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Abstract

In this paper I want to present a new method for computing parametriza-
tions of algebraic curves. Basically this method is a direct application of
integral basis computation. Examples show that this method is faster than
older methods.

1 Introduction

Suppose we are given two rational functions X (t) and Y (t), e.g. X (t) = 2t/ (> +
1) and Y(t) = (t2 — 1)/(#? + 1). Then the set of points [X(t),Y ()] where ¢
runs through the complex numbers defines an algebraic curve in the plane, in
this particular example a circle. We call [X(¢),Y (¢)] a parametrization of this
curve.

We can also represent an algebraic curve by a polynomial equation f(z,y) =
0, e.g. 2 +y> — 1 = 0. Algebraic curves given by a parametrization can also
be represented by a polynomial, but not necessarily vice versa. The theory of
algebraic curves tells us that a curve can be parametrized precisely when the
curve is rational, i.e. when the genus of the curve is zero. However, in most
textbooks it is not mentioned how a parametrization can be found.

Different methods for computing parametrizations are known. The method
described in [5] is implemented in the Maple package CASA. Also a good de-
scription of the problem and applications are given in [5].

To find a parametrization we first compute a parameter. A parameter is
an element of the function field that has precisely one pole on the curve, with
multiplicity one.

The problem of finding parametrizations in minimal algebraic extensions is
not treated in this paper. This problem is reduced to the problem of finding
one point on the curve in a minimal algebraic extension, which is treated in [3]
and [6]. A point can be found using an algebraic extension on the coefficients
field of degree two. At this moment my implementation does not yet make use



of these methods. The current version only tries to find a good point on lines
through singularities. In the worst case a point will be used in an algebraic
extension of degree equal to the degree of the curve.

2 Brief outline

In this section we will sketch the algorithm. We leave the details for the next
section. We use the following notations:

e [ is an algebraically closed field of characteristic 0.

f(z,y) € L[z,y] is irreducible.

n is the degree of f in y.

C is the projective algebraic curve given by f.

L(C) is the function field of the curve. We can identify this field with
L(z)[y]/(f). We will denote elements of this field as polynomials in y of
degree < n.

F' is the homogenization of f. It is an element of L[z,y,z] of minimal
degree such that f = F,—; (F with z = 1 substituted). We can identify
the function field L(C) = L(z)[y]/(f) with L(z)[y]/(Fy=1). Writing an
element a of L(z)[y]/(f) as element of L(z)[y]/(Fz=1) is done by making
a homogeneous followed by a substitution z = 1.

e p is a parameter. That means p generates the function field, L(p) =

L(C) = L(x)[yl/ (f)-

e a parametrization is a list [X(¢),Y (¢)] of rational functions such that
f(X(t),Y(t)) =0 and such that L(X(¢),Y (t)) = L(¢).

An rational algebraic curve allows a parametrization. To find this para-
metrization we first compute a parameter p. Then we can express z and y in
L(C) = L(p) as rational functions in p. This gives us a parametrization.

A parameter is characterized by the property that it has only one pole, of
multiplicity 1, in the places of the curve C'. To find this parameter we divide
the projective plane into two disjoint parts, A and B. Then we compute a
starting function P, that has only 1 pole of multiplicity 1 in A C. So P has
the desired property in the part A C, but it may still have poles in B[ C.

Now we want to adapt P in such a way that the one pole in A C remains,
and that the poles in B C disappear. We do this by adding a function (). We
compute a @ satisfying following conditions:

e () has no poles in ANC

e P+ (@ has no poles in B C.



If @ satisfies these conditions we see that p = P + () has precisely 1 pole
on the curve. Then we know that p is a parameter. We use here that f is
irreducible. Also the genus must be zero, otherwise the curve is not rational and
no parameter exists. We can let the algorithm check these two requirements.

Now we want to express z and y as rational functions in p. Since p is
algebraic over L(z) we can compute a polynomial relation between z and p. In
principle this can be done as follows. Suppose p = p;/p2 where p; and py are
elements of L[z, y]. Then we can compute the resultant Res,(tp2 — p1, f). This
gives a polynomial in z and ¢ which vanishes for ¢ = p. We can solve z from
this relation and express it as a rational function in ¢. This is possible because
z € L(p).

In practise, however, this resultant computation can be a bottleneck for the
algorithm. A faster computation goes as follows. Substitute three different
generic numbers for z and compute the resultant for all three values. Use
the fact that the degree of the numerator and the denominator of the rational
function X (¢) are bounded by n. X (t) can be reconstructed from these three
resultant computations. Y'(¢) can be computed the same way. For efficiency
reasons we always use small integers as generic numbers.

3 The algorithm

If the curve C contains the point (0,1,0) we will remove this point by substi-
tuting x + 4y for z in f where 7 is a generic integer. After that we may assume
that (0,1,0) is not a point on the curve. Then we can divide the projective
plane, except the point (0,1,0), in the z-y plane and the line z = 0 in the z-y
plane (the line at infinity). For the splitting of the plane in parts A and B there
are different possibilities. We choose A is the z-y plane and B is the line z = 0
for the rest of this paper. Define O4 C L(z)[y]/(f) as the ring of all functions
having no poles on A, and Op as the ring of all functions having no poles on
B. Elements of Op will be denoted as elements of L(z)[y]/(Fy=1).

Then a starting function P must be a function having precisely one pole on C
in the z-y plane. Given a regular point on the curve it is not difficult to compute
such a function P. However, if we need algebraic extensions of the coefficients
field to find this point, these algebraic extensions will appear in the resulting
parametrization. This makes the result ugly and the parametrization slow,
especially the computation in section 3.2. Finding a good point is therefore an
important problem. As was said before this problem is not yet properly handled
by my implementation. It lets a user specify a point. If no point is specified,
like in the test examples in section 4, it looks for good points on lines through
singularities. If no good point was found then the algorithm will pick a point
on the line x = ¢ where 7 is an integer. This will generally require an algebraic
extension of degree n.

3.1 Finding the function )

For a description of integral bases and computation of integral bases I refer
to [4]. The method used here to compute integral bases is by using Puiseux



expansions. The speed of this method depends on the bound given in [4] for the
Puiseux expansions and the bound for the maximal denominator in the integral
basis.

There are two requirements on (). The first is that ) has no poles on C' in
the z-y plane, i.e. Q € O 4. Because (0, 1,0) is not a point on the curve f we have
that y is integral over L[z] (or more precise: the class of y in L(C)=L(x)[y]/(f)
is integral over L[z] C L(C)). The fact that @ has no poles in the z-y plane is
equivalent with @) being integral over L[z]. When we have computed an integral
basis for O 4, we know in theory all such functions. We will show by an example
how one can check if a given function is integral over L[z].

Suppose f = y* — 2zy? + (22% — 6z + 4)y + 2* — 22? — 4z + 223 + 4 and we
want to check if a given function v € L(C) is integral. For complicated v the
fastest method of checking whether a given function is integral is by computing
an integral basis. The integral basis for this f is
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Checking if v is an element of L[z]b is done the same way as e.g. one checks if
22+ z € L[z](z + 1), namely by computing the remainder modulo the elements
in the basis. We will show this by example.

For a given function v = (y® 4+ a1y + a2)/(z — 1) having indeterminates
as coefficients, we can compute linear relations in the indeterminates a; and
a9 equivalent with this function being integral as follows. First remove the
denominators.

v € L[z]b <= v =0 mod b <= (z? —1)v =0 mod (2% — 1)b
Multiplying out denominators [by, be, b3, bs] = (2% — 1)b yields
[22 =1, (@ = )y, (¢ + 1) (y* = 1), =22 + 3 = 22y +y —y* + 4]

and i
VE (2% -1)v=(z+1)+ a1y + as).

We start the computation of the remainder modulo [by, by, b3, bs] with the high-
est degree in y, which corresponds to the last element in the integral basis. Note
that the degrees in y in the integral basis are always 0,1,...,n — 1.

V—(z+1Dbs =ra= (z+1)2z+2zy—-3+ay+a—y+v°)
rg—by =r3= (z+1)2z+2zy—y+ a1y +az—2)
r3 —2by =19 = a1$y+a2x+a1y+a2+2w2—I—xy—2+y
ro—2b1 =r1= (a1 + Dzy+ (a1 + 1)y + asz + a

So the remainder of V' modulo [b1,be,bs,bs] is 1. The coefficients of r; are
a1+ 1, a1 + 1, as and as. So we can find all values of a1 and ao for which
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v is integral by solving the following dependent system of linear equations:
a1+1=0,a1+1=0, ap =0 and a2 = 0.

This shows how the condition “@) has no poles in part A” can be translated
into linear equations. In almost the same way we can translate “P + @) has
no poles in part B”, or equivalently P + @Q € Op, into linear equations. The
difference is that this time we need to have an integral basis for Og. F,_1
describes the curve in the z-y plane. In this plane we consider the line z = 0.
Now y (more precise: the class of y in L(2)[y]/(Fz=1)) is integral over the local
ring L[z],) (L[2] localized in the ideal (z)) because (0,1,0) is not a point on the
curve. We compute a local integral basis [c1, ..., c,], i.e. a basis for all elements
which are integral over the ring L[z](,). So Op = L[2],yc1 + ... + L[2](;)cn-

Using this basis [c1,...,c,] we can check if a function v has poles on the
line z = 0. The only difference with the above example is, that now we work
with a local ring L[z](,) instead of L[z]. In the algorithm the only difference
is that first all factors in L[z] in the denominator of v except powers of z are
multiplied out.

We will write an ansatz for () with indeterminates a;; as coefficients.

n—1—=N—j

_ 245=0 24i=0
@= k

a;;x'y’

where N is an integer and k € L[z]. We need a bound for N and a bound for
the denominator k. A bound for the denominator is a polynomial K € L[z]
such that k|K. Such a bound K is given by the largest denominator in the
integral basis for the z-y plane.

The number N — degree(k) is equal to the multiplicity of z in the de-
nominator, if we make ) homogeneous and substitute £ = 1. The maxi-
mal denominator of the local integral basis [ci,...,cp] in the the z-y plane
is a bound for the multiplicity of z in the denominator of P + (), because
P+Q € L[z];ye1 + - - - + L[2](,y¢q- This implies a bound for the multiplicity of
z in the denominator of ) (homogeneous and x = 1 substituted). This gives a
bound for N.

Summary of the computation of p:

1. If (0,1,0) is a point on the curve, i.e. if the degree of the curve is larger
than the degree of f in y, apply a linear transformation to remove this
point from the curve.

2. Compute an integral basis [by,...,b,] for O4 and a local integral basis
[c1,--.,¢n] for Op. So O = Llz]b1 + ... + Llz]b, and Op = L[2];c1 +
. L[Z](z)cn

3. Write Q = ( ?:_é E?;BJ aijz*y’) /K. Here K is the maximal denominator
in [by,...,b,]. Computation of N: Let z¢ be the maximal denominator
in [c1,...,¢y). Then the multiplicity of z in the denominator of P + @ is
at most d. So the multiplicity of z in the denominator of ) is at most the
maximum of d and the multiplicity of z in the denominator of P. Now
take N as the sum of degree(K) and this maximum.



4. Compute linear equations for Q) € O4 and P+Q € Op and find a solution
of these equations. Substitute this solution for a;; in Q.

5. return P + Q

3.2 Expressing xr and y as rational functions in p

In the previous section we have seen that a parameter p can be found using
integral basis computation and solving linear equations. Note that apparently
we were able to find a parameter without investigating the curve and the sin-
gularities. This is not true though, the integral basis algorithm does compute
singularities and Puiseux expansions. But we do see here that an integral basis,
plus a local integral basis at infinity, gives very useful information about the
curve. It gives sufficient information to find a parameter, given a starting func-
tion P. What we still need to do now is express  and y as rational functions
in this parameter. We will only show this for .

Let p = p1/pe where p; and p, are elements of L[z,y] (in fact we have
p2 € L[z] in our algorithm, but we do not use that here). Call n, the degree
of f in z. Now Y (¢) can be written as a/b where a and b are polynomials
in t of degree < nyz. A generic line y = ¢ intersects the curve in n; different
points in the z-y plane. In all these points the parameter p takes different
values, call them v;, j = 1...n,. We denote f with y = 4 substituted by
fy=i- We can compute w = [[(t — v;) because w equals a constant times
R; = Resg(t(p2)y=; — (P1),=i> fy=i)- This latter statement follows because w
and R; both have degree < n, and have the same roots vj, 7 = 1...n,, which
are all different for a generic 7. Because Y (v;) =4, j = 1...n, the numerator
of Y (t) — i must have v; as zeros, hence a —ib is equal to w times a constant. If
we have this information for three different values ¢ then we can compute a/b.

So we determine a/b using the fact that we know a — ib up to a constant
for three different values of i. Because this system is overdetermined (except
for n, = 1) we can also use this as an automatic check for the correctness of
the result. From two resultant computations R;; and R;, for generic integers
i1 and i we can conclude that a/b = (—i1cR;, + i2R;,)/(Ri; — cR;,) for some
unknown constant c. For this, these i; do not need to be generic in the sense
that R;, and R;, are squarefree. Having degree(R;;) = n; is sufficient.

Summary of the computation of Y () = a/b from p:

1. Take three different integers 4; such that R;; = Res;(t(p2) y—i; —(pl)y:ij  fy=i;)

has degree n; for j = 1...3. Then R;, = cj(a — i;b) for some unknown
constants ¢;.

2. (—i1cR;, +i2R;,) —i3(R;; — cR;,) must be equal to R;, up to a constant
factor. Solve ¢ from this and return (—i1cR;, + i2R;,)/(Ri, — cR;,)

4 A few tests

I have compared my implementation (IntBasis) with the Maple package CASA,
version 2.1. This package uses a method described in [5]. The syntax for



IntBasis is:
genus(f,x,y, ‘parametrization‘,t);
and for CASA the syntax is:

a:=mkImplAlgSet ([f], [x,y1);
impl2para(a,t);

I have tried four tests in Maple V release 2 on a workstation, without spec-
ifying a point on the curve. If a good point were specified the computation
would probably be faster. The first two examples are copied from [5]. Both
implementations use no algebraic numbers to denote the a parametrization for
these two. The third example is of degree 5 in y and of degree 2 in z. Both
implementations use quadratic algebraic numbers for this example. The last
one is of degree 8 in both x and y. My implementation uses algebraic numbers
of degree 4 for f4, though we know that it should be possible using an extension
of at most degree 2.

13zy? 132%y

4+3

3,.5 9 zy* 2.3 3,2 4 5
+62°+y°+——+4 2%y’ + 92y +4 2 y+9x

fi =ytz+2y3+ 1

fo = 1251 y* + 5184 xy® + 5354 12y 4+t — 9552 zy*  22496x%y3 542423y 32ty
2= 7115 115 115 115 115 115 23

2.4 , 1747233y 13824 23y4
+19227y" + ——13 115

f3 = 1805 y° + (3610 = + 3610) y* + (—2703 z2 — 12626 z — 13533) 3>
+(5406 22 + 16218 z + 10812) y? + (—4508 22 — 18032 = — 16227) y
+3610 z2 + 14440 x + 14440

fa=1y8+ (8 xz+14) y" + (28 22 + 102 = + 84) o5
+(56 2° + 318 z? + 546 = + 282) y°
+(70 z* + 550 23 + 1476 x2 + 1590 z + 576) y*
+(56 2° + 570 z* + 2124 23 + 3582 2% + 2706 = + 720) 7°
+(28 28 + 354 25 + 1716 2* + 4030 23 + 4770 2% + 2646 z + 518) 32
+(8 27 + 122 25 + 738 z° + 2264 z* + 3740 73 + 3252 22 + 1326 z + 184) y
428 +18 27 4 132 2 + 508 2° + 1101 2 + 1338 2° + 854 22 + 244 z + 25

Computation times in seconds: (unknown means no answer after 3 days)

IntBasis | CASA 2.1
f1 10 32
fo 17 2147
f3 26 3313
fa 311 unknown




In the last example the parameter computation takes 41 seconds. The rest
of the time is mainly spent on resultant computations needed to express z and
y as rational functions of the parameter. A good implementation of a resultant
algorithm that can work with algebraic numbers would greatly speed up the
computation in this example.

Availability: CASA 2.1 is available at ftp.risc.uni-linz.ac.at. IntBasis can
be found in the Maple share library at neptune.inf.ethz.ch. The next share
library will contain version January 1994 of IntBasis. This version contains the
parametrization code. IntBasis and my paper [4] are also available by e-mail
request (hoeij@sci.kun.nl).

Final remarks (14 april 1994): At the moment a new method is being im-
plemented in CASA which is faster than CASA 2.1. T was sent computation
times and also new test examples by a referee, showing that the running times
of CASA’s new implementation are similar to those of IntBasis. Furthermore
CASA attemps to find parametrizations in minimal algebraic extensions. In
one of the new examples IntBasis was 5 times slower, in an other example 27
times faster. These latter tests were run on different platforms though, because
I do not have the new code.
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