-dependent change 
in this variable contributes to the termination point of the phase, 
then the phase should increase by values δAP or δSP. The contri-
bution of the slow variable, x, to the active phase and silent phase 
durations is given by:

 (17),

where AP and SP are active and silent phase durations, respec-
tively. Larger values of C indicate larger contributions. Here we 
used δτ

x
 = τ

x
 for the active phase and δτ

x
 = 0.1τ

x
 for the silent 

phase.
For small values of ḡ 

K(Ca)
, [Ca2+]

er
 and a are the only slow 

variables contributing to bursting (Fig. 3). By comparing the C 
values of these two slow variables, we can evaluate the relative 
contributions of [Ca2+]

er
 and a to active phase and silent phase 

durations. This is facilitated by using a measure called the domi-
nance factor (DF) for each phase:19

 
 (18).

Defined this way, the dominance factor should be between -1 
and 1. A dominance factor of 1 indicates that [Ca2+]

er
 dominates, 

while a dominance factor of -1 indicates that a dominates.
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 (12).

The equilibrium functions [Ca2+]
c∞ and [Ca2+]

er∞ are given by:

 (13)

 (14),
where α converts units of current to units of flux, k

PMCA
 is the 

pump rate of the plasma membrane Ca2+ ATPase pumps, k
SERCA

 
is the pump rate for SERCA pumps, and p

leak
 is the Ca2+ leak out 

of the ER. Lastly, the time constants for cytosolic and ER Ca2+ 
concentrations are:

 (15)

Figure 6. (A) Effect of changing the time constant τa on the DF. As τa increases, the DF 
increases for both the AP and SP, indicating that a loses control. The default value of τa 
is 2 min. (B) Effect of changing τer on the DF. As, τer increases, the DF decreases for both 
the active and silent phases, indicating that a is gaining control. The default value of τer is 
0.67 min. In both parts, ḡ. K(Ca) = 600 pS and ḡ. K(ATP) = 500 pS.

Table 1. Parameter values for the model

Parameter Value Parameter Value

ḡCa 1,200 pS ḡK 3,000 pS

VCa 25 mV VK -75 mV

Cm 5,300 fF α 4.5 x 10-6 fA-1μM ms-1

τn 16 ms τa 120,000 ms

fcyt 0.01 fer 0.01

kPMCA 0.2 ms-1 kD 0.3 μM

νn -16 mV sn 5 mV

νm -20 mV sm 12 mV

kSERCA 0.4 ms-1 pleak 0.0005 ms-1

Vcyt/Ver 5 sa 0.1 μM

r 0.14 ḡ K(ATP) 500 pS
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