
Homework 4 Introduction to Computational Finance Spring

2023

Solutions due Friday March 31, 2023
Answers to the homework problems and programming tasks should be submitted using

the class canvas page.
You should submit pdf files. Do not sent Word files or any other text processing

tool’s input file.
As with all homework assignments you are allowed and encouraged to consult the relevant

literature. You are also expected to cite all literature that is used to generate your
solutions and your solutions must make clear your understanding of the work
cited.

Programming Assignment

Codes

1. Implement the LU factorization of a strictly diagonally dominant tridiagonal matrix
and the associated routines to solve Ly = b and Ux = y using the resulting factors
to solve Tx = b. Recall, a tridiagonal matrix has 0 everywhere except on the main
diagonal, i.e., elements αi,i, and the first subdiagonal and superdiagonal, i.e., elements
αi+1,i and αi,i+1 respectively. T is said to be strictly diagonally dominant by rows
if the magnitude of the diagonal element in each row is greater than the sum of the
magnitude of the rest of elements in the same row. In this case, |αii| > |αi,i+1|+ |αi+1,i|.
The definition can also be applied to columns. For the spline code the tridiagonal
matrix using s′′i as parameters with boundary conditions specifying s′′0 and s′′n is strictly
diagonally dominant in both row and column senses.

2. Implement an interpolatory cubic spline algorithm that accepts data on a nonuniform
mesh. (Of course, this can then be used to specify a uniform mesh also.) You should
use the parameterization of s(x) in terms of the s′′i . Your code should support the
boundary conditions where the pair of values (s′′(x0), s

′′(xn)) = (c0, cn) are specified.

3. Implement a code that evaluates the spline s(x) produced by your code from the
previous part of the problem.

4. Implement the supporting code required to empirically validate the correct functioning
of your codes and the tasks below.

1

Tasks

Task 1

Empirically validate the correct functioning of your codes.

• You must design experiments and describe the outcomes that provide evidence that
your code is working. Evidence must also be given that you code works correctly for
each of the required boundary conditions.

• For the LU factorization, the simplest set of tests is to generate a tridiagonal strictly
diagonally dominant matrix, T ∈ Rn×n, select a vector x ∈ Rn to be the solution of the
system, and finally compute the corresponding righthand-side vector b = Tx since you
have selected T and x. This should be done for several systems of various dimensions
n. Compare the computed solution x̃ to the true solution x using the relative error
‖x̃ − x‖2/‖x‖2. (Make sure you generate an x that has ‖x‖2 ≥ 1.) Additionally,
given T you can compare the product of the computed L and U matrices to T , i.e.,
‖(LU)− T‖F/‖T‖F , where the matrix norm is the Frobenius norm:

‖A‖2F =
n∑

i=1

n∑
j=1

α2
ij

where the elements of A ∈ Rn×n are denoted αij.

• For the spline code, this should include running your code to approximate carefully
selected functions f(x) for which the results are known. For example, if f(x) is any
polynomial of degree d ≤ 3, the spline, s(x), should reproduce its value at any x.
Similarly, if f(x) is a piecewise cubic with intervals defined by the same mesh as s(x)
then s(x) should match f(x) for any x between x0 and xn.

• Once this has been done for specific functions where s(x) = f(x), move on to parame-
terized functions like the rational functions seen when discussing Runge’s phenomenon
and observe the convergence behavior as the mesh becomes finer. The rates are given
in the notes but they can be difficult to observe due to the high order. However, at
the very least some observations of convergence must be made by approximating

‖f(x)− s(x)‖∞ = max
a≤x≤b

|f(x)− s(x)|.

The approximation is done by evaluating the difference on a fine mesh of points, zj,
0 ≤ j ≤ m where m� n,

‖f(x)− s(x)‖∞ ≈ max
zj
|f(zj)− s(zj)| = E.

This is done for a series of s(x) produced by using an increasing number of intervals
to define the spline where the maximal interval size is going to 0. You should use a

2

family of uniform meshes and also get more sophisticated in your choice of meshes,
e.g., using nonuniform intervals with a size distribution chosen based on the shape of
f(x). In any case, covergence to roundoff should be observed.

• For all problems where f(x) is known use (s′′(x0), s
′′(xn)) = (c0, cn) = (f ′′(x0), f

′′(xn)),
i.e., you will have to determine f ′′(x).

Task 2

Suppose, in practice y(t) is available as data in the form of discrete values of (ti, yi), for
0 ≤ i ≤ n rather than as a continuous function. Specifically, consider the following data
(ti, yi):

ti 0.5 1.0 2.0 4.0 5.0 10.0 15.0 20.0
y(ti) 0.0552 0.06 0.0682 0.0801 0.0843 0.0931 0.0912 0.0857

Note the mesh in t is nonuniform.
Use a natural boundary condition interpolatory cubic spline, s(t), i.e., s′′(x0) = 0 and

s′′(xn) = 0 based on the data (xi, yi) to estimate y(t) for other x. Tabulate your estimates
from t1 = 0.5 to t40 with increment ∆t = 0.5.

Written Exercises

There are no written problems in this assignment.

3

