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Riemannian Optimization

Constrained Problem: Given f(x) :M→ R, solve

min
x∈M

f(x)

where M is a Riemannian manifold.

Goal
Adapt unconstrained Euclidean algorithms to function on M.
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Motivation

Matrix optimization with constraints

• Procustes: given A ∈ Rm×m, B ∈ Rn×n

min
Q
‖AQ−QB‖, s.t.Q ∈ Rm×n, QTQ = In

• AV = BV Λ

min trace(V TAV ), s.t.V ∈ Rn×k, V TV = Ik

• Given x′ = Ax+Bu, y = Cx find W,V ∈ Rn×k

x̂′ = Âx̂+ B̂u, ŷ = Ĉx̂

Â = WTAV, B̂ = WTB, Ĉ = CV

H(s) ≈ Ĥ(s)
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Motivation

Reimposing constraints on each step:

• unit length
tk = A−1xk−1, xk = tk/‖tk‖

• orthonormal basis

Xk = Qk−1 + ∆k−1

Xk → Qk, QR factorization, SVD, etc.

• orthogonal matrix

Sk = Sk−1 + ∆

Qk = Exp(Sk)
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Riemannian Manifolds
Roughly, a Riemannian manifold is a smooth set with a smoothly-varying
inner product on the tangent spaces.

M f

R

x

f ∈ C∞(x)?

ϕ(U)

Rd

ϕ f ◦ ϕ−1 ∈ C∞(ϕ(x))
Yes iff

ψ

U V

ψ(V)
ϕ(U ∩ V) ψ(U ∩ V)

ϕ ◦ ψ−1
C∞

Rdψ ◦ ϕ−1
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Noteworthy Manifolds and Applications

• Grassmann manifold

Gr(p, n) = Set of all p-dimensional subspaces of Rn d = np− p2

• Stiefel manifold

St(p, n) = {X ∈ Rn×p : XTX = Ip} d = np− p(p+ 1)

2

• Oblique manifold

Rn×p∗ /Sdiag+ ' {Y ∈ Rn×p∗ : diag(Y TY ) = Ip} = Sn−1 × · · · × Sn−1

d = (n− 1)p2
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Noteworthy Manifolds and Applications

• Set of fixed-rank PSD matrices S+(p, n). A quotient representation:

X ∼ Y ⇔ ∃Q ∈ Op : Y = XQ

• Flag manifold
Elements of the flag manifold can be viewed as a p-tuple of linear
subspaces (V1, . . . ,Vp) such that dim(Vi) = i and Vi ⊂ Vi+1.
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Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk + ∆xk = xk + αksk .

This iteration is implemented in numerous ways, e.g.:

• Steepest descent: xk+1 = xk − αk∇f(xk)

• Newton’s method: xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk)

• Trust region method: ∆xk is set by optimizing a local model.

Riemannian Manifolds Provide

• Riemannian concepts describing
directions and movement on the
manifold

• Riemannian analogues for gradient
and Hessian

xk xk + sk
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Tangent Vectors

• The concept of direction is provided by
tangent vectors.

• Intuitively, tangent vectors are tangent to
curves on the manifold.

• Tangent vectors are an intrinsic property
of a differentiable manifold.

Definition
The tangent space TxM is the vector space comprised of the tangent
vectors at x ∈M . The Riemannian metric is an inner product on each
tangent space.
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Tangent Vectors
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Example Tangent Spaces and Metrics

Stiefel manifold embedded in Rn×p

St(p, n) = {X ∈ Rn×p : XTX = Ip}

V ∈ TXSt(p, n) XTV + V TX = 0, i.e., XTV is skew symmetric

V = XA+X⊥B −A = AT , i.e., A is skew symmetric

Euclidean metric: ge(V, V ) = trV TV

Canonical metric: gc(V, V ) = trV T (I − 1

2
XXT )V =

1

2
trATA+ trBTB
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Riemannian gradient and Riemannian Hessian

Definition
The Riemannian gradient of f at x is the unique tangent vector in TxM
satisfying ∀η ∈ TxM

D f(x)[η] = 〈grad f(x), η〉

and grad f(x) is the direction of steepest ascent.

Definition
The Riemannian Hessian of f at x is a symmetric linear operator from
TxM to TxM defined as

Hess f(x) : TxM → TxM : η → ∇ηgrad f
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Retractions

Definition
A retraction is a mapping R from TM to M
satisfying the following:

• R is continuously differentiable

• Rx(0) = x

• DRx(0)[η] = η

• maps tangent vectors back to the manifold

• lifts objective function f from M to TxM ,
via the pullback

f̂x = f ◦Rx

• defines curves in a direction

• exponential map Exp(tη) defines “straight
lines” geodesic

η

x Rx(tη)

TxM
x

η

Rx(η)

M
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Generic Riemannian Optimization Algorithm

1. At iterate x ∈M , define f̂x = f ◦Rx.

2. Find η ∈ TxM which satisfies certain condition.

3. Choose new iterate x+ = Rx(η).

4. Goto step 1.

A suitable setting
This paradigm is sufficient for describing many optimization methods.

Tx0M
Tx1M

Tx2M

η2

x0

x3
η1

x1 = Rx0(η0)

η0 x2
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Categories of Riemannian optimization methods

Retraction-based: local information only
Line search-based: use local tangent vector and Rx(tη) to define line

• Steepest decent: geodesic in the direction −grad f(x)

• Newton

Local model-based: series of flat space problems

• Riemannian Trust region (RTR)

• Riemannian Adaptive Cubic Overestimation (RACO)

Retraction and transport-based: information from multiple
tangent spaces

• Conjugate gradient and accelerated iteration: multiple tangent
vectors

• Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces
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Basic principles

All/some elements required for optimizing a cost function (M, g):

• an efficient numerical representation for points x on M , for tangent
spaces TxM , and for the inner products gx(·, ·) on TxM ;

• choice of a retraction Rx : TxM →M ;

• formulas for f(x), grad f(x) and Hess f(x) (or its action);

• formulas for combining information from multiple tangent spaces.
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Parallel transport

Figure : Parallel transport

• Parallel transport one tangent vector along some curve Y (t).

• It is often along the geodesic γη(t) : R→M : t→ Expx(tηx).

• In general, geodesics and parallel translation require solving an
ordinary differential equation.
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Vector transport

Definition
We define a vector transport on a manifold M to be a smooth mapping

TM ⊕ TM → TM : (ηx, ξx) 7→ Tηx(ξx) ∈ TM

satisfying the following properties for all x ∈M .

• (Consistency) T0x
ξx = ξx for all ξx ∈ TxM ;

• (Linearity) Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx).

• There exists a retraction R that is associated with T and satisfies
the following illustrated relationship:
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Vector transport

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Figure : Vector transport.
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Retraction/Transport-based Riemannian Optimization

Benefits

• Increased generality does not compromise the important theory

• Can easily employ classical optimization techniques

• Less expensive than or similar to previous approaches

• May provide theory to explain behavior of algorithms in a particular
application – or closely related ones

Possible Problems

• May be inefficient compared to algorithms that exploit application
details
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Retraction-based Riemannian optimization

Equivalence of the pullback f̂x = f ◦Rx

Expx Rx
grad f(x) = grad f̂x(0) yes yes

Hess f(x) = Hess f̂x(0) yes no

Hess f(x) = Hess f̂x(0) at critical points yes yes

Sufficient Optimality Conditions

If grad f̂x(0) = 0 and Hess f̂x(0) > 0,
then grad f(x) = 0 and Hess f(x) > 0,

so that x is a local minimizer of f .
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Some History of Optimization On Manifolds (I)
Luenberger (1973), Introduction to linear and nonlinear programming.
Luenberger mentions the idea of performing line search along geodesics,
“which we would use if it were computationally feasible (which it
definitely is not)”. Rosen (1961) essentially anticipated this but was not
explicit in his Gradient Projection Algorithm.

Bertsekas (1976, 1982) A different Gradient Projection Algorithm and
Projected Newton Algorithm along with extensive convergence analysis
on convex and bounds contraints. Kelley (1999) extended this to BFGS
for bounds constraints.

Gabay (1982), Minimizing a differentiable function over a differential
manifold. Stepest descent along geodesics; Newton’s method along
geodesics; Quasi-Newton methods along geodesics. On Riemannian
submanifolds of Rn.

Smith (1993-94), Optimization techniques on Riemannian manifolds.
Levi-Civita connection ∇; Riemannian exponential; parallel translation.

Helmke and Moore (1994), Optimization techniques on Riemannian
manifolds. dynamical systems, flows on manifolds, SVD, balancing,
eigenvalues
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Some History of Optimization On Manifolds (II)

The “pragmatic era” begins:

Manton (2002), Optimization algorithms exploiting unitary constraints
“The present paper breaks with tradition by not moving along
geodesics”. The geodesic update Expxη is replaced by a projective
update π(x+ η), the projection of the point x+ η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on Riemannian
manifolds and a geometric model for the human spine. The exponential
update is relaxed to the general notion of retraction. The geodesic can
be replaced by any (smoothly prescribed) curve tangent to the search
direction.

Absil, Mahony, Sepulchre (2007) Nonlinear CG using retractions.
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Some History of Optimization On Manifolds (III)

Theory, efficiency, and library design improve dramatically:

Absil, Baker, Gallivan (2004-07), Theory and implementations of
Riemannian Trust Region method. Retraction-based approach. Matrix
manifold problems, software repository

http://www.math.fsu.edu/~cbaker/GenRTR

Anasazi Eigenproblem package in Trilinos Library at Sandia National
Laboratory

Dresigmeyer (2007), Nelder-Mead using geodesics, derivative-free
algorithm

Absil, Gallivan, Qi (2007-10), Basic theory and implementations of
Riemannian BFGS and Riemannian Adaptive Cubic Overestimation.
Parallel translation and Exponential map theory, Retraction and vector
transport empirical evidence.

http://www.math.fsu.edu/~cbaker/GenRTR
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Some History of Optimization On Manifolds (III)

Ring and With (2012), combination of differentiated retraction and
isometric vector transport for RBFGS

Absil, Gallivan, Huang (2009-2015), Complete theory of Riemannian
Quasi-Newton and related transport/retraction conditions, Riemannian
SR1 with trust-region, RBFGS on partly smooth problems, new library
(soon to be public).

Many people Application interests start to increase noticeably



R Intro BG Src Sep Shape Intro CR Riemannain Approach Exps 1 Exps 2 1NN Conc

Other Applications

• Large-scale Generalized Symmetric Eigenvalue Problem and SVD
(RTR, Absil, Baker, Gallivan 2004-08)

• Blind source separation on both Orthogonal group and Oblique
manifold (RTR, Absil and Gallivan 2006, Selvan et al. 2012)

• Low-rank approximate solution symmetric positive definite Lyapanov
AXM +MXA = C (RTR, Vandereycken and Vanderwalle 2009)

• Best low-rank approximation to a tensor (RTR, Ishteva, Absil, Van
Huffel, De Lathauwer 2010)

• rotation synchronization (RTR, Absil, Boumal, 2012)

• ICA (RTR, RQN, LM-RQN, Absil, Gallivan, Huang 2013)

• rotation synchronization (RTR, RQN, LM-RQN, Absil, Gallivan,
Huang 2013)

• phase retrieval (RQN, LM-RQN, Gallivan, Huang, Zhang 2014)

• graph similarity and community detection (Gallivan, Huang, Van
Dooren, Zhou 2015)
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Current FSU/UCL Methods

• Riemannian Steepest Descent

• Riemannian Trust Region: global quadratic convergence

• Riemannian Broyden Family : local superlinear convergence using
Riemannian Wolf conditions provably and others empirically (soon
to be proven)

• Riemannian Trust Region SR-1: local (d+ 1)−superlinear
convergence

• Riemannian SR-1 line search (more restrictive in use)

• For large problems
• Limited memory RTRSR1
• Limited memory RBFGS

• Riemannian CG (much more work to do on analysis)
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Current FSU/UCL Joint Efforts

Gallivan, Huang, Van Dooren, Zhou (current), rank-related directions,
rank-related retractions, and rigorous rank updating to handle matrix
rank constraints on union of parameterized manifolds

Absil, Gallivan, Huang, Yuan (current), manifolds plus inequality
constraints

Absil, Gallivan, Huang, You (current), further algorithms for shape
analysis and discretization effects for infinite dimensional manifolds
problems
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Source Separation Joint diagonalization on Orthogonal
Group
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Source Separation Joint diagonalization on Orthogonal
Group
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Blind Source Separation – Source Density Estimation

(a)

(b)

(k)

(j)

Figure : source, mixed, RBFGS, GEKD-ICA (Xue, Wang, Yang 09)



R Intro BG Src Sep Shape Intro CR Riemannain Approach Exps 1 Exps 2 1NN Conc

Source Separation – Source Density Estimation

(a)

(b)

(k)

(j)

Figure : source, mixed, RBFGS, GEKD-ICA
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Future Riemannian Work

• relaxing conditions on vector transport, retractions, Wolfe conditions
etc.

• constraints on union of parameterized manifolds

• manifold and inequality constraints

• discretization of infinite dimensional manifolds and the
convergence/accuracy of the approximate minimizers – specific to a
problem and extracting general conclusions

• Riemannian approaches to optimization problems arising out of
convex relaxations of nonconvex problems
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Elastic Shape Analysis

• Elastic shape analysis
invariants:

• Rescaling
• Translation
• Rotation
• Reparametrization

• Younes 1998, and Younes,
Michor, Shah, Mumford 2008
[11, 12]

• Square Root Velocity Function
framework used (Srivastava,
Klassen, Joshi, and Jermyn [8]).

• extensive analysis and
application of elastic shape

• much less work on
understanding efficient and
robust algorithms

Figure : All are the same shape.
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SRVF and Preshape Space
Preshape space, denoted ln, removes translation and rescaling for L2.

• A shape is represented by a function β : D→ R2, where D is [0, 1]
for open curves and unit circle S1 for closed curves.

• Square Root Velocity (SRV) function of the shape β is

q(t) =

{
β̇(t)√
‖β̇(t)‖2

if ‖β̇(t)‖2 6= 0;

0 if ‖β̇(t)‖2 = 0.

• Translation is removed by derivative.

• Rescaling is removed by forcing the length of the curve to be 1, i.e.,∫ 1

0
‖β̇(t)‖2dt =

∫ 1

0
‖q(t)‖22dt = 1.

• Preshape spaces (closure condition added for closed curves)

lon = {q : [0, 1]→ Rn|
∫ 1

0

‖q(t)‖22dt = 1}

lcn = {q : S1 → Rn|
∫
S1
‖q(t)‖22dt = 1,

∫
S1
q(t)‖q(t)‖2dt = 0}
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Shape Space

Shape space removes rotation and reparameterization. Inherits metric
from L2

SO(n) = {O ∈ Rn×n|OTO = In,det(O) = 1}
SO(n)× ln → ln : (O, q)→ Oq

Γ = {γ : D→ D|γ is a diffeomorphism.}

ln × Γ→ ln : (q, γ)→ (q ◦ γ)
√
γ̇

[q] = {(O, (q, γ))|O ∈ SO(n), γ ∈ Γ}

Ln = ln/SO(n)× Γ = {[q]|q ∈ ln}.

both are isometric group actions. Note: diffeomorphism is γ, γ−1 ∈ C∞
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Best Rotation and Reparameterization

An important and basic task is to find the best rotation O∗ and
reparameterization γ∗.

• Geodesic

• Mean

• Other statistical analysis
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Best Rotation and Reparameterization

(O∗, γ∗) = argmin
(O,γ)∈SO(n)×Γ

distln(q1, O
√
γ̇q2 ◦ γ).

[q1] [q2]

q1

q̃2

Updating O and γ

q2

Figure : Align representation of [q2] with q1.
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Cost Functions

• Minimization problem

min
O∈SO(n),γ∈Γ

distln(Oq1, (q2, γ)).

• Open curve

dlon(Oq1, (q2 ◦ γ)
√
γ̇) = cos−1 〈Oq1, (q2 ◦ γ)

√
γ̇〉L2

Ho(O, γ(t)) =

∫ 1

0

‖Oq1(t)− (q2 ◦ γ(t))
√
γ̇(t)‖22dt same extreme points

• Closed curve
• Closed form of preshape space distance is unknown.
• Preshape (Extrinsic) distance is used.

Hc(O, γ) =

∫
S1
‖Oq1(t)− (q2 ◦ γ(t))

√
γ̇(t)‖22dt
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Coordinate Relaxation

Optimize rotation and reparameterization alternately.

• Open curves
• Rotation: Procrustes problem solved using SVD
• Reparameterization: Dynamic programming (DP) with slope

constraints

• Closed curves
• Choose a point on the closed curve and break it into an open curve
• Apply coordinate relaxation method of open curves
• Compare results for a sufficiently large number of break points
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Two Shapes

 

 

β
1

β
2
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Coordinate Relaxation Method

One iteration, denoted CR1, is used in [8].

• Complexity is O(N3), where N is the number of points in the
curves.

• Note rotation and the correspondence of portions of the structures.

• Does iterating more improve results?

0 2 4 6
0

1

2

3

4

5

6

γ function

 

 

0 0.2 0.4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

CR1 matching curves, f:0.28553

 

 

CR1

Figure : Results given by CR1
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Representations and Implementation Difficulties
Representation Approach 1

• q1 and q2 are represented by
points.

• Evaluation of (q2, γ) over
iterations on q

• q(k+1)
2 = (q

(k)
2 , γ(k)) computed

on each iteration by evaluation

of interpolating function of q
(k)
2 .

• New interpolating function for

q
(k+1)
2 → Shape of q2 changes.

 

 

β
1

β
2

!
original curve 1−th iter., Hc:0.22734 2−th iter., Hc:0.17231 3−th iter., Hc:0.1646 4−th iter., Hc:0.1792
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Representations and Implementation Difficulties

• Representation Approach 2
• q1 is represented by points and q2 is represented by an fixed

interpolating curve.

• Difficulty: Lack of compuational associativity may not reduce the
cost function in practice

• Cost function evaluated in DP uses points (q2, γ
(k)), and evaluates

((q2, γ
(k)), γ̃(k+1)).

• Next q iterate is obtained using (q2, γ
(k) ◦ γ̃(k+1)) = (q2, γ

(k+1))
since fixed interpolation function for q2

• Cost function values for the two forms of applying γ(k+1) can differ

iteration (k) 1 2 3
Hc iterate form 0.390583 0.378312 0.390114

Hc in DP 0.285534 0.248016 0.241679

Table : Computed cost function values. Difference continues growing with k.
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Riemannian Approach

• Optimizing H is a Riemannian optimization problem on SO(n)× Γ.

• Many Riemannian optimization algorithms have been systematically
analyzed recently.

• Riemannian trust-region Newton method (RTR-Newton) [2]
• Riemannian Broyden family method including BFGS method and its

limited-memory version (RBroyden family, RBFGS, LRBFGS)
[7, 4, 6]

• Riemannian trust-region symmetric rank-one update method and its
limited-memory version (RTR-SR1, LRTR-SR1) [4, 5]

• Riemannian Newton method (RNewton) [1]

• See W. Huang’s thesis, Optimization algorithms on Riemannian
manifolds with applications, FSU, Math Dept. [4] for details on
analysis, applications and library design
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Cost Function of Closed Curves

• Γc is represented by its covering space, i.e., Γ̃× R where

Γ̃ = {γ : [0, 2π]→ [0, 2π]|γ is diffeomorphism}.

and the Γ̃× R group action on q is defined by

(q, (γ,m)) = (q(γ +m mod 2π))
√
γ̇, (γ,m) ∈ Γ̃× R.

• The cost function on the Riemannian manifold SO(n)× R× Γ̃ is

Hc(O,m, γ) =

∫ 2π

0

‖Oq1(t)− (q2(γ(t) +m mod 2π))
√
γ̇(t)‖22dt

where γ(0) = 0,
∫ 2π

0
γ̇(t)dt = 2π, γ̇ > 0.
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2-norm Sphere

• Optimization on the manifold Γ̃ directly has some difficulties, e.g.,
step limits due to limited domains of the exponential map
Expγ(v) = γ + v

• Γ̃ can be replaced with the 2-norm sphere

• Replace the term
√
γ̇(t) in Hc by a function `.

• ` > 0 and ` ∈ SL2
, where SL2

= {` ∈ C0|
∫ 2π

0
`2(t)dt = 2π}.

• A constrained optimization is obtained

min
O∈SO(n),m∈R,`∈SL2 ,`>0

∫ 2π

0

‖Oq1(t)−q2(

∫ t

0

`2(s)ds+m mod 2π)`(t)‖22dt.



R Intro BG Src Sep Shape Intro CR Riemannain Approach Exps 1 Exps 2 1NN Conc

4-norm Sphere

To avoid the constrained optimization, 4-norm sphere is used instead.

• 4-norm sphere

• Replace the term
√
γ̇(t) in Hc by a function `2.

• ` ∈ SL4
, where SL4

= {` ∈ C0|
∫ 2π

0
`4(t)dt = 2π}.

• A unconstrained optimization is obtained

min
O∈SO(n),m∈R,`∈SL4

L(O,m, `)

where

L(O,m, `) =

∫ 2π

0

‖Oq1(t)− q2(

∫ t

0

l4(s)ds+m mod 2π)`2(t)‖22dt.
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Barrier Function

• A barrier function can be added to avoid the slope of γ being zero or
going to ∞:

B(γ) =

∫ 2π

0

(γ̇(t)+
1

γ̇(t)
)
√

1 + γ̇2(t)dt =

∫ 2π

0

(`4(t)+
1

`4(t)
)
√

1 + `8(t)dt

which satisfies the symmetric property, i.e., B(γ) = B(γ−1).

• The user can control the approach to a slope of 0 or ∞ by adding
ωB(γ) to the cost function.
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Riemmanian Algorithm

• q1 is represented by points and q2 is represented by an interpolating
curve.

• Multiple values of m are used based on the variation of angle along
the curve.

• Procrustes and DP on a coarse grid give initial `0 and O0 for each
m.

• Improvements
• Keep the shape of q2 constant
• Avoid the problem with computational associativity of group action
• Computational complexity reduces
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Example
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Known γT : rotation and γ off
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Known γT : rotation and γ off significantly
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Data Sets

Flavia leaf dataset [10]

• 1907 images of leaves

• 32 species

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

MPEG-7 dataset [9]

• 1400 binary images

• 70 clusters

1 2 3 4 5 6 7
8

9 10
11 12

13
14

15 16 17 18
19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42

43
44

45 46 47 48 49 50
51 52 53 54 55

56

57
58 59 60 61

62
63 64 65 66 67 68 69

70

• Boundary curves: bwboundaries function in Matlab

• 100 points in R2 used for each boundary
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Representative of Riemannian Algorithm

• Five Riemannian methods are tested.

• 1000 pairs of shape in each data set are used.

• Based on the following table, LRBFGS is chosen to be the
representative one.

RBFGS LRBFGS RTR-SR1 LRTR-SR1 RSD

Flavia dataset
Lave 0.1727 0.1836 0.1772 0.1958 0.2079
tave 0.4113 0.1525 0.4585 0.2052 0.2218

MPEG-7 dataset
Lave 0.3639 0.3919 0.3735 0.4407 0.4798
tave 1.2823 0.4370 1.3352 0.5572 0.7537

Table : Comparison of Riemannian Methods for representative sets from the
Flavia and MPEG-7 datasets: average time per pair (tave) in seconds and
average cost function per pair (Lave).
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Comparisons of LRBFGS and CR1

Test Environment and Tests Performed

• Environment
• All codes written in C and compiled with gcc
• Performs on Florida State University HPC system using Quad-Core

2356 2.3 GHz Opterons [3]

• Experiments
• Compute all pairwise distances in the Flavia and MPEG-7

respectively
• For CR1 method, the results of the breaking points chosen to be

every 2, 4, 8, 16 point are reported.
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Cost Function Ratios
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• Percent of Flavia pairs reduced 99.2%, 99.4%, 99.6% and 99.8% for
N/i, i = 2, 4, 8, 16

• Percent of MPEG-7 pairs reduced 98.5%, 99.0%, 99.3% and 99.6%
for N/i, i = 2, 4, 8, 16



R Intro BG Src Sep Shape Intro CR Riemannain Approach Exps 1 Exps 2 1NN Conc

Computational Time Ratios
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• LRBFGS computation time adjusts based on the complexity of shape
based on number of m points.

• CR1 is essentially constant due to simple choice of number of break
points.

• LRBFGS generically faster even with same number of initial points.
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One Nearest Neighbor Results

• The quality of the extrinsic distance computations is assessed by the
one nearest neighbor (1NN) metric

• The 1NN metric, µ, computes the percentage of points whose
nearest neighbor are in the same cluster, i.e.,

µ =
1

n

n∑
i=1

C(i), C(i) =


1 if point i and its nearest neighbor

are in the same cluster;

0 otherwise.
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One Nearest Neighbor Results

LRBFGS
CR1

N/16 N/8 N/4 N/2

Flavia
ave. time (sec.) 0.37201 0.59379 1.1026 2.1203 4.2404

1NN of 32 species 87% 76% 79% 81% 85%

MPEG-7
ave. time (sec.) 0.74442 0.59272 1.1006 2.1164 4.2327

1NN of 70 clusters 98% 92% 95% 96% 97%

Table : The average computation time and 1NN of LRBFGS and CR1 with
break points chosen to be every 2, 4, 8 and 16 points.
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Conclusion and Future Shape Work

• Conclusion
• CR with multiple iterations unreliable; composition unreliable
• CR1 may not be able to find an accurate solution
• Riemannian approach is faster, better results, and more robust for

more complicated shapes than CR1

• Future work
• Intrinsic optimization for closed curves
• Analysis of effects of discretization on accuracy
• Test the influence of the accuracy of distance in other shape

analyses, e.g., geodesic, means
• Combination with more robust global reparameterization

optimization of Klassen et al.
• optimization on shapes in applications
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