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ABSTRACT
Mathematical models are commonly used in neuroscience, both as tools for integrating data and
as devices for designing new experiments that test model predictions. The wide range of relevant
spatial and temporal scales in the neuroendocrine system makes neuroendocrinology a branch of
neuroscience with great potential for modeling. This article provides an overview of concepts that
are useful for understanding mathematical models of the neuroendocrine system, as well as design
principles that have been illuminated through the use of mathematical models. These principles are
found over and over again in cellular dynamics, and serve as building blocks for understanding
some of the complex temporal dynamics that are exhibited throughout the neuroendocrine system.
© 2015 American Physiological Society. Compr Physiol 5:911-927, 2015.

Introduction
In 1952, Alan Hodgkin and Andrew Huxley published an arti-
cle that was key to the development of modern neuroscience
(22). This article demonstrated how voltage-dependent Na+

and K+ ion channels can work together to generate electrical
impulses, and how these can travel down an axon without
attenuation. This demonstration would not have been pos-
sible without the mathematical model that they developed
to integrate their voltage-clamp data into a time-dependent
description of the membrane potential in the squid giant
axon. Indeed, the Hodgkin-Huxley model is almost certainly
the most cited mathematical model in all of physiology, and
is a ubiquitous topic in graduate courses on biomathemat-
ics as well as neuroscience. Many subsequent neural mod-
els use a Hodgkin-Huxley formalism, which means that the
models use similar design principles, but somewhat differ-
ent equations. Such a formalism has been employed in mod-
els of the neuroendocrine system, including models of vaso-
pressin neurons (28,53,54), gonadotropin-releasing hormone
(GnRH) neurons (12, 17, 29, 30), and pituitary gonadotrophs
(33, 36, 37, 75), somatotrophs (72), corticotrophs (38), and
lactotrophs (66, 67).

A major advantage of Hodgkin-Huxley-type models is
their reliance on ionic currents, which can in some cases be
calibrated with the use of pharmacological agents and voltage
clamp (21). With an ionic current-based model one can make
predictions about the effects of neuromodulators or pharma-
ceutical drugs, which often target ion channels through the
actions of G proteins. A major disadvantage of Hodgkin-
Huxley-type models is their reliance on ionic currents, which
may not be well described in the cell that is being studied,
or which may be seen as superfluous in studies focused on
network behavior. Another class of model, the integrate-and-
fire model, was developed to capture the threshold behavior
of neurons or other electrically excitable cells, without the
complexity of detailed ionic currents (23). This type of model

has been used, for example, in models of oxytocin and vaso-
pressin neurons (44, 45, 55).

The concept that “simpler is better” that underlies the
use of integrate-and-fire models also underlies functional
models (32) or mean field models. These describe the activ-
ity of a population of cells with a single variable. Interacting
cell populations then require several interacting variables. The
alternative, using a set of variables for each cell in each pop-
ulation, quickly gets out of hand in systems consisting of
thousands or even millions of cells. Functional models have
been used to describe the menstrual cycle (6, 58, 84), follicu-
lar selection (8), luteinizing hormone secretion (56), circadian
surges of prolactin secretion (2), and ultradian rhythms in cor-
tisol secretion (82) and growth hormone secretion (43).

An aim of this article is to provide an overview of some of
the key mathematical concepts that are used in models of the
types described above. Many of these concepts are intuitive,
and can be understood without the background (calculus, lin-
ear algebra, linear, and nonlinear differential equations) typ-
ical of the mathematical modelers who generate the models.
Another aim is to identify design principles that underlie mod-
els across cell types. Understanding these principles facilitates
understanding of some of the complex dynamics that occur
throughout the neuroendocrine system. We omit discussion of
many mathematical and numerical issues involved in analyz-
ing the different types of mathematical models. A nice discus-
sion of nonlinear ordinary differential equations (ODEs) can
be found in (65), while discussion of both ordinary and partial
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differential equations (PDEs) and their application to physi-
ology can be found in (24, 25). Delay differential equations
(DDEs) are discussed in detail in (15). Finally, numerical
methods for solving the different types of equation can be
found in (50).

Getting Started
We begin by addressing basic questions that a neuroendocri-
nologist may ask when evaluating modeling studies or when
considering whether to incorporate modeling into his/her own
research.

Why use mathematical models?
The neuroendocrine system is extraordinarily complex, due
largely to the many interactions of its constituent parts. The
complexity is reduced somewhat by formally partitioning
the system into “axes,” such as the hypothalamus-pituitary-
adrenal axis, or stress axis. To further simplify, one often
focuses on one physiological state, or on one cell type (e.g.,
the corticotroph). This reductionist approach has proven to
be very successful and our understanding of the components
of the full system has blossomed over the past few decades.
Ultimately, though, one must tie the pieces together to gener-
ate a larger picture. This integration occurs at all levels and is
most often represented with box-and-arrow diagrams, which
illustrate how one factor acts on another. A mathematical
model converts box-and-arrow diagrams into equations. This
is demonstrated in Figure 1, which shows two interacting
elements (these could be cell populations, individual cells,
or signaling molecules). Element A stimulates B, while B
inhibits A. The box-and-arrow diagram could be the “model”
that results from a thorough study of these two elements.
However, one could go further, by writing equations such as
the following for the dynamics of A and B:

dA
dt

= p1 − p2
B

KB + B
− p3A (1)

dB
dt

= p4 + p5
A

KA + A
− p6B (2)

where the inhibitory effect of B on A is through the p2
term and the stimulatory effect of A on B through the p5
term. We immediately recognize that a problem has emerged;
one must now provide values for the eight parameters p1
to p6, KA, and KB. That is, the mere act of writing down

Figure 1 Box-and-arrow diagram indicating that A stimulates B and
B inhibits A.

equations forces one to consider not just how the two ele-
ments are interacting, but the strength of their interactions
(parameters p2, KB, p5, and KA) in the context of the intrinsic
dynamics of A and B (set by p1, p3, p4, and p6). The need to
find values for these parameters, that is, to calibrate the model,
could motivate additional experiments. A question that arises
when going from Figure 1 to Eqs. 1 and 2 is whether the
interactions are both rapid or whether one pathway is slow
relative to the other and relative to the intrinsic dynamics of
A and B. For example, if the inhibitory influence of B onto
A is slow, then sustained oscillations in A and B can be pro-
duced. How slow or delayed must this inhibitory influence
be to produce oscillations? What is the period of the oscilla-
tions? How does it depend on the delay or speed in inhibition?
These questions cannot be answered using the box-and-arrow
diagram, but they are readily accessible through mathemat-
ical analysis and computer simulations of the mathematical
model.

Is bigger better?
Evolution and natural selection have an excellent track record
for solving problems. Unfortunately, the solutions obtained
through this process are rarely the simplest, at least in the
eyes of an engineer. It is, therefore, often the case that many
interacting elements combine to produce a behavior that could
just as easily have been produced with two or three key ele-
ments. For example, elements C, D, E, and F may all act on A,
and G, H, I, J, and K, may act on B. Should one include these
extra elements in the mathematical model? That is, is bigger
better? There are several reasons for including everything.
The most obvious is that each interaction likely took a lot of
work to uncover, so it surely deserves to be included in the
model. Another is that if the element is a part of the biological
system, and even if it appears to be a minor player in the pro-
duction of the behavior of interest, it may play a major role in
some other behavior that may studied later. Frontloading the
model with all the known elements ensures that everything
will be there when needed. In addition, elements that appear
to be bit players may be targets of physiological modula-
tors or pharmacological agents, and would have to be in the
model if one is to study these things. So in some ways bigger
is better.

Other arguments can be made that lead one to quite a
different conclusion. Perhaps the most compelling argument
against big mathematical models is that the larger the model
the harder it is to understand. Mathematical tools are excel-
lent for understanding dynamic models with a few depen-
dent variables. That is, models with a low-dimensional state
space. Their utility drops off quickly at higher dimensions.
For higher dimensional systems the primary tool is computer
simulation. With modern computers, it is entirely possible to
do simulations of more than a hundred dynamic equations on
a desktop computer, and many more on supercomputers or
with graphics processing units. But there is another problem:
as the dimensionality of the model grows so too does the
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number of parameters. That is, the dimensionality of param-
eter space is typically larger with larger models. Since most
parameters will be known only to within some range of val-
ues, this means that to understand the range of behaviors that
can be exhibited by the model one must do simulations over a
large set of sample points in parameter space. Such a param-
eter exploration can quickly become intractable, and one will
be left with a very incomplete understanding of the model. If
Hodgkin and Huxley had studied the soma of a neuron, which
contains many types of ion channels, rather than the axon
that expresses only two voltage-dependent channels, would
their model have led them to the fundamental insights that
they achieved through simulations with their “simple” four-
dimensional model? Probably not. Indeed, simpler is usually
better for understanding how a system works. A successful
strategy then is to start simple and take advantage of the
low dimensionality of the state space and parameter space
to gain insights into the dynamics of the fundamental ele-
ments of the system. This can be followed by the addition
of new elements as suggested by the data and by the ques-
tions that one wishes to answer. So at least at first, simpler is
often better.

Types of Equations
The focus of this article is on dynamic models, that is,
models that describe how a system changes over time. In
this section, we discuss the several types of equations that
are most frequently encountered in physiological dynamic
models.

Ordinary differential equations
These are the types of equations encountered in calculus and
basic physics classes, and famously describe the motion of
falling objects and celestial bodies. An ODE like Eq. 1 sim-
ply describes how a dependent variable, A in this case, changes
over a small time increment. The right hand side of the equa-
tion can therefore be thought of as the instantaneous speed
of A, which may be positive (A is increasing), negative (A
is decreasing), or zero (A is at rest). If the speed is a linear
function of the dependent variables, then the ODE is linear.
Formulas exist for the solution of linear ODEs. Unfortunately,
most physiological models consist of nonlinear ODEs, and
solution formulas typically do not exist, so one is compelled
to approximate the solution using a computer. Equation 1 is a
nonlinear ODE that is also coupled to the dependent variable
B. Indeed, the nonlinearity comes in through the coupling
term, which has an increasing and saturating dependence on
B (this is called a Michaelis-Menten function). Since Eq. 1
contains a first derivative and no higher order derivatives, it is
a first-order ODE. In contrast, Newton’s equation of motion
(F = ma) contains a second derivative for acceleration, and is
a second-order ODE.

The Hodgkin-Huxley model is described in terms of a
system of nonlinear first-order ODEs:

Cm
dV
dt

= Iapp − INa − IK − Il (3)

dm
dt

=
m∞ (V) − m

𝜏m (V)
(4)

dn
dt

=
n∞ (V) − n

𝜏n (V)
(5)

dh
dt

=
h∞ (V) − h

𝜏h (V)
(6)

The first equation, Eq. 3, says that the membrane capaci-
tance, Cm, times the time derivative of the membrane poten-
tial, V, is equal to the sum/difference of the ionic currents.
This appears to be quite simple, and indeed the ionic currents
are all described by Ohm’s law, which depends linearly on the
voltage: INa = gNa

(
V − VNa

)
. Is the voltage equation a sim-

ple linear ODE? If it were, then action potentials would not
occur and we’d all be dead. Fortunately for us, the Na+ and
K+ conductances, gNa and gK, vary over time as described by
the dynamics of gating variables, and this makes the system
nonlinear. This was one of the great discoveries of Hodgkin
and Huxley, and is at the heart of electrical excitability. The
other ODEs in the Hodgkin-Huxley model describe how the
gating variables change over time: m and h are the Na+ acti-
vation and inactivation variables, respectively, and n is the K+

activation variable. Each of these satisfies first-order kinetics,
for example, the variable m approaches its equilibrium m∞
exponentially with a rate determined by the “time constant”
𝜏m. If the time constant is large, then the approach to equi-
librium is slow. Adding to the complexity, and making the
whole thing work, is the fact that both the equilibrium and
the time constant are voltage dependent (so “time constant”
is a misnomer). Finally, the Na+ and K+ currents can be
written as:

INa = gNam3h
(
V − VNa

)
(7)

IK = gKn4 (V − VK

)
(8)

where g is the conductance when the channel is maxi-
mally activated (and not inactivated). The currents, and thus
the voltage ODE, are now clearly nonlinear. The equilib-
rium or “infinity functions” and the time constant functions
are written in terms of the forward and backward transi-
tion rates: m∞(V) = 𝛼m∕(𝛼m + 𝛽m), n∞(V) = 𝛼n∕(𝛼n + 𝛽n),
h∞(V) = 𝛼h∕(𝛼h + 𝛽h), and 𝜏m(V) = 1∕(𝛼m + 𝛽m), 𝜏n(V) =
1∕(𝛼n + 𝛽n), and 𝜏h(V∕(𝛼h + 𝛽h). The 𝛼 and 𝛽 functions, as
well as parameter values for the models used in the figures,
are given in Table 1.

Delay differential equations
In Eq. 1, the change of A at a particular time depends partly
on the value of B at that time. What if, instead, it depended
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Table 1 Parameter Values and Functions for Models Used to Make the Figures

Hodgkin-Huxley model (Eqs. 3-6, 24, and 25)

Cm = 1 μF∕cm2 gNa = 120 mS∕cm2 gK = 36 mS∕cm2 gl = 0.3 mS∕cm2

VNa = 50 mV VK = −75 mV Vl = −50 mV Iap = 0, 1, 1.5 μA∕cm2

𝛼m =
0.1 (V + 40)

1 − e−(V+40)∕10
𝛽m = 4 e−(V+65)∕18 𝛼n =

0.01 (V + 55)
1 − e−(V+55)∕10

𝛽n = 0.13 e−(V+65)∕80

𝛼h = 0.07e−(V+65)∕20 𝛽h = 1
1 + e−(V+30)∕10

Imax
noise = 0.3 μA∕cm2

Genetic toggle switch (Eqs. 18 and 19)

∝x= 10, 9 ∝y= 10 𝛽 = 2, 1.5, 1 𝛾 = 2, 1.5, 1

p5 = 0.11 p6 = 2.9

Prolactin model (Eqs. 22 and 23)

Tp = 6 q = 0.5 Td = 10 kp = 0.03

𝜏 = 0.5, 1.5, 3 h

Relaxation oscillator (Eqs. 26 and 27)

p1 = 0.1 p2 = 0.5 𝜀 = 1, 0.05

Bursting “s” model (Eqs. 28-30)

Cm = 4524 fF gCa = 280 pS gK = 1300 pS gK(ATP) = 13 pS

gL = 25 pS gKs = 20 pS VCa = 100 mV VK = −80 mV

VL = −40 mV 𝜏s = 10, 000 ms m∞ = 1
1 + e−(22+V )∕7.5

n∞ = 1
1 + e−(9+V )∕10

s∞ = 1
1 + e−(40+V )∕0.5

𝜏n = 8.26
1 + e(V+9)∕10

on B at an earlier time? Then the equation would be a DDE.
One can easily imagine situations where DDEs may be used.
For example, the rate at which the protein level for some gene
product changes depends on the mRNA level for that protein
some time earlier, since translation takes time. Whether or not
one includes the time delay in the model is determined partly
by how important it is thought to be. In terms of Figure 1, if
the inhibition of A by B were delayed by 𝜏 time units, then
Eq. 1 would become the following DDE:

dA
dt

= p1 − p2
B𝜏

KB + B𝜏

− p3A (9)

where B𝜏 means B evaluated at time t − 𝜏.
A DDE was used recently to describe ultradian (hourly)

oscillations in glucocorticoid (CORT) levels in the blood (82).
Experimental studies indicated that these oscillations are not
due to oscillatory levels in corticotropin-releasing hormone
(CRH) from the hypothalamus, and in fact the CORT oscil-
lations persisted in rats in which the CRH level was con-
stant (81). The explanation given was that mutual interactions
between pituitary corticotrophs and CORT-releasing cells in
the adrenal cortex are responsible for the rhythm. That is, cor-
ticotrophs release corticotropin (ACTH) that stimulates the
production and release of CORT from adrenal cortex cells.
The CORT then has an inhibitory effect on the corticotrophs.

So this is just Figure 1 again, with A being the release of ACTH
and B the release of CORT. Because the CORT is not stored,
but must be synthesized when signaled by the ACTH, there
is a time delay in the release of CORT. The model equations
are:

da
dt

=
p1

1 + p2rc
− p3a (10)

dr
dt

= (cr)2

p4 + (cr)2
+ p5 − p6r (11)

dc
dt

= a𝜏 − c. (12)

The first equation describes the dynamics of ACTH
release (a). It includes the key fact that CORT (c) inhibits
the release of ACTH from corticotrophs by placing c in the
denominator of the first term. This inhibitory action is rapid,
so no time delay is included. CORT also increases the num-
ber of CORT receptors (r) expressed in the membrane of the
corticotrophs. Thus, r is a dynamic variable, and c affects the
speed at which r changes over time through the first term in
the right hand side of Eq. 11. This is a saturating increasing
function of c, and since c has an exponent greater than 1 it
is called a Hill function with Hill coefficient of 2. Finally,
a increases the release of CORT, but with a time delay of
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𝜏 (Eq. 12). Although only the last equation is a DDE, the
equations are coupled and together form a DDE system.

DDEs have been used in several neuroendocrine applica-
tions in addition to ultradian glucocorticoid rhythms. They
have been used in a model for the semi-circadian rhythm in
prolactin secretion that occurs during the first half of preg-
nancy in rodents (2), in a model of ultradian rhythms in growth
hormone secretion (43), and in the response of gonadotrophs
to GnRH (56).

Partial differential equations
The final type of equation found in dynamic physiological
models is the PDE. This would be used, for example, when
spatial as well as temporal changes in a variable are included
in the model. A good example is the Hodgkin-Huxley cable
equation, which (along with the ODEs for the gating vari-
ables) describes the membrane potential along the length of
an axon (24). The cable equation can be used to simulate the
propagation of an action potential down an axon, and indeed
was used in the seminal 1952 paper by Hodgkin and Huxley.
It is:

Cm
∂V
∂t

= ∂
∂x

(
D
∂V
∂x

)
+ Iapp − INa − IK − Il (13)

where the single time derivative is replaced by partial deriva-
tives for time and space (x) and the diffusion coefficient (D)
includes the resistivity of the intracellular and extracellular
media. PDE models are also often used to describe the diffu-
sion of calcium in large cells such as neurons (24) and have
been used to describe calcium dynamics in gonadotrophs (37).
A PDE model was also used to describe the follicular selection
process (8). The solution of PDEs requires analysis or numer-
ical techniques that are more complex than those needed for
ODEs, but many of the concepts discussed in the remainder
of this article apply to both ODEs and to PDEs, so we focus
on the simpler ODE models.

Equilibria and their Stability
Systems with a single stable equilibrium
One is often interested in long-term behavior. Mathematicians
refer to this as the asymptotic state of the system, and the
behavior at earlier times as the transient behavior. There is
often a single asymptotic state, in which case the system is
called monostable. If you drop an object onto the floor, then
the asymptotic location is the floor, and the transient behavior
is everything that happened before the object hit the floor.
The system is monostable since there is only one floor, and
gravity ensures that the object gets there. This asymptotic
state is an equilibrium or steady state of the system, since
once the object reaches the floor its position stops changing.
To find the equilibrium or equilibria of a system of ODEs,
it therefore makes sense to set all the time derivatives to 0.
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Figure 2 (A) With no applied current the Hodgkin-Huxley system is
at equilibrium. (B) When a brief current pulse is applied an action
potential is produced. The system returns to equilibrium after the pulse.
The XPPAUT software package was used to numerically solve the
equations in this and other figures. Codes can be downloaded from
www.math.fsu.edu/∼bertram/software/pituitary.

Doing this for the Hodgkin-Huxley equations, one obtains a
set of four algebraic equations:

INa + IK + Ileak = Iap (14)

m = m∞ (V) (15)

n = n∞ (V) (16)

h = h∞ (V) . (17)

The solutions to these equations are the equilibria. For
example, Figure 2 shows the voltage time course obtained
by numerically solving the dynamic equations Eqs. 3 to 6.
When the applied current is 0 the system has an equilibrium
solution in which the voltage is about −64 mV (this could
be found by solving the equilibrium equations Eqs. 14 to 17
with Iap = 0). When the system is perturbed from rest with
a short pulse of applied current (panel B) an action potential
is produced (panel A). This is a transient response, and the
system returns to rest shortly thereafter. The equilibrium is
said to be globally stable, since the solution always returns
there regardless of the size of the perturbation.

Bistable systems
Can there be more than one stable equilibrium? Not if the
system of ODEs is linear. However, for nonlinear systems
there can be two or more stable equilibria. In fact, it is often
the case that physiological models are bistable; they have two
stable equilibria. Such is the case, for example, in a model
for long-term synaptic plasticity mediated by postsynaptic
Ca2+/Calmodulin-dependent protein kinase 2 (CamK2) (85).
Activation of the kinase results in autophosphorylation, which
if sufficiently large can put the enzyme into an active state
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that persists after the stimulus (a high-frequency presynaptic
impulse train) is removed. The activated state is stable, as is the
original inactive state. The presynaptic impulse train simply
moved the system from one stable equilibrium to the other.
Bistability is also a key factor in a model of semi-circadian
prolactin surges that occur during pregnancy in the rat. In
this model, a brief mating stimulus moves a population of
hypothalamic interneurons from an inactive state to an active
state. The activated neurons inhibit dopamine neurons of the
arcuate nucleus, which allows the prolactin surges to occur as
long as the interneurons remain active (2). Bistability is also an
important dynamic component of a model for synchronization
of GnRH neuron activity (26) and a model for in vivo spike
activity in phasically firing vasopressin neurons (7).

A nice illustration of a bistable system is the genetic tog-
gle switch, which has been constructed in synthetic biology
experiments (19). Here, one gene product represses the syn-
thesis of another, and the reactions are mutual. This system
can be described mathematically with the model:

dx
dt

=
𝛼x

1 + y𝛽
− x (18)

dy

dt
=

𝛼y

1 + x𝛾
− y (19)

where x and y are the concentrations of the two repressors, 𝛼x
and 𝛼y are the effective synthesis rate of the repressors, and 𝛽

and 𝛾 are the cooperativities of repression. Notice that y is in
the denominator of the synthesis rate for x (and vice versa),
reflecting its role as a repressor. The equilibria of the model
satisfy the algebraic equations:

x =
𝛼x

1 + y𝛽
(20)

y =
𝛼y

1 + x𝛾
. (21)

Each of these equations is just a curve in the xy plane, and
since they were derived by setting derivatives to 0 they are
called nullclines. The first equation is the x nullcline and the
second is the y nullcline. The nullclines are very useful in the
mathematical analysis of two-dimensional or planar systems
(65), but we focus here only on the fact that equilibria lie
on both nullclines, so they can be found geometrically by
plotting the two curves and looking for the intersections; the
equilibria are the intersections of the nullclines.

Figure 3 shows the nullclines plotted in the xy plane (the
x nullcline is black and the y nullcline is green). This plane
is also the state space of the system (since it has the two
dependent variables on the axes), and is referred to as the
phase plane. From the figure, we see that there are three
nulllcline intersections. How can this be, if the system only
has two stable equilibria? It must be that one of the equilibria
is unstable. That is, although it is a true equilibrium (if the
initial values of x and y are equal to the x and y values of
the nullcline intersection, then neither x nor y changes over
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Figure 3 (A) Phase plane illustration of a bistable genetic toggle
switch. The x nullcline (black), y nullcline (green), separatrix (dashed),
equilibrium points (red circles and triangle), and two trajectories
(orange and violet) are shown. (B) The time courses of the y variable
for the two trajectories. One approaches the lower equilibrium while
the other approaches the upper equilibrium. Parameter values are 𝛼x =
𝛼y = 10, 𝛽 = 2, and 𝛾 = 2.

time), if a small perturbation is applied to the system it will
usually move away from the unstable equilibrium to one of
the stable equilibria. In Figure 3 the unstable equilibrium is
represented by an open triangle, while the two stable equilibria
are represented by closed circles.

For one of the stable equilibria (also called stable nodes)
the x repressor dominates, and y is present only at a small
concentration. For the other stable equilibrium the y repres-
sor dominates, and x is present with a small concentration.
This situation is similar to competitive exclusion in popu-
lation dynamics, where two species competing in the same
niche ultimately results in one species dominating the other
and driving it to extinction. But how are the winner and the
loser determined? What about the unstable equilibrium, does
it have any importance? It turns out that the answer to the
first question is related to the answer of the second. Since
the unstable equilibrium (in which both repressors coexist at
equal, but low, concentrations) is unstable, the real biological
system would never be found in this state. This is because real
systems have noise, and any amount of noise could drive the
system away from the unstable equilibrium. So in this respect,
the unstable equilibrium is unimportant. However, this equi-
librium also holds the key to the question of which repressor
ultimately dominates the other. The unstable equilibrium is a
special type of equilibrium called a saddle point. There is a
curve in the phase plane that connects to this point called the
stable manifold of the saddle point (dashed curve in Fig. 3A).
If the initial x and y values are such that the point lies on this
stable manifold, then the system will be attracted to the sad-
dle point, and not to one of the stable equilibria. In dynamical
systems lingo, if the phase point starts on the stable manifold,
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then it stays on the stable manifold and will be attracted to the
saddle point (and reach it as t → ∞). More importantly, the
stable manifold of the saddle point is also the separatrix that
divides the phase plane into two parts; all phase points (ini-
tial conditions) above the separatrix will evolve toward the
stable equilibrium in which y dominates. All those below the
separatrix evolve toward the stable equilibrium in which x
dominates. (In this case, the separatrix is the line y = x, but in
most other systems it is not linear.) The orange curve in Figure
3A is the path taken in the phase plane, called a trajectory, for
a point starting above the stable manifold. The violet curve is
a trajectory starting below the stable manifold. The portion of
the plane above the separatrix is called the basin of attraction
of the y-dominating equilibrium, while the portion below is
the basin of attraction of the x-dominating equilibrium. So, the
ultimate fate of this bistable system is determined by which
basin of attraction the phase point starts in, that is, the initial
values of x and y. Each of the stable steady states is locally
stable, but not globally stable; if perturbed away from a stable
steady state the system will return to that steady state, unless
the perturbation is large enough to send the system into the
basin of attraction of the other stable steady state.

The lower panel in Figure 3 shows the time courses of
the y variable for the two trajectories shown in the top panel.
Now time is represented explicitly (it is on the horizontal
axis), while in the phase plane diagram in the top panel time
is represented only implicitly through the orientation of the
trajectories (toward the stable equilibria). Also, note that the
y time course for the orange trajectory approaches 10, while
that for the violet trajectory approaches a value near 0, just as
in the phase plane diagram.

Bifurcations of Equilibria
The pitchfork bifurcation
The genetic toggle switch has three equilibria, reflecting the
three intersections of the nullclines. What happens if we
change the values of the parameters? Are there still three inter-
sections? To check, and to make things simpler, we assume
that the cooperativity of each repressor is the same, so 𝛽 = 𝛾 .
Then we can vary a single parameter, the cooperativity, and
see what happens to the nullclines. Figure 4 shows the null-
clines plotted for three different values of the cooperativity
𝛽. When 𝛽 = 2, the original value, there are three intersec-
tions. When 𝛽 = 1.5 both nullclines change, but there are still
three intersections. It is clear that the nullclines are now closer
together, as are the equilibria. When 𝛽 = 1 the nullclines have
crossed, so there is now a single intersection that occurs on
the line y = x. Since this equilibrium is stable, the system
has gone from being bistable to monostable. This is a big
change: when the system was bistable one repressor domi-
nated the other, while with the monostable system the two
repressors coexist at equal concentrations. This is no longer a
toggle switch, but more of a master diplomat. Such an extreme
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Figure 4 The x nullcine (black) and y nullcline (green) for the genetic
toggle switch with 𝛼x = 𝛼y = 10 and 𝛽 = 𝛾. (A) 𝛽 = 2, (B) 𝛽 = 1.5,
and (C) 𝛽 = 1. The dashed curve is the line y = x and equilibria are
indicated by red circles or a triangle.

change in the system dynamics, where the number of equilbria
changes, is called a stationary bifurcation.

The bifurcation in the genetic toggle switch was illustrated
using a few values of the parameter 𝛽, and the bifurcation
occurred for some value of 𝛽 between 1 and 1.5. To get a bet-
ter estimate of the bifurcation point we could keep changing 𝛽

and look for the value when the three equilibria first coalesce
into a single equilibrium. A better way is to use a continuation
method, in which a parameter (called the bifurcation param-
eter) is varied in a continuous manner. Then the bifurcations
can be found more precisely and with less work. Computer
software exists for this, called AUTO (11), and this is included
in the XPPAUT software package that is used to numerically
integrate differential equations (13). AUTO uses the technique
of numerical continuation to produce bifurcation diagrams,
which show the number of equilibria and their stability for a
range of values of the bifurcation parameter (60).

A bifurcation diagram for the genetic toggle switch is
shown in Figure 5A. Here, the bifurcation parameter is the
cooperativity 𝛽, ranging from 1 to 2. The vertical axis shows
the y value of the equilibrium. For values of 𝛽 near 1 there
is a single equilibrium, whose y value declines somewhat as
𝛽 increases. The curve is the y value for the set of equilibria.
For values of 𝛽 near 2 there are three equilibria. The lower
and upper equilibria are stable, and represented with solid
curves. The middle equilibrium is unstable, and represented
with a dashed curve. As 𝛽 is decreased from 2, the branches
of stable equilibria approach each other, just as the stable
equilibria approached each other in the phase plane diagram
of Figure 4. When 𝛽 = 1.316, the three equilibria coalesce.
This is the stationary bifurcation point. There are several types
of stationary bifurcations (65), but this one is perhaps the most
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appropriately named: it is called a pitchfork bifurcation. This
type of bifurcation was prominent in a study of coupling
among pancreatic β cells (73).

The saddle-node bifurcation
Pitchfork bifurcations only occur in symmetric systems, and
for this reason they are not very common. The genetic toggle
switch model (Eqs. 18 and 19) is symmetric with the param-
eter values that we used, since the two equations are identical
to each other when x and y are interchanged. This symmetry
is easily broken by making 𝛼x ≠ 𝛼y or 𝛽 ≠ 𝛾 (but we prefer
to keep the cooperativities equal and use 𝛽 as a bifurcation
parameter). In Figure 5B we make a slight symmetry-breaking
modification, using 𝛼x = 9 and 𝛼y = 10. The effect on the
bifurcation diagram is dramatic. At low values of 𝛽, there is
still a single stable equilibrium, but this branch never splits,
instead continuing for the full range of 𝛽 values. There is
now a separate pair of branches that are born at 𝛽 ≈ 1.45.
One branch is unstable and consists of saddle points. The
other is stable and consists of stable nodes. The bifurca-
tion is the point at which the saddle point branch and the
node branch intersect and it has many names. It is some-
times called a turning point, or a knee, and sometimes even
a nose! We will use the more mundane name of saddle-node
bifurcation.

Unlike the pitchfork bifurcation, the saddle-node bifurca-
tion requires no symmetry in the system, and for this reason
is ubiquitous in the dynamics of physiological models [for
example, (12, 26, 71)]. Because of the generality of this type
of bifurcation it is termed a generic bifurcation.

1.0 1.2 1.4 1.6 1.8 2.0

β

0

2

4

6

8

10

y

1.0 1.2 1.4 1.6 1.8 2.0

β

β

0

2

4

6

8

10

y

(A)

(B)

PF

SN

Figure 5 Bifurcation diagrams for the genetic toggle switch model
with 𝛽 = 𝛾, 𝛼y = 10, and (A) 𝛼x = 10, or (B) 𝛼x = 9. PF, pitchfork
bifurcation; SN, saddle-node bifurcation; solid curve, stable equilibria;
dashed curve, unstable equilibria.

Oscillatory Systems
Oscillations are ubiquitous in the neuroendocrine system.
One example is the pulsatile release of GnRH that is cru-
cial for secretion of the gonadotropins luteinizing hormone
and follicle-stimulating hormone by pituitary gonadotrophs
(1, 27, 83). Another example is the ultradian pattern of glu-
cocorticoid release, which is itself modulated with a circa-
dian component (39). Of course, the estrous and menstrual
cycles are also oscillations. Oscillations are also prevalent
at the single cell level, such as Ca2+ oscillations in pitu-
itary gonadotrophs and oscillations in the electrical activity
of anterior pituitary cells (35, 64). The detailed mechanisms
for these and other physiological oscillations vary consider-
ably, but there are some common concepts that underlie them
all. We consider a few of these here.

Slow or delayed negative feedback as a
rhythmogenic mechanism
Perhaps the most prevalent mechanism for oscillations is slow
or delayed negative feedback. To demonstrate that delayed
negative feedback can lead to sustained oscillations, we use
a mathematical model proposed for the semi-circadian secre-
tion of prolactin that occurs in rodents during the first half of
pregnancy (2). This twice-daily prolactin surge pattern can be
induced in ovariectomized rats by cervical stimulation (18),
and is important for the subsequent maternal behavior of the
rat (20). The model builds on the well-known “short-loop
feedback” of prolactin onto dopamine neurons of the arcuate
nucleus (the tuberoinfundibular dopamine neurons, or TIDA
neurons). Prolactin that is released by pituitary lactotrophs
binds to receptors on the TIDA neurons and activates the JAK-
STAT signaling pathway to increase the production and secre-
tion of dopamine (18). This activation is delayed, however,
since it requires the upregulation of tyrosine hydroxylase,
which is a slow process (42). Why is this negative feedback?
This is because the TIDA neurons release dopamine into the
median eminence, and this dopamine inhibits lactotrophs, the
very cells that activated the TIDA neurons. So from the point
of view of the lactotrotrophs, the TIDA neurons provide neg-
ative feedback that is delayed due to the delay in activation of
the TIDA neurons.

The mathematical model contains a differential equation
for the secretion of prolactin (given by the variable PRL) that
includes rapid inhibition by dopamine (given by the variable
DA):

dPRL
dt

=
Tp

1 + DA2
− qPRL. (22)

It also contains a DDE for DA, where the delay reflects
the slow stimulatory action of PRL:

dDA
dt

= Td

(
1 + kpPRL2

𝜏

)
− qDA. (23)

918 Volume 5, April 2015



Comprehensive Physiology Mathematical Neuroendocrinology

43210

Time (days)

0

10

20

P
R

L,
 D

A

43210
0

4

8

P
R

L,
 D

A

43210
0

4

8

P
R

L,
 D

A

PRL
DA

(A)

(B)

(C)

Figure 6 Sustained oscillations emerge in the prolactin model when
the time delay is sufficiently large. (A) 𝜏 = 0.5 h, (B) 𝜏 = 1.5 h, and (C)
𝜏 = 3 h. PRL and DA are dimensionless variables.

Notice that DA has an intrinsic drive of Td in this model
and that PRL adds to this, but with a time delay of 𝜏. Figure 6
shows how this system responds with different values of the
time delay (all other parameter values are as in Table 1). When
the time delay is too short, for example, 0.5 h, the system only
exhibits transient oscillations that die out as a stable equilib-
rium is reached (Fig. 6A). When the delay is increased to 1.5
h the oscillations are sustained, but the period is so short that
on average there are more than two PRL surges per day (Fig.
6B). With a time delay of 3 h, however, oscillations still per-
sist, but now have a period that is appropriate for the observed
semi-circadian prolactin rhythm (Fig. 6C). Importantly, the
oscillation period produced by the delayed negative feedback
(∼12 h) is much greater than the time delay (3 h). This is
typical for oscillations driven by delayed negative feedback,
and can make it hard to postulate a plausible delay mecha-
nism without the aid of a mathematical model. That is, the
period of the oscillation provides only a ballpark estimate of
the time delay in the negative feedback, making it difficult
to determine whether a proposed feedback loop can achieve
the observed oscillation period without putting it into a model
and trying it out.

Bifurcations involving oscillations
In the last example, there was a dramatic change in the dynam-
ics when the time delay was increased from 0.5 to 1.5 h; the
damped oscillations with 𝜏 = 0.5 h became sustained with
𝜏 = 1.5 h, and the stable equilibrium became unstable. These
changes indicate that a Hopf bifurcation occurred for some
critical value of 𝜏 between 0.5 and 1.5 h. This type of bifur-
cation is found over and over again in neuroendocrine models

(4,12,26,57,71,82), and is the primary means through which
sustained oscillations are born.

Another system exhibiting a Hopf bifurcation is the
Hodgkin-Huxley model (Eqs. 3-8). Although this does not
have an explicit time delay, oscillations are still possible since
the negative feedback (the inactivation of Na+ channels and
activation of K+ channels) is slow relative to the positive
feedback (activation of Na+ channels). In fact, the slow neg-
ative feedback is absolutely necessary for the production of
action potentials. Figure 7A and B shows the Hodgkin-Huxley
model with two pulses of applied current Iap. Initially there
is no applied current and the system is at a low-voltage equi-
librium. At time t = 100 ms a long pulse of depolarizing
current is applied that evokes an action potential followed by
a few small damped oscillations. These are transient effects
and the system returns to rest before the end of the current
pulse. Since the equilibrium was not destabilized (the voltage
returned to rest), and the oscillations are transient, there was
no Hopf bifurcation. Later, however, when Iap is stepped from
0 to 1.5 μA/cm2 a train of action potentials is produced, and
this tonic spiking continues as long as the current pulse is
maintained.

The transition from stationary to sustained periodic behav-
ior (also called a limit cycle) shown in Figure 7A and B is an
indication that a Hopf bifurcation is nearby. A reasonable
hypothesis is that it occurs for Iap somewhere between 1 and
1.5 μA/cm2. If this were the case, then as long as Iap is past this
bifurcation point, the solution would be periodic. To test this,
we modify the applied current protocol so that during the sec-
ond step Iap is first increased from 0 to 1 μA/cm2 and then
increased to 1.5 μA/cm2. If our hypothesis is correct, then the
increase of applied current to 1.5 μA/cm2 will cross the bifur-
cation point and start a limit cycle oscillation. However, we
see in Figure 7C and D that this does not happen. Instead, there
is a single action potential during the second pulse when Iap
is increased to 1 μA/cm2, and then only small wiggles when
it is increased further. What’s going on here?

To understand this complex behavior, we need to do more
than perform computer simulations; we need to do some anal-
ysis. That is, construct a bifurcation diagram. Figure 8A shows
a diagram made using the same technique as that used in Fig-
ure 5, except now in addition to a stationary branch (con-
sisting of equilibrium solutions, in black), there are periodic
branches (for limit cycles, in red). For periodic branches we
plot both the minimum and the maximum voltage of the oscil-
lation, so a single branch of periodic solutions will be repre-
sented with two curves in the diagram. When Iap = 0 there is a
stable equilibrium, and as the applied current is increased this
equilibrium remains stable at approximately the same volt-
age until Iap ≈ 1.8 μA/cm2, where a Hopf bifurcation occurs
and the equilibrium becomes unstable. But this is at odds
with our hypothesis that the bifurcation was between 1 and
1.5 μA/cm2. How can this be? It becomes clear when the
periodic branch is traced out, starting at the Hopf bifurcation
(HB1). The branch opens up backward and is unstable (dashed
red curves). This is called a subcritical Hopf bifurcation, in
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contrast to a supercritical Hopf bifurcation that would open
with stable periodic solutions. The unstable periodic branch
is complicated, opening backward, then going forward, and
then backward again until it reaches the point labeled SNP.
At this point the branch of unstable limit cycles turns to the
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Figure 8 (A) Bifurcation diagram highlighting the subcritical Hopf
bifurcation (HB1) and the saddle-node of periodics bifurcation (SNP) in
the Hodgkin-Huxley model. (B) Same diagram, but covering a larger
range of the parameter. Highlights the supercritical Hopf bifurcation
(HBs). Stationary branches are in black and periodic branches are in
red.

right and forms a branch of stable limit cycles. This turning
point is another bifurcation, called a saddle-node of periodics
bifurcation. It occurs at Iap ≈ 1.2 μA/cm2.

Now that we see the bifurcation structure of the system
we can understand what happened in Figure 7. When Iap = 0
the system is monostable with a single equilibrium. This is
the resting potential. At Iap = 1 μA/cm2 the system is still
monostable, so a pulse of current to this level may evoke tran-
sient spiking, but ultimately the system will return to rest. At
Iap = 1.5 μA/cm2 however, the system is bistable with a stable
equilibrium and a coexisting stable periodic solution. Which
solution wins out? In Figure 7A and B the rapid increase from
0 to 1.5 μA/cm2 moved the system far from its equilibrium
and into the basin of attraction of the limit cycle, so there was
a transition to tonic spiking. In contrast, in Figure 7C and D
the rapid increase in current was to a value, 1 μA/cm2, for
which the system was still monostable, so only a transient
spike was produced and the system then returned to equilib-
rium, as it must. The later increase of Iap from 1 to 1.5 μA/cm2

was not abrupt enough to move the system across the sepa-
ratrix and into the basin of attraction of the limit cycle, so
the system returned to equilibrium after a few transient sub-
threshold oscillations. Thus, bistability again comes into play,
and we see that the way in which the system transitions from
monostable to bistable, abruptly or gradually, determines the
final outcome.

Subcritical Hopf bifurcations are common in neuroen-
docrine models, including models of GnRH neuron activ-
ity at three different time scales: bursting electrical activ-
ity (12), ultradian oscillations (26), and GnRH control of
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ovulation (71). Another common dynamic structure is illus-
trated in Figure 8B. This shows the bifurcation diagram of the
Hodgkin-Huxley model over a much wider range of values
of the applied current than Figure 8A. Here, we see that the
periodic branch of solutions that first became stable at the
SNP extends to approximately 190 μA/cm2, at which point
it terminates at another Hopf bifurcation (HB2). This time
although the periodic branch again opens to the left at the
bifurcation, the periodic solutions are born stable. This is
an example of a supercritical Hopf bifurcation. Importantly,
there is no bistability inherent in this type of Hopf bifurca-
tion: to the left of the bifurcation the system is monostable
with periodic solutions, and to the right it is monostable with
equilibrium solutions. The branch of stable equilibria is at a
much higher voltage than the stationary branch for Iap near
0. In electrophysiology this is called depolarization block,
since the resting voltage is so high that the negative feedback
never turns off and thus there are no action potentials. This
is, however, a very generic behavior that occurs whenever an
oscillatory system is excited at a high level. Examples of this
are seen in a model of glycolytic oscillations that produce
insulin oscillations (4), a model for ultradian glucocorticoid
oscillations (82), and a model for ultradian GnRH oscilla-
tions (26).

Stochastic Models
The models discussed thus far are all deterministic; if the
differential equations are solved twice from the same set of
initial conditions the output will be exactly the same. With
stochastic models this is not the case. These models contain
one or more random elements, with the randomness provided
by pseudorandom number generator software that is present
on all computers. Everything in biology is stochastic when
examined on a fine scale. However, deterministic models often
capture the essence of the behavior, and are simpler to analyze
and solve on a computer. For this reason, deterministic mod-
els are usually the default choice. However, there are several
reasons that one might use a stochastic model. One is that
the system under consideration may have a low copy number.
For example, if one is modeling gene expression the number
of mRNA molecules may be small, so that fluctuations in the
protein number would be large relative to the mean (so the
coefficient of variation would be large). In this case, it would
be best to use a Markov model in which state transitions are
probabilistic. In contrast, if the number of mRNA molecules
is large then the process could be well described by keeping
track of the population mean, which would be a determin-
istic model. An excellent discussion of stochastic biological
models is given in (16).

Another reason for using a stochastic model is that the
system may contain either intrinsic noise or extrinsic noise
that may play an important role in the system dynamics. If the
system is a cell, the intrinsic noise could be due to fluctuations
in the open state of an ion channel if the channel has a low

copy number and has a large single-channel conductance. A
good example is a model of the stochastic fluctuations in the
number of open ATP-sensitive K+ channels in a model of the
pancreatic β cell, which provided an explanation for the dif-
ferent behaviors of single cells versus cells coupled together
in an islet (61). It could also be due to factors in the cell that
are not modeled explicitly, but introduce an important random
element into the system, as in (66). Extrinsic noise could be
due to synaptic input to a neuron, or random fluctuations in
the hormone content acting on a cell. One recent example is a
model of organized bursting electrical activity in response to
suckling in a model of a population of oxytocin neurons (55).
In this model, stochastic excitatory and inhibitory synaptic
input is an essential ingredient in the coordinated network
behavior.

To illustrate the effects that a small amount of noise can
have on the system dynamics we use the Hodgkin-Huxley
model again, but now add a term reflecting intrinsic noise to
the voltage equation:

Cm
dV
dt

= Iapp − INa − IK − Il − Inoise (24)

where the noise is introduced as a stochastic current. This is
expressed as:

Inoise = Imax
noisew∕

√
dt (25)

where Imax
noise is the maximum noise, and ω is a random pro-

cess drawn from a normal distribution. Figure 9 shows the
effect of adding a small amount of noise for two different
values of the constant applied current. First, we consider
Iapp = 1 μA∕cm2, a case in which the deterministic system
is monostable (Fig. 8). Without noise the system is at rest,
but when a small amount of noise is added (arrow) sparse
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Figure 9 Hodgkin-Huxley time courses with and without noise. (A)
Iapp = 1 μA/cm2. (B) Iapp = 1.5 μA/cm2.
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clusters or bursts of action potentials are produced. Notice
that the noise is quite small, as can be seen by the small fluc-
tuations in the resting membrane potential between bursts.
However, occasionally one of these noise-driven fluctuations
pushes the system past the spike threshold, initiating a burst of
action potentials. The apparently random timing of the bursts
reflects the random nature of the noise, and the presence of a
spike threshold amplifies the effect of the noise.

The lower panel of Figure 9 simulates the same thing,
but now with a larger constant applied current, Iapp =
1.5 μA∕cm2. Recall that with this amount of applied cur-
rent in the deterministic case the system is bistable between
a resting steady state and a spiking periodic solution (Fig. 8).
In the absence of noise, the resting membrane potential is
almost identical to that with the smaller applied current in the
top panel. However, when noise is added the system exhibits
frequent and large bursts of spikes. In fact, the spike density
is many times greater than it was when Iapp = 1 μA∕cm2, due
partly to the existence of a stable periodic solution. We see
that the 50% increase in constant applied current resulted in
essentially no change in the system output in the absence of
noise, but a much greater than 50% increase in the output (in
terms of spike density) when noise is present. In this case,
then, the presence of noise is absolutely vital for transduc-
ing a change in the input signal (the applied current) to an
output response. This is achieved because the noise is acting
on a system with two nonlinear features: a spike threshold
and bistability between a steady state and a periodic solution.
Thus, while system noise is typically considered to be a bad
thing, it may actually be a key component of the signal trans-
duction pathway. A more detailed discussion of the effects of
noise on neural systems can be found in (14).

Systems with Multiple Time Scales
Most neuroendocrine systems vary with multiple time scales.
For example, the production of an action potential in a GnRH
neuron takes less than a hundred milliseconds. The action
potentials are often clustered into bursts, with a period of 10
to 20 s. The bursts themselves are clustered into hourly pulses
of activity. The pulse frequency varies throughout the ovarian
cycle in females, providing the time scale of days. It can be
quite challenging to construct models for multiscale systems
such as this, so typically one is satisfied with a more limited
model that spans one or two time scales. For example, several
models have been developed for spiking and bursting activity
in GnRH neurons (5, 17, 29, 30). These models include equa-
tions for membrane potential and various ionic currents, as
well as for intracellular calcium. Other models only consider
the potential mechanisms for the synchronization of electrical
activity that results in hourly pulses of GnRH release, neglect-
ing the detailed biophysics that occurs on much shorter time
scales (26, 34). Finally, another set of models focus on the
variation of pulse frequency during the ovarian cycle and the
proestrus surge of activity (71, 76, 84). However, in spite of

the challenges, modelers have learned a few tricks over the
years to help cross time scales, and these approaches have
been utilized in the analysis of several neuroendocrine mod-
els (12,37,49,67,76). In this section, we illustrate one promi-
nent technique called fast/slow analysis that uses time scale
separation to its advantage.

Relaxation oscillations
Perhaps the best-studied example of a system with multiple
time scales is the van der Pol oscillator (74). This is a simple
planar or two-dimensional system of ODEs in which one
variable can be made much slower than the other, resulting
in what are called relaxation oscillations. Models following
this description are widely used in neuroscience and have
been used as a simple representation for calcium dynamics
in GnRH neurons (12) and as a simple representation of the
hourly pulses of GnRH (76). For illustration, we consider the
following planar system:

da
dt

= a − a3 − b (26)

db
dt

= 𝜀
(
a + p1b + p2

)
(27)

where 𝜀 is a parameter that controls the speed of the variable
b; b changes more slowly when 𝜀 is small.

The numerical solution of this “a-b” model is shown in
Figure 10. When 𝜀 = 1 the time scales of the two variables
are similar, so their time courses look similar (panel A). Since
the system is planar we can gain insights from viewing the
dynamics in the ab-phase plane (panel B). The a nullcline is
cubic, b = a − a3, while the b nullcline is linear, b = − (a+p2)

p1
.

There is a single equilibrium on the middle branch of the
cubic nullcline, and this is unstable. Surrounding this unsta-
ble equilibrium is a stable limit cycle with counterclockwise
orientation. We know from mathematical theory that this limit
cycle must surround the equilibrium and we can determine the
orientation without doing any computer simulation, but it is
generally not possible to say more about the shape and loca-
tion of the limit cycle in the phase plane without simulations.
Thus, even in two dimensions the dynamics of nonlinear sys-
tems are largely inscrutable without the aid of the computer.

We now make the dynamics of b 20 times slower by setting
𝜀 = 0.05. This has no effect on either nullcline, but greatly
increases the oscillation period, and also makes the shape of
the b time course significantly different from that of the a
time course (panel C). The a variable now quickly rises at the
onset of the active phase of an oscillation and quickly falls
at the end of the active phase, much like an action potential
(simple relaxation models have been used to describe action
potentials). This is referred to as a square wave. In contrast,
b slowly rises during the active phase and slowly falls during
the silent phase. This is referred to as a saw tooth pattern. The
square wave time course of the fast variable and the saw tooth
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Figure 10 (A and C) Time course of the two variables in the planar relaxation oscillator.
(B and D) Limit cycles in the phase plane, superimposed on the x nullcline (blue dashed) and
the y nullcline (blue solid). Left: 𝜀 = 1. Right: 𝜀 = 0.05.

time course of the slow variable are characteristic features of
a relaxation oscillation.

In the phase plane, the limit cycle trajectory rides along
the two outer branches of the cubic a nullcline (the fast null-
cline) during the active and silent phases and makes rapid
transitions between them during the upstroke and downstroke
of the active phase (panel D). In fact, one can determine the
location of the limit cycle in the phase plane without doing any
simulation at all: the trajectory moves along one branch of the
fast nullcline until a knee is reached, at which time it moves
almost horizontally to the other branch and the cycle contin-
ues. Thus, the separation of time scales allows us to view the
two-dimensional dynamics as a sequence of one-dimensional
motions (either along an outer branch or horizontally during
rapid transitions). Yet, in spite of their apparent simplicity,
relaxation oscillations posses some vary intricate dynamics
near the Hopf bifurcation between stable equilibrium (and no
limit cycle) and unstable equilibrium (with limit cycle), and
these dynamics have been the focus of mathematical studies
(10). So there is something to like for everyone.

Bursting electrical activity
Electrical bursting is ubiquitous in the nervous system, and
it plays many roles from multifrequency information encod-
ing to synaptic transmission (40). In the neuroendocrine sys-
tem, bursting occurs in GnRH neurons (47), TIDA neurons
(41), oxytocin neurons during suckling (31), and vasopressin

neurons (31). Bursting also occurs in stimulated
gonadotrophs, and in the spontaneous activity of many soma-
totrophs, lactotrophs, and corticotrophs (64). This is an inher-
ently multiscale phenomenon since spikes are produced on
one time scale and are clustered into bursts on a longer time
scale. The complex multiscale dynamics of the oscillations
have attracted mathematicians, who typically use fast/slow
analysis to understand models of bursting. Indeed, an entire
book has been written on models and analysis of bursting
oscillations (9). Models of bursting in the neuroendocrine
system are plentiful; models exist for bursting in GnRH neu-
rons (5, 17), oxytocin neurons (28, 55), vasopressin neurons
(7, 28, 44, 53), pituitary gonadotrophs (37), lactotrophs (67),
somatotrophs (72), and corticotrophs (62).

In this section we use the simple “s-model” developed
by Sherman (59) to illustrate how fast/slow analysis can be
applied to bursting oscillations. This model serves as a tem-
plate for the more complex models that have been developed
for the various cell types and in many cases the approach used
here can and has been applied to the more complex bursting
models. The s-model consists of three variables, two of which
are much faster than the third. The fast variables are the mem-
brane potential (V) and the activation of delayed-rectifier K+

channels (n). Activation of Ca2+ channels (m), which produce
the upstroke of the action potential in this model, is so fast
that it is approximated as being instantaneous. This is called a
quasi-equilibrium approximation, and it is a frequently used
device to reduce the dimensionality of the system. The slow
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Figure 11 (A) Bursting electrical activity produced by the s-model.
(B) The slow variable s has a saw tooth shape and for the same value
of s the voltage may be in an active phase (a) or a silent phase (s),
indicating bistability in the fast subsystem.

variable is the activation of a slowly activated K+ conduc-
tance (s), which we refer to as Ks channels. The full system
is described by the following ODEs:

dV
dt

= −
(
ICa + IK + IKs + IK(ATP) + Il

)
∕Cm (28)

dn
dt

=
n∞ (V) − n

𝜏n (V)
(29)

ds
dt

=
s∞ (V) − s

𝜏s
(30)

where ICa = gCam∞(V)(V − VCa), IK = gKn(V − VK),
IKs = gKss(V − VK), IK(ATP) = gK(ATP)(V − VK), and
Il = gl(V − Vl). This model is similar in form to the Hodgkin-
Huxley model, but with a set of different ionic currents,
including three types of K+ currents. The time constant 𝜏s in
the s ODE is large, which makes the s dynamics slow.

Figure 11 shows an example of bursting produced by the
s model. During the spiking or active phase the s variable
slowly rises, since the Ks channels are activated by the depo-
larization. The activated channels produce a hyperpolarizing
current, which accumulates to the point where the system
can no longer reach the spike threshold and the active phase
terminates. The membrane potential then abruptly drops to a
hyperpolarized level, leading to slow deactivation of the Ks
channels (slow decline in s). As the associated hyperpolar-
izing current slowly declines, the membrane potential inches
up toward the spike threshold. When this threshold is reached
the silent phase is over and a new active phase begins.

It is instructive to notice a few points. First, the fast sub-
system exhibits bistability, since the model cell can either
be silent or active for the same value of s (illustrated by the
dashed horizontal line in Figure 11B). Second, the s time

course has a saw tooth pattern, just as the slow variable b
in the relaxation oscillator (Fig. 10C). The V time course is
in some ways similar to the fast variable a in the relaxation
oscillator; during the silent phase it slowly rises. But it dif-
fers from the a time course in one important way; during the
active phase it exhibits spiking rather than a plateau. Never-
theless, the similarities between the relaxation oscillator and
the bursting oscillator suggest that one can apply a fast/slow
analysis to bursting and gain insights similar to those gained
with the relaxation oscillation (51).

The approach that has proven to be very effective in the
analysis of bursting begins by thinking of the slow variable
s as being so slow that it has no dynamics at all. That is,
s is initially thought of as a parameter (rather than a vari-
able) of the fast subsystem. Then, one investigates how the
dynamics of the fast subsystem change with changes in s.
An efficient way to do this is to create a bifurcation diagram,
with s treated as the bifurcation parameter. The diagram in
Figure 12A shows a z-shaped branch of equilibrium solu-
tions of the fast subsystem (black). For each s value on the
folded interval, s from approximately 0.3 to 1.3, there are
three coexisting equilibria. However, only the lowest equi-
librium is stable. The switchback points on the branch are a
pair of saddle-node bifurcations. There is also a branch of
stable periodic solutions (red) that emerges from a supercrit-
ical Hopf bifurcation. This branch terminates at a homoclinic
bifurcation, where the period of the oscillation approaches
infinity. While such a bifurcation, with infinite period, may
seem strange for a biological model, we will see shortly that it
does in fact explain a frequently observed behavior in bursting
recordings. A key feature of the bifurcation diagram is that
the stable stationary branch and the stable periodic branch
overlap for a large range of s values. Thus, the fast subsystem
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Figure 12 (A) Bifurcation diagram of the V-n fast subsystem for the s-
model. Stationary (black) and periodic (red) branches are shown. SN,
saddle-node; HB, Hopf; HM, homoclinic bifurcation. (B) Fast/slow anal-
ysis of s-model bursting. The s nullcline (blue) and burst trajectory are
superimposed onto the z curve.
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is bistable, as we deduced earlier. Hence, for any s value in the
bistable interval the model cell could either be silent or spik-
ing, depending on which basin of attraction it is in initially.

The next step in the fast/slow analysis is to add the s
nullcline to the bifurcation diagram. At the same time, one
thinks of the bifurcation diagram as a generalized V nullcline,
which we call the z curve. This is done so as to reintroduce the
s dynamics. That is, we now want to consider slow changes in
s as well as the faster changes in V and n, and we want to use
nullclines to predict these changes. We only show the s range
from 0 to 1 in Figure 12B, since this is the physical range of
values that this activation variable can take on.

The final step is to let s change in time according to its
differential equation (Eq. 30), so that it is a variable again
rather than a parameter. With the relaxation oscillator, the
trajectory moved along the cubic fast nullcline until knees
were reached, at which point it jumped to another branch (Fig.
10D). A similar thing happens with the bursting trajectory
(superimposed on the z curve in Figure 12B). The generalized
V nullcline is the equivalent of the fast nullcline, and during
the silent phase the trajectory moves along the stable bottom
branch. The motion is leftward because the trajectory is below
the s nullcline and the s derivative is negative in this region.
Thus, s declines during the silent phase, as we see in the s
time course shown in Figure 11B. Once the knee (saddle-node
bifurcation) is reached and the stable stationary branch ends,
the trajectory has nowhere to go but up to the stable periodic
(spiking) branch. This is the beginning of the active phase of
the burst. Now that the trajectory is on the other side of the
s nullcline it moves rightward as it spikes. Thus, s increases
during the active phase, as in Figure 11B. The rightward
spiking motion continues until the periodic branch ends at the
homoclinic bifurcation, at which point the trajectory moves
to the only remaining stable branch, which is now the bottom
stationary branch of the z curve. This terminates the active
phase and initiates a new silent phase.

What are the advantages to using this fast/slow analysis
for bursting? There are many. First, it explains from a dynamic
perspective many features of the burst. It tells us, for exam-
ple, that the spiking should slow down during the active phase,
since the fast subsystem is nearing an infinite-period homo-
clinic bifurcation. Indeed, this spike slowdown is evident in
the bursting shown in Figure 11A. The analysis also tells us
that the spikes should ride on a depolarized plateau, since the
minimum voltage curve of the periodic branch is far above the
bottom branch of the z curve. It tells us the range of parameter
values where bursting will occur. If the s nullcline intersects
the bottom branch of the z curve then the full system has a
stable hyperpolarized equilibrium. That is, the model cell is
at rest, with only transient spiking possible. If the s nullcline
intersects the periodic branch of the z curve, then in many
cases the system will spike continuously rather than burst.
To ensure that the system bursts, then, the s nullcline must
intersect the z curve between the lower saddle node and the
homoclinic bifurcation. Another, more fundamental, require-
ment for bursting is that there must be bistability between a
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Figure 13 (A) Pseudoplateau bursting produced by a model of the
pituitary lactotroph. Note the short duration and small spikes. (B) Stan-
dard fast/slow analysis of the pseudoplateau bursting. The periodic
branch (red) is unstable.

stationary branch of fast subsystem equilibria and a periodic
spiking branch [unless there is more than one slow variable
(3,52)]. Knowing these things makes it much easier for mod-
elers to design models for bursting cells, and so even if the
diagrams are not always shown in publications, they are often
used when building and calibrating the model.

Bursting in pituitary lactotrophs, somatotrophs, and
corticotrophs is fundamentally different from bursting in
gonadotrophs and most neurons. In these pituitary cells, the
bursts are very short and the spikes have very small ampli-
tude. An example with a lactotroph model (69) is shown in
Figure 13A. The fast/slow analysis that works so well for the
s model now runs into trouble. First of all, there is no stable
periodic branch in the fast subsystem z curve, only a branch
of unstable periodics (Fig. 13B). Equally as disturbing, the
bursting trajectory does not follow the z curve very closely,
raising the question of how useful the z curve is for this type of
bursting. In recent years, great progress has been made in the
development of analysis techniques for understanding this
so-called pseudoplateau bursting (46, 49, 69, 77, 80). These
techniques build on the fast/slow analysis discussed above,
but require more sophisticated mathematical machinery.

Conclusion
The central aim of this overview was to describe some basic
mathematical concepts used by modelers and some com-
mon dynamical motifs that are present in many neuroen-
docrine models. We have also pointed to publications where
some of these motifs appear, although some have surely been
missed. In the author’s opinion, the field of mathematical
neuroendocrinology is still in an early stage and there is great
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potential for future developments. Mathematics has clearly
had an impact on neuroendocrinology, both in the interpreta-
tion of data and in the design of experiments. Indeed, most
of the modeling papers cited in this article were designed
to answer specific biological questions. More surprisingly,
neuroendocrinology has had an impact on mathematics.
For example, pseudoplateau bursting in pituitary cells has
spawned a series of papers involving sophisticated mathe-
matical analysis (46, 48, 49, 63, 68-70, 77, 80), and has served
as motivation for extensions in the theory of mixed-mode
oscillations (78, 79). Mathematical modeling and neuroen-
docrinology have proven to be good for each other thus far.
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