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 i  g  h  l  i g  h  t  s

We  describe  new  computer  software  for  the  automated  analysis  of  the  syntactic  structure  of birdsong.  This  replaces  the  time-consuming  manual  analysis
that  is commonly  done.
Application  includes  analysis  of  bird  vocalizations  as  the  bird matures  and the song  progresses  to the adult  song.
The  software  can  also  be  applied  to the  analysis  of  adult  birdsong  and  the  effects  of  neural  perturbations  or  external  factors.
Several  analysis  tools  are  employed,  including  linearity,  consistency,  and  stereotypy  scores.
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a  b  s  t  r  a  c  t

We  present  computer  software  for automated,  high  throughput,  quantitative  syllable-level  analysis  of
bird  song  syntax.  The  primary  advantage  of  our  tool  is  the ease  and  effectiveness  it provides  in  quantifying
syllable  sequence  and  performing  a comparison  of  syllable  sequence  from  one  day  of singing  with  one  or
more other  days  of  singing.  The  software  utilizes  the  output  of  the  Feature  Batch  module  in Sound  Analysis
Pro  (Tchernichovski  et al., 2000)  that  can  be used  to measure  the temporal  and  spectral  features  of  each
syllable  produced  during  a day  of  singing.  We  use  these  measurements  to identify  individual  syllables
based  on  their  temporal  and  spectral  properties  and  then  identify  transition  probabilities  among  syllables
to  determine  changes  in  syntax.  This  quantifies  the ordering  of  syllables  in  songs  and  the  frequency  with
which  subsequences  appear.  Moreover,  the  software  computes  the linearity,  consistency,  and  stereotypy

scores  for every  bout  presented  as  well  as descriptive  statistics  for each  of these  measures  for  each  day  of
singing.  We  also  report  statistical  measures  that  the  software  utilizes  (the  Kullback–Leibler  distance  and
the sequence  entropy)  to  quantify  the  degree  of  dissimilarity  between  sequences  of  syllable  transitions.
Our  tool  is useful  for comparing  the  syntactic  structure  of  songs  produced  by  a  bird  prior  to  and  after  a
manipulation  such  as ablation  of  part  of the  vocal  motor  pathway  or  infusion  of  pharmacological  agents,
or  for  assessing  the  degree  of  individual  variation  in syntactic  structure  across  populations  of  birds.
. Introduction

Songbirds such as zebra finches and Bengalese finches are often
tudied due to their patterned song. One important feature of a
ong is the sequence of syllables that comprise it. Here we describe
 computer software tool, SongSeq, for the analysis of the transitions
ade in one or more bouts of singing by a bird, using the zebra finch

s a model system.
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The input to SongSeq is the output from the Sound Analysis Pro
(SA+) software package. SA+ is a frequently used software package
for converting continuous sound into discrete syllables and extract-
ing features such as duration, pitch, pitch goodness and entropy
from the syllables (Tchernichovski et al., 2000).

SongSeq can be used to monitor changes of sound features across
a large number of songs, analyze transition probabilities among
syllables, quantify the consistency of syllable ordering (linearity,
consistency and stereotypy scores), and quantify the degree of sim-

ilarity in syllable phonology over different days of singing. In order
to generate syllable-level comparisons, we  developed a graphi-
cal user interface (GUI) to manually identify syllable clusters (i.e.,
repeated instances of the same syllable). Other methods to identify

dx.doi.org/10.1016/j.jneumeth.2012.07.020
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:bertram@math.fsu.edu
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yllable clusters are available – for example, the Clustering Module
n SA+ which identifies individual syllables based on Euclidean dis-
ance and high dimension filtering in acoustic feature spaces. The

ethod presented here can be applied regardless of the syllable
luster strategy employed.

SongSeq is an easy and effective tool for quantifying the devel-
pment of syllable sequences and performing a multi-dimensional
omparison of the syllable acoustic features from one day of singing
ith songs from other days. This would be a useful tool for compar-

ng the songs produced by a bird at different stages of development
r prior to and after a manipulation such as partial brain ablation to
ortion(s) of the neural song system or infusion of pharmacological
gents.

. Methods

The software described here is available for free download from
ttp://www.math.fsu.edu/∼bertram/software/songbird. There is
lso an online tutorial and a user manual at this site.

Recordings of bird song are read into the SA+ software pack-
ge as .wav files. Syllable units are generated by parsing every
otif from song bouts using syllable segmentation tools in the

eature Batch module in SA+. Feature Batch generates a spread-
heet for all syllables and their acoustic characteristics (for further
etails, see Wu et al., 2008). These spreadsheets are the input to
ongSeq.

The entire procedure that SongSeq goes through is discussed
elow in detail and can be summarized by the following brief
verview: (1) choose a template SAP spreadsheet, (2) choose two
coustic features to use for identifying syllable clusters, (3) name
he syllables and assign them different colors, (4) use colored boxes

o paint the different syllable clusters, (5) if syllables do not clus-
er unambiguously, repeat steps 2 and 4 on two different acoustic
eatures, (6) choose the test song files, and (7) compare features of
est songs to those from the template.

ig. 1. Designation of the template spreadsheet and selection of two  acoustic features. T
torage path is displayed in the textbox after selection. Two  acoustic features are then se
A+  generates.
 Methods 210 (2012) 147– 160

2.1. Identification of syllables using a template

To compare syllable features and sequences between one
singing session and another, one must first designate one spread-
sheet as the template (a typical SA+ spreadsheet containing the
acoustic variables, which could be the data points for a day of pre-
operative singing, for example). Two  acoustic features are then
selected by the user from the template using SongSeq’s graphical
user interface (Fig. 1). These features are extracted from each sylla-
ble in the template sonogram (Fig. 2A) and displayed as a 2D scatter
plot (Fig. 2B). Within the scatter plot, each data point represents an
instance of a syllable and discrete clusters of data points signify
repeated production of a specific syllable type. This captures the
syllable structure across multiple bouts, and defines the acoustic
properties of individual syllables. The choice of acoustic features
used to form the scatter plot could be important, since some feature
pairs may  be more effective than others in discriminating syllables.
One strategy is to just try different combinations; SongSeq contains
a module that enables the user to browse the different features and
choose the best two features for syllable discrimination. An initial
eye-identification of the spectrograms is helpful where the num-
ber of different syllables can be identified along with other acoustic
features of the various syllables (like syllable duration, mean FM,
amplitude and entropy). The number of clusters on the scatter plot
should equal the number of different syllables on the spectrogram.
We  have found that syllable duration is typically a good feature to
use (Wu et al., 2008). If two features are not enough to unambigu-
ously discriminate features, SongSeq allows one to use a second pair
of features for further discrimination.

The next step in syllable identification is using the graphical
tools to associate syllable clusters with syllable labels (A, B, C, etc.)

and colors. This is done using mouse clicks over the area in the 2D
scatter plot that represents the syllable. Each mouse click paints
onto the scatter plot a colored box covering the instances of a
syllable (e.g., syllable A). This is used to define the boundary of

he user browses and selects a template file (SA+ spreadsheet). The template’s file
lected by the user. The acoustic features drop down menu lists all the features that

http://www.math.fsu.edu/~bertram/software/songbird
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Fig. 2. Syllable identification. (A) Sonogram of a typical song of a bird that received bilateral HVC microlesions displaying three introductory notes (labeled as I) and five
syllables (labeled as A, B, C, D, and E). (B) A screen shot of SongSeq’s frame where syllable identification is processed. Left panel: a 2D scatter plot of the two selected features
from  a preoperative day of singing (syllable duration versus mean pitch goodness). Right panel: GUI that associates the syllables clusters on the 2D scatter plot with syllables
labels and colors. (C) Using mouse clicks, the instances of each syllable in (B) are painted onto the scatter plot. The region covered by boxes of a single color defines a syllable.
Here  we have five syllables along with a cluster of introductory notes that is painted in black as I. On the right hand side of the frame, a tree shows the number of boxes used
for  each syllable. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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hat syllable in subsequent scatter plots (e.g., for different days of
inging). The region covered by boxes of a single color defines a
yllable (e.g., Fig. 2C shows five syllables labeled as A, B, C, D and E
long with a cluster of introductory notes labeled as I). The colored
oxes can be resized by the user (e.g., syllables A and E in Fig. 2C
re painted with boxes of different sizes). The boxes are translucent
o that one can see the syllable instances (dots) under the clusters.
his procedure of syllable identification is done for every syllable,
nd thus for every cluster.

It may  happen that some syllables are easily identified with one
air of features, while others are better identified with a second
air of features. With SongSeq, one can identify the first set of syl-

ables using one feature pair, then move to a second feature pair to
mprove the identification of the remaining syllables. In this pro-
ess, and after all the syllables are identified with the first 2 acoustic
eatures (Fig. 2C), two new acoustic features are chosen along with

 subset of the previously added syllables. Only this chosen subset
f syllables (which can include all syllables) can be painted again
n the new 2D feature space. Fig. 3 shows the selection of sylla-
le duration versus mean entropy acoustic features. It also shows
he selection of B and I since their clusters in Fig. 2C are not well
solated, and as we will see shortly syllable duration versus mean
ntropy pulls B and I apart. Syllables A, C, D and E are not cho-
en here because they are discriminated nicely with the first two
coustic features (Fig. 2C).

Once the second pair of features is chosen, a new 2D scatter plot
ppears. The data points are now color coded according to the first
tep of identification (Fig. 4A). For instance, any data points that
ere within the blue boxes defining the borders of syllable A in the

catter plot of Fig. 2C, will be painted in the same color (blue) in the
catter plot of Fig. 4A. In Fig. 4A we see that the data points for B
green) and I (black) are pulled apart in the new 2D feature space,
nd it is clear that some data points previously misidentified as B
ctually cluster better with I (green points in the bottom right of
he black cluster). Syllables A (blue), C (yellow) and D (cyan) remain
ell isolated, but syllable E (gray) has a very similar mean entropy
s the introductory notes and therefore their corresponding clus-
ers overlap.

Next, the user paints in the same way as before onto the new
catter plot, but now only for the syllables (B and I) that were

ig. 3. A screenshot of SongSeq’s frame showing the selection of the second pair of acous
lot  of the new pair of features.
 Methods 210 (2012) 147– 160

specified for this second round of discrimination (Fig. 4B). For these
specified syllables, a data point is considered as syllable X if and only
if either of the following two  conditions hold: (1) it belongs to one
of the boxes defining syllable X in the first 2D scatter plot AND it
belongs to one of the boxes defining syllable X in the second 2D
scatter plot, (2) it belongs to one of the boxes defining syllable X in
the second 2D scatter plot BUT is not a data point of a non-specified
syllable (that is, a data point that is colored with blue (A), yellow
(C), cyan (D) or gray (E)). Although the clusters for E and I overlap
in the second scatter plot, the points originally labeled as E retain
that identification since E was not selected for repainting.

The next step is choosing the target files. Target files are typi-
cal spreadsheets generated by SA+. Information from these target
files (which could be day(s) of post-operative singing, as in Fig. 5) is
extracted and compared with the template spreadsheet to obtain
sequencing details. Finally, typical transitions are selected by the
user. A typical transition between two syllables is defined as one
that is frequently encountered. As we  will see, the typical transi-
tions are used to calculate the consistency score that reflects the
frequency with which a main or typical sequence appears.

2.2. Sequencing the data of the target files

After SongSeq receives all required input, it probes the target
files in the order they were uploaded. The operations described
next are done automatically by SongSeq for each target data file.
First, rows are associated with syllables based on the values of the
user-specified features and are copied into a new spreadsheet, one
for each syllable. This procedure is done for every defined syllable.
Data points that do not fall into any of the named syllables (e.g., the
points not lying in any of the colored regions in Figs. 2C and 4A)
are inserted into a spreadsheet called “NMS” (Non-Motif Sylla-
ble). Thus, each target file is parsed into a set of spreadsheets: one
spreadsheet for every syllable name along with a spreadsheet for
“NMS”. Next, these syllable spreadsheets are merged into a final

“sequenced” spreadsheet that is created to contain all the notes
in the order they were sung. This allows for the analysis of syl-
lable transition probabilities. The different epochs of singing are
identified in this spreadsheet by the .wav identifier.

tic features, and the selection of B and I to better discriminate them on the scatter
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Fig. 4. Second step of syllable identification. (A) Color-coded data points on the
scatter plot of the second pair of acoustic features chosen in Fig. 3, where colors are
coded based on the painting done in the first step of identification. It is clear that
some data points for B (green) and I (black) are pulled apart in the new 2D feature
space, and some data points previously misidentified as B actually cluster better
with I (green points in the bottom right of the black I cluster). (B) Syllables B and I
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Fig. 5. The scatter plots of postoperative days 1 (A) and 3 (B) are superimposed with
the  painted clusters of the template. On the first day after a microlesion was made to
the  HVC, many notes were produced that did not fall within the syllable boundaries
re  painted in the new feature scatter plot. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of the article.)

.3. Syntax identification

Syllable transitions and scores are generated next. The
equenced spreadsheet is scanned row by row. For every block of
onsecutive rows that have the same .wav identifier, syllable tran-
itions are determined. If the syllable name in row i of a song bout
s “A” and the syllable name in row i + 1 of the same song bout is
B”, then the syllable transition is “A–B”. This is done for each pair
f consecutive rows within the block, producing a list of syllable
ransitions for every song bout. The syllable transitions are then

erged and the number of occurrences of every transition is calcu-
ated. A transition probability is calculated by dividing the number
f occurrences of the syllable transition by the total number of syl-
able transitions. The transition probabilities along with the syllable
ransition name are then written into a new spreadsheet.

The song stereotypy is quantified using two  measures that
ddress related but different aspects of sequence stereotypy:

equence linearity addresses the way syllables are ordered in a song,
nd sequence consistency addresses how often a particular path is
ctually followed (Scharff and Nottebohm, 1991). SongSeq calcu-
ates the linearity score of every song bout (.wav file) by dividing
(A). On the third day after surgery, more notes were within the syllable boundaries
(B).  (For interpretation of the references to color in this figure legend, the reader is
referred to the web  version of the article.)

the number of different notes in the bout by the number of transi-
tion types in the bout. Since the number of different notes in a bout
is always less than or equal to the number of transitions in the bout,
a value of 1 represents the best (highest) linearity score. The consis-
tency score is calculated by dividing the sum of typical transitions
in the bout by the sum of the total transitions in the bout (a value of
1 represents the best consistency score). A stereotypy score is then
calculated as the average of the linearity and consistency scores.
Scores are calculated for every song bout and then averaged over
all bouts. The scores are then written into a new spreadsheet.

2.4. Kullback–Leibler (K–L) distance analysis

The Kullback–Leibler distance (K–L distance) is a measure of
the difference between two probability distribution functions (Wu
et al., 2008). We  use this to compare syllable transition probability
distributions. That is, we calculate the K–L distance between the
transition probabilities of two different days to quantify the dis-
similarity of the syllable sequences on those days. For one example
included in Section 3, we  were interested in the disruption of the

song, and song recovery, after partially lesioning the vocal motor
pathway, so we  compared the transition probability distributions
of postoperative days of singing to that of the preoperative day
(day 1). Let n denote the number of syllables along with NMS (e.g.,
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Fig. 6. Syllable transition probabilities are shown on preoperative day 1 (A), and on postoperative days 1 (B), 2 (C), 3 (D), 8 (E), and 12 (F). Blue bars represent “typical
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ransitions”, yellow bars represent “atypical transitions”, or transitions that were 

otes  that lie outside the syllable boundaries. (For interpretation of the references t

f the syllables entered by the user are A, B and C, then n = 4). There
re m = 2n possible combinations of two-syllable transitions. If a
ransition never occurs, we set its probability to a non-significant
mall value (10−4) to make the computation numerically stable and
ccurate. Let T1

1 , T1
2 , . . .,  T1

m represent the transition probabilities on
he preoperative day, and let Tk

1 , Tk
2 , . . .,  Tk

m represent the transition
robabilities on day k. For example, if T1

1 is the probability of an A
o B transition on day 1, then T3

1 is the A to B transition probabil-
ty on day 3 (e.g., Fig. 6 shows the transition probabilities on one
reoperative and five postoperative days). Then the K–L distance
uantifying the degree of dissimilarity of the syllable sequences
etween days 1 and k is given by the following formula:

1,k =
m∑

T1 log

(
T1

j

)

K–L

j=1

j 2
Tk

j

A K–L distance score is generated for every target file entered
y comparing its transition probabilities with those of the first
ted by the user as typical, and the red bars represent “NMS transitions” involving
r in this figure legend, the reader is referred to the web  version of the article.)

target file. The scores are then plotted in ascending order of the
sequence of target files entered. Fig. 7A shows a K–L distance anal-
ysis of the syllable sequence from one bird over two preoperative
and 12 postoperative days of singing. The K–L distance of the first
day of singing (Pre1) with itself is 0. Other data points describe the
K–L distance between Pre1 and days following Pre1. This gives the
time course of sequence dissimilarity over the days following Pre1.
Larger values of the K–L distance reflect greater dissimilarity in the
sequence.

2.5. Transition entropy analysis

The entropy of a probability distribution is a measure of the

spread of that distribution (Wu et al., 2008). In our context, a high
entropy means that there are many syllable transitions with non-
negligible probabilities. A song has low entropy if only a few syllable
transitions typically occur. If Tk

1 , Tk
2 , . . .,  Tk

m represent the transition
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ig. 7. Quantification of syllable transition distributions. (A) K–L distance measure
re2  are preoperative days of singing, and P1–P12 are the days of postoperative sin
or  each day of singing. Dashed lines indicate the day of surgery.

robabilities on day k, then the entropy corresponding to that day
s given by the formula:

k =
m∑

j=1

Tk
j log2(Tk

j )
he entropies corresponding to the transition probabilities of all
arget files are plotted in ascending order of the sequence of target
les entered (Fig. 7B).
ifying the dissimilarity in song sequence between the Pre and Post days. Pre1 and
 (B) Entropy analysis quantifying the spread of the syllable transition distributions

3. Results

To illustrate the results obtained by SongSeq, we use two behav-
ioral data sets from different male zebra finches. The first bird, an
adult, received bilateral microlesions targeted at the song region

HVC (proper name). HVC contains projection neurons that con-
tribute to the pathway that descends from the telencephalon to
the brainstem vocal and respiratory network. This pathway is
known as the vocal motor pathway (VMP) and is necessary for the
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cquisition and the production of song. HVC neurons have a tem-
oral role in song production via HVC-RA projections (Long et al.,
010 and reviewed in Bolhuis et al., 2010). The bird that we  con-
ider had a targeted microlesion that removed only a small region
f the HVC (5–10%, Thompson et al., 2007), resulting in a disruption
f his song post-surgery that gradually recovered to the preopera-
ive state over a period of days. Next, we consider a second bird that
ad been recorded over the course of development. With the help
f SongSeq, we monitor the bird’s vocal changes and the evolution
f his song over the course of development.

.1. Quantifying the effects of HVC microlesions on syllable
equence

Fig. 2A shows a sonogram of a typical song for an adult bird
isplaying three introductory notes (labeled as I) and five sylla-
les (labeled as A, B, C, D, and E) repeated over multiple motifs.
ig. 2B shows a 2D scatter plot of two selected acoustic fea-
ures from a preoperative day of singing (syllable duration versus

ean pitch goodness). The six note clusters correspond to the
ve syllables repeated in song motifs and some introductory
otes (the colored regions in Fig. 2C). On the first day after a
icrolesion was made to the HVC, the song became very disor-

anized and many notes were produced that did not fall within the
yllable boundaries (Fig. 5A). On the third day after surgery, the bird
ong started to recover and more notes were within the syllable
oundaries (Fig. 5B).

Fig. 6A shows the syllable transition probabilities on the day
efore the surgery (the probability of every transition “X–Y” is cal-
ulated by dividing the number of occurrences for “X–Y” by the
otal number of transitions during that day of singing). The first
ight blue bars are “typical” syllable transitions within a motif while

he last blue bar (E–A) is the transition from the last syllable of a

otif to the first syllable of the next motif. The yellow bars repre-
ent transitions that were not listed by the user as typical, based
n an initial examination of the sonograms. Finally, the red bars

ig. 8. Linearity, consistency and stereotypy scores for postoperative day 12. For every .w
f  transition types is calculated. Corresponding linearity, consistency and stereotypy sco
.85,  the entry in the table is colored in red, indicating that the song for this .wav file is
alculated and shown at the top. (For interpretation of the references to color in this figu
 Methods 210 (2012) 147– 160

indicate transitions involving “NMS” notes that lie outside syllable
boundaries.

During the first day of singing following the HVC microlesion,
motif transitions occur with low probabilities and non-motif transi-
tions occur more frequently (Fig. 6B). In fact, the highest transition
probability is from one NMS  note to another. During the second
postoperative day of singing (Fig. 6C), the probabilities of motif
transitions increased (particularly transitions “I–A”, “A–I”, “A–B”
and “E–A”) and the NMS  transitions became more scattered. The
frequent “N–N” transition that occurred on Post1 became less fre-
quent and more “N–X” and “X–N” transitions began to occur as
more notes fell within the syllable boundaries. The number of
“NMS” transitions continue to decline during the third and eighth
postoperative days of singing (Fig. 6D and E) while the “I–A”, “A–I”,
“A–B”, “B–C”, “C–D”, “D–E” and “E–A” transitions increased dra-
matically. By postoperative day 12 (Fig. 6F), the overall pattern of
syllable transition probabilities appears similar to the preoperative
structure, although there are more “NMS” transitions on Post12
than on Pre1. SongSeq can also show the transition distributions in
terms of pie charts (not shown).

The dissimilarity in song sequence between the Pre and Post
days is quantified using the K–L distance measure in Fig. 7A. Here,
Pre1 and Pre2 are preoperative days of singing, and P1–P12 are the
days of postoperative singing. Preoperative transition distribution
functions are highly similar, so the K–L distance between Pre1 and
Pre2 is near 0. On the first day of singing following surgery (P1) the
K–L distance increases dramatically, since the typical transitions
that occur on Pre1 are infrequent on P1. There is a big drop in the
K–L distance between P1 and P2 due to recovery of the “I–A”, “A–B”,
“A–I” and “E–A” transitions (Fig. 6B and C). Another big drop occurs
between P2 and P3 due to the recovery of the “B–C”, “C–D” and
“D–E” transitions and the further recovery of the “I–A”, “A–B”, “A–I”

and “E–A” transitions (Fig. 6C and D). There is a third, but smaller,
drop between P3 and P8 (Fig. 6D and E), making the typical transi-
tion probabilities in P8 more like those in Pre1. On subsequent days
there is little change in the K–L distance.

av file in the spreadsheet of day 12, the number of transitions as well as the number
res are then generated and listed in tabular form. For any score that is larger than

 highly stereotyped. Average linearity, consistency and stereotypy scores are then
re legend, the reader is referred to the web version of the article.)
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Fig. 7B shows a quantification of the spread of the transition
robability distributions for each day of singing using the distribu-
ion entropy. The transition entropy values for Pre1 and Pre2 are
imilar, showing that the spread of the transition distribution func-
ion is similar on these two days. That is, the number of syllables and
he order in which they are sung are similar. The entropy exhibited

 dramatic drop on day P1 because the transition distribution on P1
as much less spread than that on any of the Pre days. Many notes
ung on P1 were classified as NMS, so that many syllable transitions
ere lost. In fact, the NMS–NMS transition was most frequent on P1

Fig. 6B). By day P2 many syllables have returned, but they are cou-
led with “NMS” notes, resulting in a transition distribution with

 larger spread as quantified by the larger entropy. The entropy on
ay P3 increases further as more typical transitions are recovered
nd the “NMS” transitions declined (Fig. 6C and D). The entropy
n day P3 is higher than that on the Pre days since, in addition to
he typical transitions, there are more “NMS” transitions on day P3
han on the Pre days. The entropy declines slightly after that and
eaches a plateau that remains somewhat above the Pre days. This
xample illustrates the different types of information encoded in
he K–L distance and entropy measures. Moreover, by examining
he scatter plots for target files used to generate the entropy and
he K–L distance values one can determine whether dissimilarity
s due to increased variability in the phonology of motif syllables
change in size or shape of syllable clusters), the production of non-

otif syllables (syllables that fall outside of the template clusters),
r some combination of the two.

Fig. 8 shows linearity, consistency, and stereotypy scores
Scharff and Nottebohm, 1991) generated for postoperative day 12.
or every .wav file in the spreadsheet of day 12, the number of
ransitions is calculated as well as the number of transition types
the number of different transitions). Corresponding linearity, con-
istency and stereotypy scores are then generated based on these

alues. For any score that is larger than 0.85, the entry in the table
s colored red, indicating that the song for this .wav file is highly
tereotyped. Average linearity, consistency and stereotypy scores
re then calculated and shown at the top. This procedure is done for

ig. 9. Comparison of the average scores over all preoperative and postoperative days of
equence during P1 and P2. However, as the bird song recovers the average scores incre
umbers above data points are removed for clarity.
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every target file entered and thus for every preoperative and post-
operative day entered by the user. Fig. 9 shows a comparison of
the average scores over all preoperative and postoperative days of
singing (numbers removed for clarity). The microlesion clearly had
a large impact on these measures of the song sequence during P1
and P2. The average consistency scores were higher than the aver-
age linearity scores on the Pre days. However, after surgery, and
for the first five post operative days, the average linearity scores
exhibit higher values than the average consistency scores. On day
P6 the scores are almost equal, and for postoperative days six till
twelve the consistency scores are again higher. As the bird song
recovers the average scores increase gradually toward those on
Pre 1.

3.2. Developmental changes in syllable sequence

In this next example we  show the changes in the sequence of
syllables sung by a bird during development. Fig. 10A  shows the
2D scatter plot of two selected acoustic features (syllable duration
versus mean FM)  for a day of singing from an adult male zebra finch.
The data points on the scatter plot form five clusters (Fig. 10B).
There are five different motif syllables for this bird, and the canoni-
cal motif for this adult bird is ABCDCE. Thus, the typical transitions
are “A–B”, “B–C”, “C–D”, “D–C”, “C–E” and “E–A”. The bird also often
sings AABCDCE, making “A–A” an additional typical transition of
his song. During the first week of development, the song is very
disorganized and most of the notes produced do not fall within
the syllable boundaries (Fig. 10C). However, during the subsequent
weeks of development, the bird song started to shape up gradually
and merge toward the adult song, and by the sixth week most notes
were within the syllable boundaries (Fig. 10D).

The transition probabilities for the developing bird are shown
in Fig. 11.  As an adult, the bird song has high probability of motif

syllable transitions and a low probability for non-motif syllable
transitions (Fig. 11A). In contrast, in the same bird as a juvenile,
during a day of the first week of singing (post-hatch days 35–42)
there are few motif transitions and many transitions associated

 singing. The microlesion clearly had a large impact on these measures of the song
ase gradually and by P12 they have returned to values similar to those on Pre 1.
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Fig. 10. Syllable identification for a developing bird. (A) The scatter plot of two selected acoustic features (syllable duration versus mean FM)  for a day of singing from the
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ird  when adult. (B) The data points on the scatter plot form five clusters indicatin
eeks  1 (C) and 6 (D) are superimposed with the painted clusters of the template. D

he  syllable boundaries (C). During the sixth week, more notes were within the syll

ith notes that fall outside the boundaries of the adult syllable
lusters (Fig. 11B). The overall pattern of syllable transitions during
eeks 2 and 3 was similar to week 1, exhibiting many transitions

etween an adult syllable and a “NMS” note (Fig. 11C and D). At a
ay during week 6 of singing in the juvenile (Fig. 11E), the prob-
bilities of motif transitions increased and the “NMS” transitions
ecame less frequent. By week 9 (Fig. 11F), the overall pattern of
yllable transitions appears similar to the adult syntax structure:
igh probability for motif syllable transitions and low probability

or non-motif transitions.
Fig. 12A shows the vocal change in the syllable sequence over

he course of development of the bird as quantified by K–L distance
nalysis. This is done by comparing transition probabilities of the
uvenile bird from days of different weeks of singing with that of
he adult bird. That is, the K–L distance at target Wi compares the
ransition distribution from one day of week i with that of the adult
the template). On a day during the first week of singing (W1), the
–L distance is large since few of the adult typical transitions are
ade by the juvenile bird. This is true also for singing on W2  and
3;  almost all transitions involve “NMS” notes. Therefore, the K–L
istance remains elevated, and is even larger on W3  than W2 due
o a decline in the “B–C” transition from W2 to W3 (Fig. 11C and D).
y W6,  many of the adult transitions are present (Fig. 11E), so the
–L distance is much lower.
 different motif syllables for this bird that form the template. The scatter plots for
 the first week of development, many notes were produced that did not fall within
oundaries (D).

Fig. 12B  shows the transition entropy analysis quantifying the
spread of the transition probability distributions for each week
of singing. The entropy value on W1 is smaller compared with
the adult, as one can observe by the smaller distribution spread
in Fig. 11B versus Fig. 11A. On subsequent weeks of singing, the
entropy values first rise as more syllables emerge in the song, and
then decline as the transition sequence becomes more like that of
the adult. By W9 the entropy is approximately the same as that of
the adult bird.

Average linearity, consistency and stereotypy scores for the
juvenile versus the adult songs are shown in Fig. 13.  The linear-
ity score on W1 is almost the same as that of the adult, yet the
song is very different. The high linearity on W1  occurs because the
bird sings many single or double notes. The difference between the
adult and W1 songs becomes evident, however, when one consid-
ers the consistency score, which is almost 0 on week 1. By W9 both
linearity and consistency scores are similar to those of the adult
song.

3.3. Robustness
The results shown in our examples are robust to variations in
the number of notes. To demonstrate this, we applied SongSeq on
both birds’ data sets after removing 45% of the rows in each of the
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Fig. 11. Syllable transition probabilities are shown during a day when the

preadsheets generated by Sound Analysis Pro (which removed
0–50% of the bouts on each day). The painted regions (and thus
he syllable boundaries) on the template’s 2D scatter plot remained
he same using a module of SongSeq that allows the user to upload a
revious template (SongSeq saves the dimensions of every painted
ox on the template’s scatter plot each time a simulation is run).
ig. 14 shows the K–L distance analysis (Fig. 14A), entropy analysis
Fig. 14B) and average scores (Fig. 14C) for the first bird obtained
fter removing roughly half of the song bouts. The time courses
f these measures are quite similar to those from the same bird

hen all song bouts were included (Figs. 7 and 9). Comparisons
ere also favorable when the same procedure was applied to

he bird used in the development study (Fig. 15,  compare with
igs. 12 and 13).
s an adult (A), and during a day of week 1 (B), 2 (C), 3 (D), 6 (E), and 9 (F).

4.  Discussion

We  have presented an automated tool, SongSeq, for analyzing
birdsong syllable sequences. We  showed how SongSeq can be used
to monitor changes of sound features across a large number of
songs, analyze transition distributions among syllables, quantify
syllable ordering in terms of linearity, consistency and stereotypy
scores, and quantify the degree of similarity in song syntax over
different days of singing. The software uses two  standard mea-
surements from information theory, the Kullback–Leibler distance

and entropy, to quantify the transition distributions and compare
day-to-day differences.

The Similarity Batch module in Sound Analysis Pro is a com-
monly used method to measure bird song similarity. For example,
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Fig. 12. (A) During weeks 1–3, the K–L distance is large since the juvenile song is
quite different from the adult song. By week 4, however, the sequence was  much
improved. (B) The entropy value on W1  is smaller compared with adult (Fig. 9B
versus Fig. 9A). On subsequent weeks of singing, the entropy values first rise as more
syllables emerge in the song, and then decline as the transition sequence becomes
more like that of the adult.

Fig. 13. Average linearity, consistency and stereotypy scores for the juvenile versu
 Methods 210 (2012) 147– 160

the method has been used to assess the vocal imitation of pupils
(bird learning the song) from tutors (adult birds) (Tchernichovski
et al., 2000) or recovery of song following brain injury (Coleman
and Vu, 2005; Thompson et al., 2007). Similarity Batch can be used
to perform a large set of similarity measurements. It supports two
batch modes: one is for comparing ordered pairs of sounds, and
the other is for comparing sound matrices. This module is typically
used to search for similarity between a single “target” motif and a
.wav file comprised of multiple motifs or a set of uncategorized song
units (e.g., destabilized singing following HVC microlesions). This
motif-based comparison does not determine syllable-level contri-
butions to similarity. In contrast, SongSeq’s algorithm is based on
the individual syllable transitions; the entropy and K–L distance
functions are based on the distributions of acoustic features of
individual syllable transitions, and thus, dissimilarity between two
transition probability distributions can be traced back to individual
syllable contributions.

SongSeq also provides an easy automated way to gener-
ate the linearity, consistency, and stereotypy scores. To the
best of our knowledge, the only automated tool available to
compute stereotypy scores is the web-based program located
at (http://bottjerlab.usc.edu/songinator.html). This tool computes
linearity and consistency statistics for bird song but requires the
user to manually enter the syllable order for every song file, and
thus it requires user inspection of every sonogram. In contrast,
SongSeq allows large scale computation of the stereotypy scores
over a large number of .wav files (and thereby song motifs) and
over a large number of days of singing (and thereby multiple SA+
spreadsheets). This is done without user interaction and the only
requirement from the user is to paint the clusters in the input stage
to identify the syllables. Moreover, the average scores computed at
the end of the batch process (Figs. 9 and 13)  provides an informa-
tive view of the behavior of the bird’s song over multiple days of
singing.
There is accumulating evidence that the bird song is coded at
the sub-syllabic level (Day et al., 2009; Ravbar et al., 2012). During
development, some subsyllables could form sooner than others, so

s the adult songs. Here, W1–W9  represents a day during each of weeks 1–9.

http://bottjerlab.usc.edu/songinator.html
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Fig. 14. Robustness of the results to variations in the number of notes. SongSeq was
used on the bird 1 (HVC microlesion) data sets after removing 45% of the rows in
each of the spreadsheets generated by Sound Analysis Pro. The K–L distance analysis
(A),  entropy analysis (B) and average scores (C) obtained after removing 45% of the
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Fig. 15. Robustness of the results to variations in the number of notes. SongSeq was
used on the developing bird data sets. The K–L distance analysis (A), entropy analysis
(B)  and average scores (C) obtained after removing 45% of the song bouts. The time
ong bouts. The time courses of these measures are quite similar to those from the
ame bird when all song bouts were included (Figs. 7 and 9).

hat a syllable X’ could form early that is close to, but outside, the
oundaries of adult syllable X. Rather than counting these notes in
he “NMS” category, one could define the variant X’ in the template,
y simply painting in the region of the template scatter plot where
’ is needed. Then in the adult song, there would be X syllables but

ew X’ syllables, while during development there would by many
ariants X’ of X recorded.

The SongSeq software makes the identification of syllables much
ess labor intensive. However, there will always be misidentifica-
ion of notes, just as there would be with manual identification. To

educe the frequency of misidentification, it is best to keep the syl-
able boundaries relatively tight. This is facilitated by using small
ainting boxes. A cloud of notes near, but not contiguous with, a
courses of these measures are quite similar to those from the same bird when all
song bouts were included (Figs. 12 and 13).

note cluster may  best be categorized as a variant X’ of the main
syllable cluster X, as described above, rather than extending the
boundaries of X. Also, by combining several days of singing one
can get a clearer view of the syllable clusters, since the number
of notes in the combined scatter plot is greater. This assumes, of
course, that the song is similar on each day of singing that is com-
bined (for example, combining days of singing from an adult bird
prior to surgery).

In summary, SongSeq automates the most labor intensive com-
ponents of bird song analysis. In addition to automated syllable

identification, it employs several algorithms to quantify song syn-
tax. The user interface is through a GUI that requires no user
programming or data manipulation. The software, along with



1 cience

o
a

A

t

R

B

C

Thompson JA, Wu W,  Bertram R, Johnson F. Auditory-dependent vocal recovery
60 A. Daou et al. / Journal of Neuros

nline tutorial and a user manual, are available for free download
t http://www.math.fsu.ed/∼bertram/software/songbird.
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