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Abstract

This paper describes an algorithm for computing a normal form y? +
x® + ax + b for algebraic curves with genus 1. The corresponding isomor-
phism of function fields is also computed.

1 Introduction

The goal of the present paper is to compute a normal form for algebraic func-
tions and curves. In [11] and [9] the case g = 0 is treated. This paper treats
the case ¢ = 1. These normal forms can be applied to the problem of in-
tegrating algebraic functions. Integration in general is a very hard problem.
Because of this it is useful to have alternative methods for special cases. In
[2, 3] a fast method is given for computing hyper-elliptic integrals. From [7]
we know that an algebraic curve with genus g = 1 is birationally equivalent
(i.e. the corresponding function fields are isomorphic) with a curve of the form
y? + 23 4+ ax + b. An integration problem over a curve in this normal form
can be handled efficiently; see the computation times in [3], p. 214. This paper
considers two problems. The first is how to implement the method in [7], Ch.
4, Proposition 4.6 on a computer. This gives the curve in normal form and
an isomorphism of the function fields. The second problem is how to compute
the inverse of this isomorphism. Afterwards we give some examples where this
isomorphism can be applied to speed up the integration of algebraic functions
with genus 1.

Our algorithm for computing this isomorphism of function fields is imple-
mented in Maple 5.3 in the file IntBasis. The name of the procedure is genus1.
A help text is included. Note that the Maple share library contains an older
version of IntBasis which does not contain the procedure genusl. A more
recent version is available via WWW at
http://www-math.sci.kun.nl/math/compalg/IntBasis and by e-mail request.



The following can also be obtained from this WWW address: the papers [8, 9],
more examples, comments on the implementation and a short description of
different approaches that were implemented to test which was fastest.

2 Notations

e L is a field with characteristic 0. In the implementation L is the coeffi-
cients field of f, i.e. a field generated by the coefficients of f.

e f is an element of L[z, y] which is irreducible in L[z, y].
e 1 is the degree of f as a polynomial in y.

e (' is the projective algebraic curve given by f. We assume that the genus is
equal to 1. This can be checked on a computer using Puiseux expansions,
cf. section 3.1. A curve with genus 1 is called an elliptic curve.

e After applying a linear transformation we may assume that the point
(0,1,0) is not a point of C. This means that the degree of the curve is
equal to n. We need this assumption to be able to apply the method in

[9].

e L(C) is the function field of the curve. This field is identified with
L(z)[y]/(f).- Elements of this field are denoted as polynomials in y of
degree < n.

e To avoid confusion we will use the variables ¢ and y instead of x and y for
denoting the normal form. The normal form f; is equal to y3+z3 +azo+b
for certain a,b € L. The polynomial fy describes a curve Cy. The function
field L(Cy) is identified with L(zo)[yo]/(fo)- Elements of this field are
denoted as polynomials in yg of degree < 2.

e The isomorphism 0 : L(Cy) — L(C) is determined by computing 6(zg)
and 0(yo). To determine the inverse isomorphism we compute 6 *(z) and

0~ (y).

The usual definition of the Weierstrass normal form is y? = 42® + g2z + g3
instead of the form y? + 23 4+ az + b that we compute in this paper. We can
call both Weierstrass normal forms because conversion is easy.

3 Computing 6§ and f;.

The following construction is obtained from the proof of Proposition 4.6, Chap-
ter 4 in Hartshorne’s book.

e Compute a regular point p on the curve.

e Compute a function 8(z¢) € L(C) that has a pole of order 2 in p and no
other poles.



e Compute a function 0(yg) € L(C) that has a pole of order 3 in p and no
other poles. Note that 6(zg) and 6(yp) are computed before § and fj are
known.

e Now 6(xg) and 6(yo) generate the function field, i.e. L(0(x),0(yo)) =
L(C), and satisfy a relation fo = y2+a1yo+aszoyo+asrd+asri+aszotas.
That means 6(fo) = 6(yo)”+a16(yo) +a20(20)8 (yo) +a36(z0)* +as6 (20)* +
a50(zo) +ag = 0 in L(C). Now an isomorphism 0 : L(Cy) — L(C) is
determined because 6 is determined by the images of g and yq.

e After applying a linear transformation on 6(zg) and 6(yo) we may assume
that fo is of the form yg + z} + azy + b.

The next subsections describe how these steps can be implemented on a com-
puter.

3.1 Computing the genus

f € L[z,y] describes a curve C in the projective plane P?, although f allows
us to ”"see” only the affine part of C. To view the whole curve C' we must
make f homogeneous. Let F € L[z, y, z] be homogeneous of degree n such that
f = F,—1 (F with z = 1 substituted). Assume that the point (0,1,0) is not a
point on the curve. Let P! C P? be the line y = 0 (i.e. the set of points (z,0, 2)).
Then C can be projected to P! as follows (z,y,2) € C — (,0,2) € P.. P!
is identified with the set L|J{occ} by the map (z,0,2) — z/z € L{J{oo}. For
a € P! the line z = « is the set of points {(a,y,1)|ly € L} if a € L and
{(1,4,0)|y € L} if o = oo.

The Hurwitz formula (Corollary 2.4 in Hartshorne’s book) gives a relation
between the ramification indices ep, the genus ¢ of f and the genus of P! which
is 0. Then the following formula is obtained

1
g:—n+1+§;(ep—1).

Counsider the discriminant of F'

dF
d = Resy(F, d_y)

This is a homogeneous polynomial in z and z of degree n(n — 1). Let M(z,2)
be the multiplicity of the root (z,z) of d. The sum of m, ,) taken over all
(z,z) € P! is n(n —1). We compute M(y,z) as follows: m, 1) where o € L is
the multiplicity of the root a in the polynomial d,—; = Res,(f, %). me1,0) =
n(n — 1) — degree, (d,=1).

Let p1,-...,pn € L[[z/*]] (for some e € N) be the Puiseux expansions of f

at x = 0. Then
fF=1lw—-m)
i



where we assumed that f is monic as a polynomial in y. Let

Intp, = Z v(p; — pj)
J#i

where v : L[[z/¢]] — INU{oo} is the valuation map v(3 a;z%) = ming, 4oi.
Let ep, be the ramification index of p;, i.e. the smallest integer such that p; €
f[[:vl/ ¢ri]]. The multiplicity mz—¢ of the factor = in the discriminant of f is
> Int,,. The Puiseux expansions of f at z = « for o € P! can be computed
by applying a transformation. If o = oo we need to make f homogeneous to
obtain F, then substitute z = 1 and take the line z = 0. The m,—, for a € P!
that is obtained this way is the same as the m, defined before. The sum of m,,
taken over all € P! is n(n — 1) so the following formula is obtained

g=mn-1)(n-2)/2—- %Zma+%Z(ep—1).

Define

Similarly §,—, for & € P! can be defined using the Puiseux expansions at
z = a. The sum of the Int,, equals m;—¢. The ramification index e, of a
Puiseux expansion is equal to the ramification index ep of the corresponding
place. Every place P corresponds to precisely ep Puiseux expansions, hence
the sum of (e, — 1)/e, taken over these Puiseux expansions is ep — 1. So the
following formula holds

g=n-1)(n-2)/2- 3 bsa.

acP!

Now ;- # 0 if and only if there is a singularity on the line z = a. In
such a case the multiplicity of the root a of d is > 1. To find all singularities
of f we must check all roots of d in P! with multiplicity > 1. If two roots
a1, ag are algebraically conjugated over the coefficients field of f then my—q, =
Mz—q,. Hence we only need to compute the roots of d up to conjugation. The
same holds for the Puiseux expansions. Every Puiseux expansion p gives a

contribution —%(Intp — e‘; ;1) to the genus. If two Puiseux expansions pq,ps €

I[[(z — a)'/¢]] at z = « are algebraically conjugated over L(a)((x — c)) then
their contribution to the genus is the same. Hence in every conjugacy class only
1 Puiseux expansion needs to be computed.

The Puiseux expansions will later in the algorithm be used for computing
two integral basis’, cf. [8] and section 3.1 in [9]. Like for the genus computation
it is sufficient to have the Puiseux expansions up to conjugation.

If P is a point on the curve define dp as the sum of the %(Intp — e’;;l) taken
over the Puiseux expansions p that correspond to the point P. Then we can
rewrite the formula as g = (n —1)(n —2)/2 — 3" §p where the sum is taken over
all points P of C in P?. Without proof we mention that this dp corresponds to
the dp in exercise 1.8, Chapter IV of Hartshorne’s book.




If g > 1 the algorithm in section 3.3 will fail. It will try to determine 8(zg) by
solving a set of linear equations. However, if ¢ > 1 a function 6(zy) with only 1
pole of multiplicity 2 does not exist. Hence the computed set of linear equations
will have no solutions. If g = 0 then we can compute a parametrization instead
of a Weierstrass normal form. So if g # 1 there is no need to continue the
computation and the implementation will exit returning a warning message.

3.2 Computing a regular point on the curve

Finding a point defined over L on the curve is an easy problem. Intersect the
curve with a randomly chosen line and compute an intersection point. However,
finding a good point is a difficult problem. Here “good” means that the point
is defined over a small algebraic extension over L. The only algebraic extension
over L that appears in the output of the algorithm is the extension that is used
to find a regular point on the curve.

For the case g = 0 there is a way to find a good point cf. [10]. For the
case ¢ = 1 I do not know such a method, so currently only a heuristic for
finding a regular point is implemented. The implementation looks for points
on lines £ = « through singularities and also looks on the line at infinity. If
no regular point in an algebraic extension of degree < n was found then the
implementation looks on the lines £ = 0, £ = 1 etc. Then it is likely that an
algebraic extension of degree n will be used which slows down the algorithm.

After a regular point is computed we compute a function P; with a pole of
multiplicity 1 in this point. If the point is a finite point z = «, y = 8 then the
function

fz=a

(y =Bz —a)

is such a function. Here f,_, stands for f with a substituted for z. Note that
y — (3 divides fy—o in L]y]. P; has no other poles in the finite part of the plane.
If we start with a regular point in infinity we compute a function P; such that
P; has a pole of order 1 in that point and no other poles at infinity.

P =

3.3 Computing 6(z,) and 6(y)

This step could be done by an L(D) computation. Methods for this are known
including implementations cf. [1, 6]. Our implementation uses the method de-
scribed in [9] which is based on integral basis computation [8]. We compute P;
as in the previous section. Then take P = —P? + rP; as the starting function
for obtaining 6(z¢). We use the minus sign to obtain ag = 1 in the next sub-
section. The term rP; where r is a variable is needed because the residue of
the function 6(zg) is not yet known. Now construct a function @ with unde-
termined coefficients in the same way as in [9]. Then find linear equations for
these undetermined coefficients and for the variable r. Solving these equations
gives 0(zg) = P+ Q.

In the same way we can compute (1) using the starting function P +rP;.
However, the starting function P;6(z()+rP; gives the same result and is usually
more efficient.



Is it efficient to use an integral basis computation for determining 6(z¢) and
0(y0)? Lemma 1 shows that the integral basis can be obtained from 6(zy) and
0(yp) if these two functions have their pole in a point at infinity. Assuming
that this step is computationally cheap we conclude that computing an integral
basis is not significantly more difficult than computing 6(zy) and 6(yg). So we
can not lose much efficiency by computing an integral basis.

Lemma 1 Let f € L[x,y] describe an irreducible algebraic curve C. Let p be a
place at infinity (i.e. a place where x has a pole). Let O be the integral closure

of L[z] in L(C).

o Suppose the genus g = 0 and v is an element of the L(C) with only one
pole on the curve, of multiplicity 1, in the place p. Then O = Lz, v].

o Suppose g = 1 and suppose vo and vs have only one pole on the curve,
with multiplicity 2 resp. 3, in the place p. Then O = L[z, vq,vs].

Proof: Let p1,p2,...,p, be the infinite places # p. O is the set of functions
in L(C) with no poles in the finite places (i.e. only poles in py,...,p, and p).
Let R C O be the set of functions with no poles except in p. In the case
g = 0 we have R = L[v] and in the case ¢ = 1 we have R = L[vy,v3]. This
equality for ¢ = 1 is proven as follows (the case ¢ = 0 is proven in the same
way). Since vg,v3 € R we have R D L[vg,v3]. Take an element e € R. Because
Lvg,v3] contains elements vy, v3, v2, vovs, v3, v3vs, . .. with pole orders 2,3, 4, . ..
we conclude that we can subtract an element €' € f[vg,vg] from e such that
e — €' has pole order < 2 in p. Since g =1 and e — ¢’ has no other poles e — €'
must be a constant and hence in L. So e € R and R = L[vg, v3).

The functions v (in the case ¢ = 0) v, and vz (in the case ¢ = 1) and =
have their poles at infinity. So they are elements of O and hence R[z] C O.
To prove the lemma we need to show O C R[z]. Choose a € O. We want to
construct an element b € R and a positive integer d such that bz¢ has the same
pole orders as a in the places py,...,p,. We choose d such that a/z¢ has no
poles at p1,...,p.. Now we choose b € L(C) with the following requirements:

e b has only one pole, at the place p (with no restrictions on the pole order
of b at p).

e b has roots with precisely the same multiplicities as a/z¢ in the places
Pi,---,pr- (b may have roots in other places as well, only in this finite
number of places p1,...,p, the multiplicity of b is specified).

Using the Riemann-Roch theorem it is not difficult to prove that such a b exists.
Now b € R because p is the only pole of b.

Using this bz? we can reduce the pole orders of a at pi,...,pr. For any
constant ¢ the pole orders of a — cbz? at p1,...,p, are < the pole orders of a.
For a suitable ¢ we have inequality for at least one p;. Continuing this process
we can subtract an element in cbz® + cobyz9? + c3b32% + ... € R[z] from a such
that there are no poles left in pq,...,p,. Then the function that remains is an
element of R so we can conclude a € R[z].

a



3.4 Computing ay,...,ag

We know from Hartshorne’s book that 6(xg) and 6(yy) generate the function
field and satisfy a polynomial relation 8(yo)?+a160(yo)+a20(z0)8 (o) +a36(wo)>+
a40(zo)? + as0(xg) + ag = 0. From this relation linear equations in a; can be
obtained. Solving these equations gives the polynomial relation fo = z2+a1yo+
asToyo + asTi + asxd + asTo + ag between O(zp) and O(yp). Then we get an
isomorphism

0 : L(zo)[yol/(fo) = L(C).

The starting functions for computing 6(xy) and €(yy) were chosen in such
a way that ag = 1. The computation of linear equations for a; can be speeded
up by first substituting values for z (avoiding roots of denominators of 6(xg)
and 6(yo)) before the expression 0(yo)? + a10(yo) + a20(z0)0(yo) + asb(zo)> +
a40(zo)? + a50(zo) + ag is computed.

We can change 6(zy) and 6(yo) by linear transformations to obtain a new
fo and 0 in such a way that fy is of the form y3 + z3 + azo + b cf. [7]. We skip
the last normalization step y3 + (7o — 1)(zo — ) in [7] because that would
introduce another (one extension over the coefficients field L has been made to
find a point on the curve) algebraic extension in our algorithm.

4 Computing the inverse isomorphism.

4.1 Computing the minimum polynomial of = over L(6(x)).

We start with a few facts about characteristic polynomials. The characteristic
polynomial of an element a € Lo over a finite field extension Ly C Lg is defined
as the characteristic polynomial of the L; linear map Ly — Lo defined by the
multiplication by a. Suppose Lo = L1[y]/(f) where f is a monic polynomial in
y. Then the characteristic polynomial of a is 7 = Resy(t — a, f) (cf. [4],p. 162)
where t is used as a variable for r. We have
r = mil2li(a)]

where m is the minimum polynomial of a over L;. So m can be found by a
resultant computation and a square free factorization.

Because [L(z,y) : L(0(x0))] = 2 the number e = [L(z,y) : L(8(xo),z)] is 1
or 2. Now the characteristic polynomial r of (o) over L(x) can be computed as
described (here L; = L(z) and Lo = L(z,y)). Then the minimum polynomial
m of @(zg) over L(z) is found by a square free factorization of r. It is of degree
d=n/e (n = degree,(f) = [L(z,y) : L(z)]). Write m in the form

ag

m =44 Jd=pd—1 4 9040

ag ag
for polynomials a; € L[z] with ag of minimal degree. Note that m® = r.

After multiplying with the denominator a; we obtain the algebraic de-
pendence a40(xo)? + ag_10(z0)* ™t + ... + agh(zo)® between 0(zo) and z in
L(x,0(x0)). Because the expression 6(z) contains the variable z we will write



this expression as p = agzd + ag_128 ' + ... 4+ apzl. Then we can view p as

a polynomial in z. It is the minimum polynomial of x over L(zq). Here L(zg)
is identified with L(0(zo)). The degree of u in x is 2/e because [L(6(zo),z) :
L(0(z0))] = [L(0(x0),0(y0)) : L(6(x0)))/[L(0(z0),0(y0)) : L(O(z0),z)] = 2/e
(note that L(6(zo),6(yvo)) = L(z,y)). So the degrees of a; are < 2/e. Since
r = m® we conclude that r is of the form
r:t"+b”—_1t”‘1+...+b—°t°
bn bn

for polynomials b; € L[z] of degree < 2.

Using the fact that r has this form we can speed up the resultant compu-
tation 7 = Resy(t — 6(zo), f). Before this resultant is computed we substitute
a generic (values for which the denominator of 8(z¢) € L(z)[y]/(f) vanishes
must be avoided) number i € L for z in 6(x¢) and f. This way r,—; (r with
xz = 1 substituted) is obtained. After 5 of these resultant computations the
coefficients of the polynomials b; can be computed by solving linear equations.
These equations must give a unique solution for r. To see this take two different
rational functions k1 and ko, of which the degrees of the numerator and denom-
inator are < 2. If k; and ks take the same value for 5 different generic (i.e. not
a pole of k1 and ko) values for = then k; — ko has 5 roots. Then k; — kg = 0
because the numerator of k; — ko is of degree < 4.

4.2 Computing 6 1(z)

First determine the minimum polynomial (called m in the previous section) of
6(zo) over L(z). After multiplying out the denominator the minimum polyno-
mial of z over L(zg) (called p in the previous subsection) is obtained. If the
degree in = of p is 1 we can find # '(z) in L(zo) as a root of u. Now assume
the degree is 2. Then u has 2 roots in L(Cy) = L(xo)[yo]/(fo).- One of these
is 671(z). Compute both roots. Then we can check which one is §~1(z) by
applying 6 (this is done by substituting 6(x¢) for zy and 6(yo) for yp). This
check is speeded up by first substituting a value in L for z.

The roots of y in L(Cp) are computed as follows. We can write these roots
as cg + c1yo and ¢y — c1yo with cg,¢; € L(zg). If p = dox® + dyz + do then
co = —d1/(2ds). Now c1yo and —c1yg are 100ts of fiy—g i, = doz? — d3/(4ds) +
do. In L(zo)[yo]/(fo) vé equals —(x§ + azg + b) so ¢; and —c; are roots of
z? + (d?/(4d3) — do/d2)/(z3 + axg + b). Now ¢; € L(mp) is found as a root of
this polynomial.

In a similar way 0 '(y) can be computed using the minimum polynomial of
y over L(6(zo)).

5 A few examples

5.1 A sample computation

Cousider the following example:

f =yt 4+ zy® — 2® + zy.



(0,1,0) is not a point on the curve, so no linear transformation is needed. First
find the singularities by factorizing the discriminant of f

Res, (f, %) = —z*(272* + 44627 + 27).
Only at a € {0,00} is my—q > 1 (in both cases they are 4). Compute Puiseux
expansions at £ = 0: p; =  + ..., po = —x'/3 + ..., p3 is a conjugate of py
over Q((z)) and p4 the other conjugate. The dots stand for terms with higher
exponents in z. The contribution to the genus for p; is $(1/3 + 1/3 + 1/3),
the contribution of each py,p3,ps is $(1/3+1/3+1/3 — (3 —1)/3) so the total
contribution §,—¢ = 1.

Compute Puiseux expansions at z = oo. First make f homogeneous: F =
y* + e +y2lx — 2222, Fpey = y* 4+ y° + y2?2 — 22. The Puiseux expansions at
z=0are: py = —14..., po = 22/3 4 ..., p3 is a conjugate of py over Q((2))
and py is the other conjugate. The contribution to the genus is 1. So the genus
is 3(3-1)/2-1-1=1.

Now compute the integral closure of Q[z] in the function field. A basis as a
Q[z] module is [1,y, 4%, y3/x]. The integral closure of Q[[2]] in Q((2))[y]/(Fyz=1)
is given by the Q[[2]] basis [1,vy, %, y3/z].

Find a point on the curve: during the Puiseux computation we got lucky
because the Puiseux expansions at z = oo show that (—1,1,0) is a regular
point. The function P; = 33/z in L(C) = Q(2)[y]/(Fs=1) = Q(z)[y]/(f) has
a pole in this point. In Q(z)[y]/(f) syntax this is P, = y®/2?. The starting
function P = —P? —rP; = —2® + 222y — 2zy? + rzy® +y° + 2293) /23 has only
1 pole at infinity, of multiplicity 2. Now we must add a function @ to P to
eliminate the poles of P in the finite part of the projective plane. Given the
bounds for the numerator and denominator in section 3.1 in [9] we can write

1 3.5 o
Q=53 S asets
=0 i=0

Now P + @ must be an element of Q[z]1 + Q[z]y + Q[z]y? + Q[z]y®/z. Elimi-
nate denominators: then z3(P + Q) must be zero modulo {z3, 3y, 2342, z2y3}.
Compute the remainder of z3(P + Q) by reducing it with Q[z] multiples of
the elements of {23, z3y, z3y2, 22¢®}. Equate the coefficients of this remainder
(viewed as a polynomial in z and y) to zero. This results in the following set of
equations {CI,OO = 0, a1 — O, a0 — O, apl — O, a1 = O, ap2 = O, a9 — O, r—+ a3 —
0,a12 —2=0,14ap3 =0,a21 +2 = 0,a3p = 0}. @ must have no poles at infin-
ity, so @ (first make ) homogeneous using the variable z and then substitute
z = 1) must be an element of Q[[2]][1,y,y?,4?/z]. This gives additional linear

equations in the a;; and r. Solving the equations gives P+ Q = —(z — y3) /,
so 0(zg) = —(z — y3)/z. In the same way compute 0(yo) = —z + 2y + v°.
Now write

fo= y% + 3720’) + a1yo + asxoyo + az + asxo + Gsﬂig-

Find linear equations for a; by substituting 8(zg) for zy and 6(yp) for yo. To
avoid getting large expressions we substitute an integer for . This integer can



not be 0 because z appears in the denominator of 8(zg), so we substitute 1 for
z. Now reduce the result modulo f,—; to obtain (a; — 4as + a4 + 10 — 6a2)y3 +
(2a9 + 2a5 — 6)y? + (2a1 + 6 — 6ag — 2a5)y + 2as5 + a3 — a4 + dag — a; — 4.
All coefficients (as a polynomial in y) should be zero. The resulting linear
equations do not yet determine all a;, so we compute more linear equations by
substituting the integer 2 for = instead of 1. Including these extra equations
we can find fo = y¢ + 23 + 2z + 3z3. Now substitute zo — 1 for z¢ in fo and
replace 0(zg) by 6(z¢) + 1 to simplify fy. Then we obtain

3
f0:$3_$0+y87 9(‘7’.0):%’ 0(y0)2_$+2y+y3'

Now we must compute the minimum polynomial of () over Q(z). For this
we need the resultant 7 = Resy(t — 6(zo), f). In larger examples this resultant
computation can often be very time consuming. Computing r,—; where i is a
small integer (take integers i = 0,1,... skipping those values which are a root
of the denominator of 6(zg)) is much more efficient because then we need 1
variable less in the resultant computation. Write and ansatz r’ for r

o=t i apix’ + a1 x4 ag iz’ /i
= a9,47% + @142 + ap47?

Every ry—; gives the equation (r')y—; = 7z=;. After multiplying with the
denominator a0,4x0 +a1,4:1:1 +a2,4x2 we obtain linear equations in the a;;.
As explained in section 4.1 these linear equations for 5 different values of
i suffice to determine r. In this example r = —z? + 3tz? — 3t%z? +
322 + ¢t 4+ 3t + 3t3 + t*. So the minimum polynomial of z over Q(zy) is
—z% +3392? — 32322 + 232 + 10 + 32% + 313 + x3. Make this polynomial monic:
22 + 2o(1 + 3z + 373 + 28) /(=1 + 329 — 322 + x3). The roots of this poly-
nomial in Q(zg, o) are of the form yoc and —ygc where ¢ € Q(z) is a root of
22 +x0(1+3z0+322+23) /(= 14370 — 373+ 33) (—x3+70)). Factorization of this
polynomial over @(zo)[z] (in fact we can take € instead of @ because there can
not appear any algebraic extensions over () in the result that do not already ap-
pear in {f, fo,0(z0),0(y0)}) gives the solutions ¢ = +/— (g +1)/(z2 —2z9+1).
Now 0~ Y(z) = +/ — yo(zo + 1)/(x3 — 2x9 + 1). Which of these two values is
correct can be decided by checking if §(0!(z)) — z = 0. However, before nor-
malizing (i.e. writing this as a polynomial in y of degree < 4) this expression we
first substitute a generic integer for z to speed up the computation. This zero
test fails for —yo(zo+1)/(zd —2x0+1) hence 671 (z) = yo(zo+1)/(z2 —2z¢+1).
In the same way 0~'(y) = —yo/(—1 + o) can be computed.

5.2 An application to the integration of algebraic functions

This section gives a few examples where the isomorphism can be used to in-
tegrate algebraic functions of genus 1. Examples which require logarithmic
extensions to find the integral are chosen because these are the hardest ones.
As a first example take f = y* — 23 + 22 and L = Q. The function field is
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Q(z)[y]/(f). In this function field y stands for (z3 — 22)'/%. Now we want to
integrate the algebraic function

_ (z - 2)y(y* +yz +2?)
22(x —1)(z2 —z+1)

The computation int (a,x) does not terminate in Maple 5.3 due to a bug. Marc
Rybowicz did a bug-fix for this problem. Using this fix Maple can integrate a.
Maple uses the Risch-Trager algorithm for this. The computation took 755
seconds.

We now try to do the same integration using the isomorphism § and §—!.
The computation of this isomorphism costs 4.3 seconds. Here computing the
isomorphism means computing fo, 8(x), 8(yo0), 0~ (z) and §~1(y). The result
in this example is fo = 3 -+ 23 4 0, 0(z0) = 4/ ((z — 1)), 0(yo) = y/(z — 1),
6~1(z) = (22 +1)/23 and 671 (y) = yo/z2. Now we can apply @ by substituting
6(z) for z and §(y) for y. In the same way we can apply ! using substitution.
Note that for complicated curves (not in this example) applying # and 6! often
costs much more time than computing the isomorphism # and §~!. The reason
is that yo can appear in the denominator after this substitution 6(z) for = and
0(y) for y. Then we must do a normalization to represent this as an element of
L(z0)[yo]/(fo)- This requires divisions in this function field. Tt turns out that in
general these divisions are very costly operations. Our algorithm for computing
the isomorphism avoids such divisions but they are still used for applying the
isomorphism. We see from

do—(z)
d:Eo

/a dz — e(/ 0~ (a)d6~\(z)) = 0(/ 6~ (a)

d.’E()

that ! must be multiplied with the derivative w.r.t. zo of 8 () before the
integration algorithm is called. So we compute
o' (z) 5 — ToYo + LYo — Toyo — To + Yo

) i O
a0 (a) dxg (z8 + 2x§ + 223 + 1)z

The integration int (a0,x0) takes 22.5 seconds. Using Bertrand’s implemen-
tation this integration takes only 2.3 seconds. Applying 6 and 6! took 1.1
seconds in this example and checking the result took 0.5 seconds. So the total
computation time was 8.2 seconds which is almost 100 times faster than the
Risch-Trager implementation in Maple.

A reason that it works so well in this example is that # and #~! were
not very complicated. In other examples the algorithm often introduces an
algebraic extension to find a point on the curve. Then this extension appears
in the isomorphism as well. If the polynomial f has many terms then the
size of the expressions 0(zg), 0(yo), 0~ (z) and 6~'(y) is usually much larger.
In this case the bottleneck is often the normalization (i.e. removing yy from
the denominator) of H_I(a)‘w;Tlég”). So our method for integrating algebraic
functions with genus 1 does not always work so well. On the other hand, the
complexity of the Risch-Trager algorithm is very large as well.
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In the following example y is the algebraic function defined by the minimum
polynomial f = y* + 23y — 2% and a = (5427 + 272%y® — 2725y + 3623y +
108z* + 144xy3 + 4822y + 192y? + 320z) / ((272° + 256)22). Like in the previous
example our heuristic for finding a point on the curve does not introduce an
algebraic extension in this example. In this example our method combined with
Bertrand’s implementation uses 9.2 seconds to integrate a, where int (a,x) in
Maple 5.3 + bug-fix takes 6400 seconds.
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