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Factorization of Differential Operators with Rational
Functions Coefficients

Mark van Hoeij

(Received December 12, 1995)

In this paper we will give a new efficient method for factorizing differential operators
with rational functions coefficients. This method solves the main problem in Beke’s
factorization method, which is the use of splitting fields and/or Grdbner basis.

1. Introduction
A differential equation
y™ +a, 1y™ D 4y +aoy =0
corresponds to a differential operator
[=0"4+an_ 10" +--- 4+ agd°

acting on y. In this paper the coefficients a; are elements of the differential field k(z) and
0 is the differentiation d/dz. The field k is the field of constants. It is assumed to have
characteristic 0. k is the algebraic closure of k. The differential operator f is an element
of the non-commutative ring k(z)[0]. This is an example of an Ore ring (Ore, 1933). A
factorization f = LR where L, R € k(x)[0] is useful for computing solutions of f because
solutions of the right-hand factor R are solutions of f as well.

The topic in this paper is factorization in the ring k(z)[8]. Multiplication in k(z)[0]
is not commutative. However, some properties of are independent of the order of the
multiplication, for example the Newton polygons of fg and gf at a point p are the same.
The non-commutativity is one of the reasons that factorization in k(z)[0] is difficult. To
handle this difficulty we will extract the commutative part p.(f) of an operator f. We
will first try to find local properties of differential operators which do not depend on
the order of multiplication and then we will define the commutative part of f as the
collection of those properties. For this purpose we will first define exponential parts and
their multiplicities for local differential operators in section 3. Then u. (f) will be defined
as the collection of all exponential parts and their multiplicities at all singularities of f.

Let f = LR where f € k(z)[0] is given and where L, R € k(x)[d] is a factorization
that we want to compute. The commutative part u, has the following property

px (f) = px(L) + pu(R).
This equation leaves only a finite number of possibilities for u.(R). Beke’s method (cf.
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(Beke, 1894) and also section 4) for computing first order right-hand factors R of f
can be explained in terms of u, as follows. Try all possible u.(R) and for each p.(R)
the problem of finding R is reduced to computing the rational solutions of a certain
differential operator. Computing rational solutions of a differential operator can be done
quickly (cf. (Abramov, Bronstein and Petkovsek, 1995)) but the number of possible u. (R)
one needs to check depends exponentially (worst case) on the number of singularities.
So Beke’s method performs well on examples with few singularities, but for operators
with many singularities “try all possibilities” is not a good answer to the question which
1+ (R) need to be considered. Furthermore this method involves computing in algebraic
extensions over k which can be of exponentially large degree. Most previous factorization
algorithms (except (Singer, 1996)) are based on Beke’s algorithm for computing first
order factors, and use the exterior power method for computing higher order factors.
This paper is organized as follows:

e Sections 5 and 6 contain the main result of this paper: An algorithm, that does not
use computations with exponentially large algebraic extensions nor Grobner bases,
for factorizing differential operators. This algorithm can produce (first order or
higher order) factors, or irreducibility proofs, for a large class (specified in section 5)
of differential operators. However, not every operator is in this class, so not every
operator can be handled.

e Section 7. A supplemental algorithm, that makes our algorithm complete for first
order right-hand factors.

e Section 8. The exterior power method. This is another supplemental algorithm,
obtained from the literature, to make the algorithm complete for higher order fac-
tors. The exterior power method is not efficient; only small operators (low order
and small coefficients) can be handled this way. So we want to avoid it whenever
possible.

¢ Section 4. Beke’s algorithm for computing factors of order 1, reformulated in our
terminology.

In section 7 we use the algorithm of sections 5 and 6 to compute a set S with at most
order(f) elements such that u,(R) € S for all first order right-hand factors R. When such
S is computed, the problem of computing all first order right-hand factors is practically
solved because the number of possibilities that need to be checked is now linear instead of
exponential like in Beke’s algorithm, and the algebraic extensions that we need to work
with are of much lower degree than in Beke’s algorithm. As already mentioned, Beke’s
algorithm, section 4, sometimes performs well but it can also be extremely slow if there
are many singularities. For such cases the algorithm obtained by combining sections 5, 6
and 7 is an good alternative.

Computing left-hand factors and computing right-hand factors are equivalent prob-
lems. They can be reduced to each other by applying the adjoint. The adjoint is a
k(z)-anti-automorphism of k(z)[0] given by & — —d. It interchanges the role of left and
right. Using the adjoint and the algorithm in sections 5, 6 and 7 we can compute all first
order left and right-hand factors so every operator of order < 3 can either be factored or
proven to be irreducible. The method given in sections 5 and 6 can also compute higher
order factors (or produce irreducibility proofs) for many (see section 5 for a more precise
description) operators of order > 3. Tests show that this method can handle large ex-
amples; operators in Q(z)[0] of order > 10 with > 10 singularities are often still feasible
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if the bound that is computed in section 9.1 is not too high. This would be impossible
with previous factorization algorithms that use the exterior power method for comput-
ing higher order factors; computing exterior powers of such large operators will cause the
computer to run out of memory. Note that in a few cases, namely the operators which do
not belong in the class specified in section 5, we have to use the exterior power method
as well, in which case factorizing operators of order 10 is impossible as well.

If the bound in section 9.1 is very high then even small operators are hard to factor.
We can not hope to solve this problem; for example the factorization of 8% — L8+ 2 with
n = 1019 is not feasible no matter which method we use because the result will not fit in
any existing computer.

2. Preliminaries

The reader is assumed to be familiar with sections 3, 6 and 8 (except for the algorithm)
of (vH, Formal Solutions). From section 3 the preliminaries: Newton polygon/polynomial,
differential field, Ore ring, the ring k((x))[6] where § = 29, LCLM (Least Common Left
Multiple), algebraic extensions of k((x)) and the universal extension. From section 6:
exponential parts and from section 8 the relation between exponential parts and formal
solutions. In the next section we will give a different introduction to exponential parts
which is hopefully easier to understand than section 6 in (vH, Formal Solutions).

Note that many results similar to the ones in (vH, Formal Solutions) are found (in a
different terminology) elsewhere as well, references are given in (vH, Formal Solutions).
The notations in this paper are the same as in (vH, Formal Solutions).

We assume that the characteristic of the constants field k is 0. If f € k(x)[0] then
f has finitely many coefficients in k(z) and each of these coefficients has finitely many
coeflicients in k. So without loss of generality we can restrict ourselves to a coefficients
field k and a differential operator f € k(z)[0] where k is finitely generated over Q.

3. Exponential parts of local differential operators

This section gives a short introduction of exponential parts. For proofs of the state-
ments in this section see (vH, Formal Solutions) (or the references therein).

3.1. A DESCRIPTION IN TERMS OF THE SOLUTION SPACE

Let V' be the universal extension (called R in lemma 2.1.1 in (Hendriks and van der
Put, 1995)) of k((z)). This is a differential ring extension of k((z)) consisting of all
solutions of all f € k((x))[d].

Let f € k((z))[6] \ {0} be a differential operator. The action of f defines a k-linear
surjective map

fiVoV

The kernel of this map, denoted as V(f), is the solution space of f. V contains all
solutions of f. Hence the dimension of the kernel of f on V' is maximal

order(f) = dim(V (f)).

This number dim (V (f)) is useful for factorization because it is independent of the order of
the multiplication, i.e. dim(V (fg)) = dim(V (gf)). To obtain more of such useful numbers
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we will split V' (f) in a direct sum and look at the dimensions of the components (V,, E
and ~ are defined in (vH, Formal Solutions), and are described below as well)

The V, are k-vector spaces and also k((x))[6]-modules. So f(V.) C V. for all non-zero
f € kE((2))[0]. Then f(V.) = V. because f is surjective on V. The kernel of f on V, is
denoted by V.(f) = V(f) [ Ve. Denote

pre (f) = dim(Ve(F))-

This is consistent with the definition of p.(f) in (vH, Formal Solutions) because of
theorem 8.1 in (vH, Formal Solutions). These . are useful for factorization because they
are independent of the order of the multiplication, i.e. if f, g € k((z))[d] \ {0} then

pe(9f) = pe(fg) = pe(f) + pe(g)-

This equation is lemma 6.3 in (vH, Formal Solutions). It also follows from the fact that
the dimension of the kernel of the composition of two surjective linear maps equals the
sum of the dimensions of the kernels.

Recall the following definitions from (vH, Formal Solutions). These definitions were
done in such a way that the subspaces V, of V' are as small as possible (more precisely:
V, is an indecomposable k - k((x))[6]-module) because then the integers u.(f) give as
much as possible information about f. Denote the set

E = U E[zfl/”]

and the map
Exp: E->V

as Exp(e) = exp([ £dz). To define Exp(e) without ambiguity one can use the construc-
tion of the universal extension, cf. (Hendriks and van der Put, 1995). Then Exp(e; +e3) =
Exp(e;)Exp(es) so Exp behaves like an exponential function. For rational numbers g we
have Exp(q) = z? € k((x)). Denote (see also section 8.3 in (vH, Formal Solutions))

Ve = Exp(e) - (k- k((z))[e]) log(z)] C V.

Note that & - k((z))[e] = & - k((z'/™)) where n is the ramification index of e. Define ~
on E as follows: e; ~ ey if and only if e; — es is an integer divided by the ramification
index of e;. V,, = V., if and only if e; ~ e3 so V, is defined for e € E/ ~. Hence p.(f)
is defined for e € E/ ~ as well.

V)= P V.(f)

e€E [~

An element e € E/ ~ is called an ezponential part of f if pe(f) > 0. The number
pe(f) = dim(V,(f)) is called the multiplicity of e in f. The sum of the multiplicities of
all exponential parts of f equals the order of f.
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3.2. EXPONENTIAL PARTS AND SEMI-REGULAR PARTS

We now give the definition of u.(f) as it appears in (vH, Formal Solutions). Let
e € k((z)). Then the substitution map

Se : k((x))[8] = K((2))[0]

is the k((z))-automorphism given by
Se(0)=6d+e.
The following gives the relation between the solution spaces

Exp(e) - V(Se(f)) =V (/)

Let f € k((2))[0]\{0} and e € E. Let n be the ramification index of e. Let P = No(Se(f))
be the Newton polynomial corresponding to slope 0 in the Newton polygon of S.(f) €
kE((x/™))[6]. Now pe(f) is defined as the number of roots (counted with multiplicity) of
Pin 1Z.If e) ~ ey then e, (f) = pe, (f) for all f € k((2))[6]\{0} hence pe(f) is defined
for e € E/ ~ as well.

Let L be a finite algebraic extension of k((z)) and let f € L[4]. Then f is called
semi-regular over L if f has a fundamental system of solutions in L[log(x)]. According
to (vH, Formal Solutions) this is equivalent with the following two conditions

e f is regular singular (regular operators are regular singular as well).

e The roots of the Newton polynomial Ny(f) are integers divided by the ramification
index of L over k((z))-

Note that the definition of semi-regular depends on the field L. For f € k((x))[d] we have
po(f) = order(f) if and only if all solutions of f are elements of Vo = k- k((x))[log(z)] if
and only if f is semi-regular over k((x)). A regular operator is semi-regular as well.

Semi-regular operators are “easy” differential operators. It is easy to compute the
formal solutions (cf. (vH, Formal Solutions)) for such operators. One of the benefits of
exponential parts and semi-regular parts is that we can use them to split up a “difficult”
differential operator f as an LCLM of “easier” parts. More precisely: an operator f can
be written as an LCLM of operators which are of the form S_.(R,) for some e € E and
semi-regular R, € k((z))[e, d].

Let e € E, f € k((x))[d] and p.(f) > 0. Then the semi-regular part R, of f for e € E is
defined in (vH, Formal Solutions) as the highest order monic right-hand factor of S (f)
in k((z))[e, 6] which is semi-regular over k((z))[e]. The order of R, is p.(f). S—_c(Re) is

a right-hand factor of f. If f is monic and ey, ...,eq € E is a list of representatives of all
exponential parts of f, then (cf. section 6.1 in (vH, Formal Solutions))
f=LCLM(S_¢,(Re,), -8 e, (Re,)). (3.1)

This LCLM factorization of f corresponds to the direct sum splitting (cf. sections 8.2
and 8.3 in (vH, Formal Solutions))

V() =V (DD D Veul - (3.2)
The solution space of S_¢,(Re,) is Ve, (f).
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3.3. GENERALIZED EXPONENTS

In some applications (section 9.1, (van Hoeij and Weil, 1997) and (van Hoeij, 1996))
the use of the equivalence ~ erases useful information about the differential operator. We
would like to make a canonical choice of representatives in E for the exponential parts
(which are in E/ ~), and call these the generalized exponentsT.

In (vH, Formal Solutions) we first defined exponential parts using the map S, and
the Newton polynomial Ny (because such a definition is convenient for computing the
exponential parts) and afterwards related the exponential parts to the formal solutions
(because that makes exponential parts easier to understand). We will do the same for
the generalized exponents, first define them using Ny and S., and then relate them to
the formal solutions by introducing the notion of the valuation of a formal solution.

DEFINITION 3.1. Let e € E and f € k((z))[0] \ {0}. Define the number v.(f) as the
multiplicity of the root 0 in No(S.(f)).

e € E is called a generalized exponent of f if ve(f) > 0. The number ve(f) is called
the multiplicity of this generalized exponent.

For a given € € E/Q the sum of v.(f) taken over all e € E for which € is e mod @ equals
Tiz(f). Hence by theorem 6.1 in (vH, Formal Solutions) it follows that

z Ve(f) = order(f). (3.3)

eckE
DEFINITION 3.2. Let f € k((2))[0] be of order n. The list e1,...,e, € E is called a list
of generalized exponents of f if for all e € E the number of e; which equal e is v.(f).

Two lists of generalized exponents are equivalent if they are a permutation of each
other. Up to this equivalence a list of generalized exponents is uniquely defined for every
f € k((2))[0]- If f is regular singular then the list of generalized exponents is the list of
roots of the Newton polynomial Ny(f) of f.

LEMMA 3.1. Ife€ E, f € k((z))[0] and ey, ..., e, € E is the list of generalized exponents
of f then ey —e,...,e, — e is the list of generalized exponents of S.(f).

Proof: This follows from the fact that Se;_.(Se(f)) = Se; (f).

O

LEMMA 3.2. If R is a right-hand factor of f then the list of generalized exponents of R
is a sublist of the list of generalized exponents of f. In other words: v.(R) < v.(f) for all
ec E.

T In an older version of this text a generalized exponent was called canonical ezponential part (mean-
ing: a canonical choice of a representative in E for an exponential part in E/ ~) and the list of generalized
exponents was called canonical list. To give a better indication of the purpose of this notion the name
was changed to generalized exponent in (van Hoeij and Weil, 1997).
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Proof: If R is a right-hand factor of f then S, (R) is a right hand factor of Se(f). So the
Newton polynomial Ny(S.(R)) is a factor of No(S.(f)), cf. (vH, Formal Solutions).

O

The lemma does not hold for left-hand factors of f. Take for example f = §- (§ — 3/xz%).
The list of generalized exponents is 5,3/z° and the list of generalized exponents of § is
0.

LEMMA 3.3. If fi1,..., fa € k((x))[d] have no generalized exponents in common then the
list of generalized exponents of f = LCLM(f1,..., fq) is the concatenation of the lists of
generalized exponents of the f;.

Proof: Denote | as the list of generalized exponents of f and m as the concatenation
of the lists of generalized exponents of the f;. The lists of generalized exponents of the
fi are sublists of [ and since they have no elements in common it follows that m is a
sublist of I. The number of elements of m is the sum of the orders of the f;. Hence this
number is > order(f), and this equals the number of elements of I. Hence [ is m (up to
a permutation).

O

Note that if the f; do have generalized exponents in common then not every generalized
exponent of f needs to be a generalized exponent of one of the f;. Take for example f;
such z is a basis of V' (f;) and take f, such that z 4+ x'0 is a basis of V' (f5). Then the lists
of generalized exponents of f; and f» are both 1, but the list of generalized exponents of
LCLM(fl, f2) is ]., 10.

Consider the set

Vo = k((z))[log(z)]

cf. section 8.3 in (vH, Formal Solutions). We can define a valuation

v:Vy— QU{oo}

where v(0) = oo and v(a) with a # 0 is the smallest exponent of = in a with a non-
zero coefficient. So z=*(®a € k[[z'/"]][log(z)] for some n and v(a) is maximal with this

pr@erty. .
Ve CV is defined as Exp(e) - V. Define the set

Vi = (U Ve) \ {0}

where the union is taken over all e € E. Notice that V, is closed under multiplication.
We can extend the valuation v to Vi

v:V, — FE

as follows: let y € Vi. Then y = Exp(e)r for some e € E (which is determined modulo €
by y) and r € V. Now define v(y) = e + v(r). This v(y) does not depend on the choice
of e and r. For all e € E we have v(Exp(e)) = e. If v(y;) and v(y2) are both defined (i.e.

y1,Y2 € Vi) then v(y1y2) = v(y1) + v(y2).
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THEOREM 3.1. Let f € k((z))[d] be of order m. There exists a basis y1,-..,Ym € Vi of
V(f) such that v(yy),---,v(ym) is the list of generalized exponents of f. Conversely, for
any solution y of f in V. the valuation v(y) is a generalized exponent.

Proof: We will first prove the theorem for operators f € k((x'/™))[6] which are semi-
regular over k((z'/™)). Note that v([ %dr) = v(a;) (take the coefficient of the term
2%log(x)? in the integral equal to 0). From this it follows by induction that the algorithm
in section 8.1 in (vH, Formal Solutions) produces a basis of solutions for which the
valuations are the roots of the Newton polynomial (and hence these valuations form the
list of generalized exponents). Now suppose y € k((z'/™))[log(z)] is a solution of this semi-
regular f. Factor f (cf. section 5 and 8.1 in (vH, Formal Solutions)) as f = L-(§ —¢+a)
where ¢ € LZ, a € z'/™ - k[[z'/"]] and L € k((z'/™))[8] is semi-regular. If v(y) = g then
v(y) is a generalized exponent of § — ¢ + a and hence of f as well. If v(y) # ¢ then write
y = X ¢ijo'log(x)?. Here the sum is taken over i € 1Z and j € N. Take j maximal
such that c,(y) ; # 0. Then the coefficient of z*Wlog(x) in (6 —q+a)(y) =2y’ —qu+ay
is cy(y),;(v(y) —q) # 0. So v((6 —g+a)(y)) < v(y). Furthermore all terms in zy’' — qy +ay
have valuation > v(y) hence v((§ —g+a)(y)) = v(y). Now (6 —g+a)(y) is a solution of the
semi-regular operator L and hence by induction v(y) is a root of the Newton polynomial
of L. Because f is regular singular the Newton polynomial of L is a factor of the Newton
polynomial of f and hence v(y) is a root of the Newton polynomial of f. So the theorem
holds for any semi-regular f € k((z'/™))[d].
To prove the theorem for any f € k((x))[d] write f as

f = LCLM(S—el (an)a s Sfeq (Req)) (3'4)

as in section 6.1 in (vH, Formal Solutions). For a definition of R, for e € F and f €
k((x))[d] see also section 6.1 in (vH, Formal Solutions). It follows from the definition
that the order of R, is 7i,(f). The solutions of S_.(R,) are in V.(f), cf. section 8.2 in
(vH, Formal Solutions). The dimension of the solution space of S_.(R,) is order(R,) =
1. (f) which equals the dimension of V. (f) by theorem 8.1 in (vH, Formal Solutions).

Hence V(S_.(Re)) = V.(f) and equation (3.4) corresponds to the following direct sum

V(f) :VEI(f)®"'®v€q(f)'

Theorem 3.1 holds for the R,, because these are semi-regular over k((z'/™)) for some n.
So we have a basis of solutions (computed by the method of section 8.1 in (vH, Formal
Solutions)) y; j,j = 1,..., 7., (f) of Re, such that the valuations of this basis form the list
of generalized exponents of R.;. So Exp(e;)yi,j, j = 1,..., ., (f) is a basis of solutions of
S_c;(Re;) and according to lemma 3.1 the valuations of these Exp(e;)y; ; form the list of
generalized exponents of S_, (Re; ). Then from equation (3.4) it follows that Exp(e;)y;,;,
j=1,...,0,.(f),i=1,...,qis a basis of solutions of f and according to lemma 3.3 the
valuations of this basis is the list of generalized exponents.

To prove the second statement take y € V(f) with y € V.. Then y is a non-zero
element of V,(f) for some e € E. So y is a solution of S_.(R.), and hence Exp(—e)y is
a solution of R,. Theorem 3.1 is true for R, because it is semi-regular over k((z'/™)) for
some n. So v(Exp(—e)y) = v(y) — e is a generalized exponent of R,. Then by lemma 3.1
it follows that v(y) is a generalized exponent of S_,(R,) and hence by lemma 3.2 v(y) is
a generalized exponent of f.
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O

The following lemma gives a relation between factorizations in k((z))[6] and generalized
exponents.

LEMMA 3.4. Letry,...,r, € k((z)) and f = 6"+ a,_10" 1 +---+agd® € k((z))[d] such
that f = (0 —71)--- (8 —rp,). Define v'(r) € Q for r € k((z)) as the minimum of 0 and
v(r). Let

e = pp(ri) — Y _v'(ri — ;).

J>i
Then e1,...,en is the list of generalized exponents of f. Furthermore
pp(an—l) = Z €; + Z ez - e] (35)
j>i

Recall that for r € k((z)) the principal part pp(r) € E is defined in section 6 in (vH,
Formal Solutions) by the condition that v(r — pp(r)) > 0.

Proof: Let vg(a) for non-zero a € k((z))[d] be the smallest exponent of z in a with a non-
zero coefficient in k[6], and vo(0) = 0o, which generalizes the definition of vy in section 2
n (vH, Formal Solutions). Then vy is a valuation on k((z))[d] and v'(r) = vo(d — r) for
r € k((z)). Now the following relation for the Newton polynomials holds for all non-zero
L, R € k(())[d]

No(LR) = No(Su,(r) (L)) - No(R)

which is a generalization of the formula in section 3.4 in (vH, Formal Solutions) to
k((z))[6]. Let L =0 —ry and R = (6 —r2)---(6 — r,) so f = LR. By induction we
know that es,...,e, is the list of generalized exponents of R. The list of generalized
exponents of f is the list of generalized exponents of R plus one more element. To
show that this element is e; we must show that the multiplicity of the root 0 in the
polynomial Ny (S, (f)) equals the multiplicity of the root 0 in Ny(Se,(R)) plus one,
in other words NO( L(MN)/No(Se; (R)) = T (here T is the variable used to denote
the Newton polynomial, as in (VH Formal Solutions)). S, (f) = Se, (L) - Se, (R) and
Vo (Se; (R)) = v(Se, (6—72))+- - +v0(Se, (6—71)) =vo(6—r2+e€1)+- - -+vo(d—rp+er) =
vo(d —ra+7r1) 4+ - +vo(d —7p +71) = pp(r1) — e1. Hence

No(Se, (f))
NO(Se1 (R))

Equation (3.5) follows from the fact that ry +---+r, = —a,_1 (note that v'(r; —r;) =
v'(ei —€;))-

= No(Suq(8e, (R)) (Ser (L)) = No(Spp(ry) (L)) = T-

O

Summary: The generalized exponents are the valuations of the solutions (of those so-
lutions for which the valuation is defined, i.e. which are in V,). The exponential parts
are the generalized exponents modulo the equivalence ~. Generalized exponents of right-
hand factors of f (but not of left-hand factors) are generalized exponents of f as well.
For exponential parts we have this property for all factors.
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3.4. LOCALIZATION AND EXPONENTIAL PARTS

For a point p € P'(k) = k|J{co} we can define a k-automorphism I, : k(z) — k(=)
as follows. If p = oo then l,(z) is defined as 1/z and if p € k then l,(z) = z + p. We
can extend I, to a ring automorphism of k(z)[d] by defining 1,,(0) = 0 if p is finite (i.e.
p € k) and 1,(0) = —z?0 if p is infinity. For a differential operator f € k(x)[0] we call
I, (f) the localization of f at the point = p. The operator I,(f) is viewed as an element
of k((z))[0] instead of k(x)[0)].

DEFINITION 3.3. Lete € E/ ~, f € k(z)[0] and p € P' (k). Define

Ne,p(f) = He (lp(f))

Now e is called an exponential part of f at the point p if e ,(f) > 0. The number pe ,(f)
is called the multiplicity of e in f at the point p.

If p is a semi-regular point of f then f has only a trivial (i.e. zero modulo ~) exponential
part at p. B

The following notation p, (f) € NE/~)*P "(8) formalizes all exponential parts and their
multiplicities at all points in P! (k)

p(f) - (Bf ~) x P'(k) = N
which maps (e, p) to e ,(f). For f,g € k(z)[0] we have
px(£9) = 1 (9F) = p1= () + 1 (9)-

A remark on the implementation: Localizing a rational function at the point x = 0 is
a mathematically trivial operation because k(x) C k((x)). On a computer this is not a
trivial operation, it is a conversion of data types. Computations with infinite power series
are done by lazy evaluation. Note that substitutions like [, in polynomials or rational
functions can be costly. So even for polynomials, which are only finite series, one should
implement the map [, with lazy evaluation, so that no more terms than needed will
be computed. Since higher powers of z tend to have larger coefficients this can make a
significant difference in computation time.

3.5. THE TYPE OF AN OPERATOR

In this section we will examine the relation between u, and the so-called type of a
differential operator.

DEFINITION 3.4. Let f,g € k(x)[0]. Now f and g are said to be of the same type if there
exist 1,12 € k(x)[0] such that

ri(V(f)) =V(g) and ry(V(g)) =V(f)

This notion is called Art-begriff in (Ore, 1932). Four different characterizations of this
notion are given in (Singer, 1996), corollary 2.6. Verifying if f and g are of the same type
can be done by computing the set Ep(g, f) (cf. (van Hoeij, 1996) and (Singer, 1996))
and checking if it contains an 7y for which r; : V(f) — V(g) is bijective. If such r;
exists then an operator ry € k(z)[0] with ro(V(g)) = V(f) exists as well (for properties
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like these and for a quick introduction to this topic see also (Tsarev, 1996)). ro can be
found by solving the equation ror; +If = 1 via the extended Euclidean algorithm (cf.
(Ore, 1933)). This equation has a solution ry,1 € k(z)[0] because r; is injective on V(f)
and hence GCRD(f,r1) = 1 (GCRD stands for greatest common right divisor).

Define the following equivalence ~, on k(z).

T ~y Ty < EyEE(m) rE—To = yl/y.
Define for r € k(z) the k(z)-automorphism
S* : k(z)[0] — k(x)[0]

by Sy(9) = 0 + r. Note that this is not the same (0 instead of §) as the previously
defined S,.. For f,g € k(z)[0] if p«(f) = 1+(g) then u.(S}(f)) = 1«(Sy(g)). Similarly if
type(f) = type(g) then type(S}(f)) = type(S; (9))-

LEMMA 3.5. Let a,b € k(). Then (1.(8) = p«(0 — a) if and only if d — a has a non-zero
solution y in k(x). Furthermore j1.(0 — a) = (0 — b) if and only if a ~, b.

Note that jix(8) = (0 — a) means & — a is semi-regular at all points p € P'(k).

Proof: If § — a has a rational solution y then [,(8 — a) has a solution /,(y) € V. Hence
to(lp,(0—a)) > 0 for all p. Since the order is 1 there are no other exponential parts hence
1,(0 — a) is semi-regular. Conversely if J — a is semi-regular at all points p then one can
verify that

y=[]@=—p)* € k)
pEE
is a non-zero rational solution of 8 — a, where a, € Z is the exponent of d —a at p. Hence
the first statement follows. The second statement is reduced to the first statement by
applying S%.

O

LEMMA 3.6. Let f = 0" 4+, 10" ' +---4+000° and g = O™ + b,_10™ 1 + -+ + bp0°
be in k(2)[0]. Let a;p,bip € k((x)) fori=0,...,n —1 and p € P (k) such that I,(f) =
0" +ap_1,p0" 1+ +agpd° andlp(g) = 6" +bp_1,,0" 1+ -+b0,p0°. Then an_q ~y bp_1
if and only if pp(an_1, — bn_1,) s an integer for all p € P*(k).

Note: For convenience of notation I,(f) € k((x))[6] has been multiplied on the left by an
element of k((x)) so that it can be represented as a monic element of k((z))[0]. For the
definition of the principal part pp see lemma 3.5.

Proof: Denote f; = 0+ an—1 and g1 = 0 + b,_1. One can verify (for a similar but more
detailed computation see also lemma 9.1 in section 9.1) that 1,(f1) =0 +an_1, +m, for
some my, € Z. Now an—1,—bn_1,, € Z+z-k[[z]] if and only if §+an—1,, and §+b,_1,,
in k((x))[6] have the same exponential part e € E/ ~. S0 ay—1,p — by—1,p € Z + z - k[[z]]
for all p € P(k) if and only if . (f1) = p« (91). Now the lemma follows from the previous
lemma.
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PROPOSITION 3.1. Let f = 0" +a,_10" "' +---40agd® and g = 0" +bp_ 10"+ -+bpd°
be in k(z)[0]. Then

type(f) = type(g) = pu(f) = p«(g)- (3.6)
Furthermore
p(f) = pe(g) = an—1 ~x bp—1. (3.7)

If n = 1 then the two implication arrows can be reversed.

For n > 1 these arrows can not be reversed. Take for example 8% + 25 and 8% + z® + z.
These two operators have the same p, but not the same type. The second arrow can not
be reversed either if n > 1, as almost any random example will show: p, (8?) # (8% —2);
the exponential parts are different at x = oo.

Proof: Suppose type(f) = type(g). By definition 7(V(f)) = V(g) for some operator r.
We need to show that pe,(f) = pep(g) for all e and p. We may assume (after hav-
ing applied the map I,) that p = 0. Recall from section 3 that r(V,) = V, Ve(f) =
VeV (f) and pe(f) = dim(Ve(f)). From r(Ve(f)) = r(Ve NV (f)) Cr(V(f)) Nr(Ve) =
V()N Ve = Ve(g) it follows that pe(f) < pe(g9). In the same way one shows that
te(f) > pe(g) and so (3.6) is proven.

If n = 1 then (3.7) follows from lemma 3.5. The fact that a, 1 ~x b,_1 implies
type(f) = type(g) if n = 1 follows directly from the definitions. What remains to be
shown is (3.7) for the case n > 1.

Consider two lists ej,...,e, and €},... e/ of elements of k[z~'/"] C E, such that
e; ~ €} for all i. Denote d = (e; + --- +€,) — (¢} +--- +¢},). Then d € XZ but not
necessarily d € Z. However, if both lists are invariant (up to permutations) under the
Galois action of the field extension k() C k(z'/") then one can conclude d € Z.

Let p € P*(k). Let a; ,, b; , be elements of k((z)) such that I,(f) = 0" + ap—1,,6" " +
oo+ agpd® and 1y(g) = 8" + bp_1,,0" 1 + - + bopd° (note: here I,(f) and ,(g) have

been multiplied on the left by an element of k((z)) to make them monic). Let e1,...,e,
resp. €,...,el, be the lists of generalized exponents of I,(f) and I,(g). Assume that
1x(f) = p«(g). Then, after a permutation, we have e; ~ e} for ¢ = 1,...,n. Then

v'(e; —ej) = v'(e} — €}) where v’ is defined in lemma 3.4. Because the lists of generalized
exponents are invariant under the Galois action of k(z) C k(2*/7) it follows that Y, (e; —
e;) is an integer. Then by equation (3.5) it follows that pp(an_1,, — bs—1,p) is an integer.
This holds for all p € P!(k) hence (3.7) follows from lemma 3.6.

O

DEFINITION 3.5. Let f € k(x)[0] then ~v1(f) is the set of all p.(R) for all first order
right-hand factors R € k(z)[0] of f.

Because of lemma 3.5 the set v;(f) can be identified with a subset of k(z)[d]/ ~.. We
can also view it as the set of types of all first order right-hand factors. In the next
section we will see that once v (f) is known, then computing all first order right-hand
factors is not difficult anymore. This is in fact more general: Given an operator f and an
irreducible operator R, one can compute all right-hand factors of f that are of the same
type as R by solving a mixed equation. This follows from work of Loewy and Ore, see
(Tsarev, 1996) for an introduction to this topic. Solving the mixed equation is the topic
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of (van Hoeij, 1996). So one can find all irreducible right-hand factors of f if one can find
the set of types (this set is finite) of all irreducible right-hand factors of f.

The fact that for order n = 1 the type of an operator corresponds to u. (which is a col-
lection of local data, i.e. data that we can compute) is the reason that computing factors
of order 1 is theoretically easier than computing higher order factors. For higher order fac-
tors R the type is not determined by u.(R) which makes the situation more complicated.
However, the coefficient a,,_; of R = 0" + a,,_10™" ' + --- + a¢0° is determined modulo
~. by p.(R), in other words type(d + an—_1) is determined by p.(R). Hence it is not
surprising that in Beke’s method for higher order factors of f one first computes a differ-
ential equation A" f, such that for any right-hand factor R = 8" + a,,_10" 1 +-- - +a(0°
of f the operator 0 + a,_1 is as a right-hand factor of A™f (see also section 8 on this).

4. Beke’s method for finding first order factors

In this section we will describe Beke’s factorization method in (Beke, 1894). His method
is a good illustration how to use exponential parts. Previous implementations for factor-
ization in k(z)[0] are based on his method. For example, the factorizer in the Kovacic
algorithm (cf. Section 3.1 in (Kovacic, 1986)) is based on Beke’s method. Note that Beke
only uses this method for regular singular operators, for the more general case he uses
polynomial equations. However, equipped with the terminology of exponential parts, the
regular singular case is not harder nor easier than the general case. We only need to
replace the word exponent in Beke’s text by exponential part. Though the method in
this section is not precisely the same as in (Beke, 1894), the difference is small enough
to call it Beke’s method.

Let f € k(2)[0]. Assume f has a first order right-hand factor factor —r where r € k(x)
and we want to compute such a factor. This is done in 2 steps

1 Determine p.(0—1), i.e. determine the exponential part of d —r at all singularities.
2 Compute 7.

When p,(0 —r) is known then r is determined up to the equivalence ~,. So we can take
a representative ro € k() such that rog ~, r, in other words r — o = y'/y for some
y € k(x). Now r is easily found as follows. y is a rational solution of Sy (0 —r) and
hence a rational solution of S} (f). Any rational solution of S} (f) gives a right factor
O—r=0—-ro—y'/yof f.

Beke’s method does not give a real answer to how to do the first step, except by trying
all possibilities. Suppose order(f) = N and f has M singularities. At every singularity
there are at most N different exponential parts so the number of possibilities to check
is < NM. Another reason that checking all possibilities is very costly is because it can
introduce large algebraic extensions. Localizing at all singularities costs at most an alge-
braic extension of degree M! over k. Computing an exponential part at one singularity
costs at most an extension of degree N so Beke’s method uses an algebraic extension of
degree < M!- N™_ If the set v, (f) were known then the algebraic extensions one needs
to compute with would be much smaller. Computing all first order right-hand factors of
f and computing v1(f) are equivalent problems.

Note that Beke’s method implies a method for computing the radical solutions (i.e.
solutions y for which y™ € k(x) for some integer n). For this we need to adapt the algo-
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rithm such that it only tries exponential parts in ¢) modulo Z instead of all exponential
parts.

5. The main idea of the algorithm

Let f € k(x)[0] and suppose a non-trivial factorization f = LR exists with L,R €
k(z)[0]. We want to determine a right-hand factor of f. This could be done if we knew
a non-zero subspace W C V(R), cf. section 6. However, a priori we only know that
V(R) C V(f) but this does not give any non-zero element of V(R).

For any exponential part e of f at a point p € P1(k) we have (after replacing f, L, R by
(1), (L), p(R) we may assume that p = 0) V,(R) C V,(f) and pe(L) +p1e(F) = pe(f):
Suppose that we are in a situation where p.(L) = 0. Then the dimensions of V.(R) and
Ve(f) are the same and hence we have found a subspace V,(f) = Ve(R) of V(R). Then
we can factor f (cf. section 6). Note that we do not necessarily find the factorization LR,
it is possible that instead of R a right-hand factor of R is found.

So now we search for situations where we may assume p.(L) = 0. There are several
instances of this:

1 Suppose that order(L) = 1 and that f has more than 1 exponential part at the
point p. Let e; 7 ey be two different exponential parts of f. Then p., (L) = 0 or
fe, (L) = 0 because the sum of the multiplicities u.(L) for all exponential parts
e € E/ ~ is the order of L which is 1. So we need to distinguish two separate cases
and in at least one of these cases we will find a non-trivial factorization of f.

2 More generally suppose order(L) = d and that at a point p the operator f has at
least d + 1 different exponential parts es,...,eq+1. Then for at least one of these
e; we have p., (L) = 0. Hence by distinguishing d + 1 cases i =1,...,d + 1 we will
find a non-trivial factorization of f.

So we can factor any reducible operator which has:

1 A first order left-hand factor and a singularity with more than 1 exponential part.

2 Or more generally: an operator with a left-hand factor of order d and a singularity
at which there are more than d different exponential parts.

3 By using the adjoint we can also factor operators which have a right-hand factor of
order d and a point p with more than d different exponential parts.

4 An operator which has a singularity with an exponential part e of multiplicity 1.
Then we can distinguish two cases p.(L) = 0 or p.(R) = 0. The latter case is
reduced to the former case using the adjoint. We call the minimum of the multiplic-
ities taken over all exponential parts of all singularities the minimum multiplicity.
By checking both cases pe(L) = 0 or p.(R) = 0 any operator f with minimum
multiplicity 1 is either irreducible or it is factored by our method.

Note on computing first order factors: If a first order left or right-hand factor exists,
then our approach can compute a factorization whenever there is a singularity with at
least two different exponential parts. This reduces the problem of finding all first order
factors, cf. section 7. The only case that remains is when each singularity has only 1
exponential part. However, this special case is a trivial case for Beke’s method because
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we need to check only one possibility in Beke’s method. We can proceed as follows: Com-
pute (if it exists) an r € k(z) such that 0 — r has the same exponential part as f at
all singularities. Then S} (f) is semi-regular at all singularities. For computing the first
order right-hand factors of such an operator the only thing one needs to do in Beke’s
method is to compute the rational solutions.

Note on computing higher order factors: An operator with minimum multiplicity 1
is either irreducible or factored by our algorithm. If the minimum multiplicity is > 1 we
can often still factor f by constructing irreducible local factors for the different exponen-
tial parts and trying to construct right-hand factors R € k(z)[0] from these local factors
in the same way as in section 6. However, in this case our algorithm is a incomplete
because we can not guarantee irreducibility if no factorization is obtained. Currently
our implementation will print a warning message in such cases. To make the algorithm
complete for these cases we will have to use the rather inefficient exterior power method,
cf. section 8.

Note that it is possible that a factor of a minimum multiplicity 1 operator has minimum
multiplicity > 1.

6. Computing a right-hand factor R

After having applied the map [, of section 3.4 (and a field extension of k if p € k \ k)
we may assume that the singularity p in the previous section is the point p = 0.

The assumption from section 5 was that an e € E is known for which p.(f) > 0
and p.(L) = 0. From this we concluded that V,(f) C V(R). In other words S_.(R,) €
k((z))[e, d] is a right-hand factor of R, where R, is the semi-regular part of f, cf. sec-
tion 6.1 in (vH, Formal Solutions). R, and hence S_.(R.) can be computed by local
factorization (cf. section 8.4 in (vH, Formal Solutions)). We want to have a local right-
hand factor r of R. There are several strategies: We can take r = S_.(R,), or we can
take a first order right-hand factor in k((x))[e, ] of S_.(R.). Another strategy, to speed
up the algorithm, is first to try to factor f in k(x)[0] instead of k(z)[d]. If no factor-
ization in k(x)[0] is obtained, then we can redo the computation afterwards to search a
factorization in k(z)[0]. If we want to factor f in k(z)[0] then we can take r € k((z))[d]
of minimal order such that S_.(R.) is a right-hand factor of r. So, depending on whether
we want to factor f in k(z)[] or in k(2)[0], we have a right-hand factor r € k((z))[d] or
r € k((z))[e, 8] of R. Note that to find » we do not need to compute formal solutions, we
only need the factorization algorithm in (vH, Formal Solutions). From now on we will
assume that r € k((x))[6], the other case works precisely the same (just replace k by k).

Let n = order(f). The goal is to compute an operator R = ag0% + - - - + agd° € k[z, 0]
that has r as a right-hand factor. Here d should be minimal. Because r divides both
f and R on the right it also divides GCRD(f, R). (greatest common right divisor, cf.
(Ore, 1933)) Then GCRD(f, R) = R because d is minimal. We conclude that R is a
right-hand factor of f. If d < n a non-trivial factorization is obtained this way.

There are two ways of choosing the number d. The first is to try all values d =
1,2,...,n — 1. Suppose that for a certain d we find an R that has r as a right-hand
factor and for numbers smaller than d such R could not be found. Then d is minimal and
hence R is a right-hand factor of f. The second approach to take d = n — 1. If we find
R = aq0% + --- 4 aod° that has r as a right-hand factor we can compute GCRD(R, f).
This way we also find a right-hand factor of f. Sometimes it is possible to conclude a
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priori that there is no right-hand factor of order n — 1. If for instance all irreducible local
factors have order > 3 then the order of a right-hand factor is < n — 3 and so we can
take d = n — 3 instead of d =n — 1.

We can compute a bound N (cf. section 9) for the degrees of the a;. So the problem
now is

Are there polynomials a; € k[z] of degree < N, not all equal to 0, such that r is a
right-hand factor of R = aq0? + - - - + ao0°?

Let m be the order of r. Write D = k((z))[0]. The D-module D/Dr is a k((x))-vector
space of dimension m with a basis 8°,91,...,0™ 1. Write 8°,9',...,0? on this basis as
vectors vg, . ..,vq in k((x))™. Now multiply v, ...,vqs with a suitable power of z such
that the v; become elements of k[[z]]™. r is a right factor of R if and only if

agvo + - -+ aqug =0

in k[[z]]™. This is a system of linear equations with coefficients in k[[z]] which should be
solved over k[z]. One way of solving this is to convert it to a system of linear equations
over k using the bound N. A much faster way is the Beckermann-Labahn algorithm
which was found first by Labahn and Beckermann, and later independently by Derksen
(Derksen, 1994; Beckermann and Labahn, 1994). Their method is as follows

Sketch of the Beckermann-Labahn algorithm

e Let M; C k[z]¢*! be the k[z]-module of all sequences (ag,ay, - -,ay) for which
v(agug + - - - + aqug) > i. The “valuation” v of a vector is defined as the minimum
of the valuations of its entries. The valuation of 0 is infinity.

e Choose a basis (as k[z]-module) of M.

e For i =1,2,3,... compute a basis for M; using the basis for M; ;.

This sketch looks easy and the algorithm is short (Derksen’s implementation is only a few
kilobytes) but it is absolutely non-trivial. The difficult part is how to construct a basis
for M; from a basis for M; ; in an efficient way. Labahn, Beckermann and Derksen give
an elegant solution for this problem by computing a basis with a certain extra property.
Given a basis for M;_; with this property they are able to compute a basis for M; in a
very efficient way. Again this basis has this special property which allows the computation
of M;;1 so one can continue this way.

Define the degree of a vector of polynomials as the maximum of the degrees of these
polynomials. From the basis for M; we can find a non-zero A; € M; with minimal de-
gree. Suppose there exists a non-zero R = a40? + --- + a¢d° € k[z,0] having r as a
right-hand factor. Then there exists such R with all deg(a;) < N where N is a bound
we can compute, cf. section 9. So then there is a non-zero (ag,...,aq) of degree < N
which is an element of every M;. Because of the minimality of deg(4;) it follows that
then deg(4;) < N for all 4. So whenever deg(A4;) > N for any ¢ we know that there is no
R € k(z)[0] of order d which has r as a right-hand factor.

Algorithm Construct R
Fori=0,1,2,...do

e Compute M; and A; € M; of minimal degree.
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o If deg(A;) > N then RETURN “R does not exist”.

o If deg(A;) = deg(A;_3) then

Comment: the degree did not increase 3 steps in a row so it is likely that a right-
hand factor is found.

If A; = (ag,...,aq) then write R = ag0% + --- + a¢8°. Divide by a4 to make R
monic. Test if R and f have a non-trivial right-hand factor in common. If so, return
this right-hand factor, otherwise continue with the next 3.

Suppose the algorithm does not terminate. Then deg(A;) = By for all i > B for some
integers By and B,. Define D; C M; as the k-vector space generated by all A; with j > i.
These D; are finite dimensional k-vector spaces and D;;1 C D; for each i. Then there
must be an integer ¢ such that D; is the intersection of all D;. Let (ao, - . .,aq) = A;. This
A; is an element of every D; C M so the valuation of agvg + - -- + aquvq is > j for any
j. Then aguo + - - - + aqug = 0 so r is a right-hand factor of az0¢ + --- + ao0°. Then we
have a contradiction because this means that the algorithm will find a right-hand factor
in step i. So the algorithm terminates.

In our implementation we use modular arithmetic to replace the computations in @
by computations modulo some prime power p™. This works for sufficiently large p. If
it appears during the computation that p is not high enough the computation will be
re-done with a larger prime number. Rational numbers can be reconstructed from their
modular images if we have taken sufficiently many and sufficiently large prime powers
(the algorithm is called iratrecon in Maple, unfortunately no reference is given in the help
page). If k is an algebraic extension of @) then elements of k are represented as polynomials
over ) in one or more variables with a bounded degree. Then this modular arithmetic
avoids the so-called “intermediate expression swell”. If the transcendence degree of k over
@ is more than 0 then modular arithmetic does not avoid intermediate expression swell.
If we then still want to avoid expression swell we would need to substitute values in @
for transcendental elements of k to reduce the transcendence degree. For factors of order
> 1 it is not clear if this will work, for the case of order 1 factors see the comments at
the end of the next section.

7. Computing all first order right-hand factors

Our algorithm in sections 5 and 6 can find a non-trivial factorization for any operator
which has a first order right-hand factor. However, it may not compute all first order
right-hand factors. In this section we show how to combine Beke’s method with our
factorization method. With this combination we can:

1 Like Beke’s algorithm compute all first order right-hand factors R.
2 Avoid checking an exponential number of different p.(R). In fact we will need to
check at most order(f) different u.(R).

LEMMA 7.1. If f,L,R € k(2)[0] and f = LR then v1(f) C (L) Umn(R).

Proof: Let & — r be a right factor of f and let y # 0 be a solution of 8 — r. Then y
is a solution of f. We must prove that u.(0 — ) is in v, (L) or 1 (R). If y is a solution
of R then 0 —r is a factor of R so u.(0 —r) € v (R). If y is not a solution of R then
R(y) is a non-zero solution of L. Using the fact y' = ry we can write derivatives of
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y as multiples of y and hence R(y) = ty for some t € k(x). Now ty is a solution of
Lsod—(ty)/(ty) =0 —t/t—y'Jy=0—1t/t—ris a right-hand factor of L. So
(0 —t'Jt —71) € (L) and py (0 —t'/t — ) = ps (0 — r) (cf. section 3.5).

O

LemMa 7.2. If f = LCLM(f1,..., fa) and order(f) = >, order(f;) with f, fi,...,fa €
k(2)[0] then v1(f) = U; m1(fi)-

Without the condition order(f) = >_, order(f;) the lemma need not hold. For example
fi=0-(0—z)and fo=(0—-1/(x—1)) (0 —z).

Proof: |J, v1(fi) C 71 (f) because every right-hand factor of every f; is a right-hand
factor of f. So we only need to show that v, (f) C U; 71(fi)-

First suppose d = 2. Suppose 0 — r is a right-hand factor of f. We must show that
(0 —7) isin 1 (f1) or in 7 (f2). From the condition order(LCLM(f, f)) = order(f;) +
order(f2) it follows that f; and f» have no common right-hand factor. Then we can write
1= g1fi + gofo for some g1, 9o € k(x)[0)] using the extended Euclidean algorithm. The
solution space of f is a direct sum V(f) = V(1) BV (f2)- 911 + g2f2 is the identity
and gy fo acts like the zero map on V(fs) hence g; f1 acts like the projection map of
V(f) to V(fs). Similarly, if y € V(f) then g»f2(y) € V(f1) is the projection of y on the
component V(f1). Let y € V(f) be a non-zero solution of the right-hand factor 8 — r
of f. (g1fi +92f2)(y) =y s0 g1fi(y) # 0 or g2f2(y) # 0. Assume g1 fi(y) # 0, in the
other case the proof works in the same way. Like in the proof of the previous lemma we
can write g1 f1(y) = ty for some rational function ¢. Then ty is a solution of f» and so
0 —r —t'/t is a right-hand factor of fo. p.(0 — 1) = (0 — 1 — ' /1) € 11 (f2).

If d > 2 write f = LCLM(f1, LCLM(f2,..., f4)) and apply induction.

Algorithm compute the possible u,(R)
Input: An operator f € k(x)[d].
Output: A set S with at most order(f) elements such that v, (f) C S.

1 If order(f) = 1 then the problem is trivial.
2 If order(f) > 1 then apply the factorization algorithm of section 5.

(a) If no non-trivial factorization is found then f has no first order right factors so
return the empty set.

(b) If a factorization f = LR is found then apply recursion on L and R and use
lemma 7.1.

(c) If a factorization of the form f = L - LCLM(R;,...,R4) is found then apply
recursion on L and apply step 2d on LCLM(Ry,...,Ry).

(d) If an LCLM factorization f = LCLM(Ry,...,Ry) is found then

i If order(f) = ), order(R;) then apply lemma 7.2. Note that if the R; €
k(z)[0] are conjugated over k then it suffices to apply recursion on only R;
because 7; of the other factors R,, ..., Ry can be obtained from -, (R;) by
conjugation.
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ii If order(f) < ), order(R;) then compute the greatest common right divisor
G; of R; and LCLM(R,, - .., Ry). If G is a non-trivial factor of R; then let
G1,...,G, be the conjugates of G over k. Then f = L-LCLM(Gy,...,G,)
for some L and so we can proceed as in case 2c. This recursion termi-
nates because order(Gy) < order(R;). If G is not a non-trivial factor then

compute operators R;, i = 2,...,d such that V(R;) = R;(V(R;)). Then

f= LCLM(RZ, ..., Rg) - Ry and we can apply recursion.

Algorithm first order factors
Input: An operator f € k(x)[d]. 3
Output: All first order right-hand factors R € k(x)[d] of f.

1 Compute the set S from “algorithm compute the possible p.(R)”
2 For each element of s € S do

(a) Construct an r € k(x) such that u,(d —r) = s. Note that this requires no
computation because a factor @ — r with u.(0 — r) = s has already been
computed in a factorization that was done in “algorithm compute the possible
p(R)”.

(b) Compute a basis y1, ..., yq of rational solutions of S*(f) and write the general
rational solution as ¢1y; + - - - + cqyq where the ¢; are undetermined constants.

(c) If d # 0 then 0 —r — (c1y1 + -+ + caya)'/(c1yr + - -+ + cqyq) are right-hand
factors of f parametrized by (ci,...,cq) € P4 1(k).

It follows that the set of r € k(z) for which 0 — r is a right-hand factor of f is a disjoint
union of at most order(f) projective spaces.

The algorithm in sections 5, 6 only avoids intermediate expression swell if k¥ C @. If
the transcendence degree of k is > 0 then the algorithm still works, but then it is much
less efficient. We will explain below that finding first order factors of operators in k(z)[0]
can be reduced to finding first order factors of operators in Q(z)[0]. This is important
for the efficiency because in this way intermediate expression swell can be avoided.

Suppose k is a field, finitely generated over @), of transcendence degree d > 0. We
will briefly describe in the rest of this section how computing all first order right-hand
factors over k can be reduced to the same problem over a field of transcendence degree
d — 1. We will only give the idea and skip the details. Suppose k is an algebraic function
field k = I(s,t), where [ is of transcendence degree d — 1, s is transcendental over I and
t is algebraic over I(s). Then there exists a regular point (s,t) = (so,%9) € (I)? on the
corresponding curve such that the coefficients of f are in the local ring at this point. A
regular point corresponds to a valuation v on k. For elements ¢ € k we have v(c) > 0 if
and only if ¢ is in the local ring at this point. Such elements can be evaluated at the point
(50,t0). Denote this evaluation map by 7. If ¢ € k with v(c) > 0 then 7(c) € I(so,t0) C I.

This valuation v can be extended to a (non-discrete) valuation on k. It can be further
extended to a valuation on k[z] by defining the valuation of an element of k[z] as the
minimum of the valuations of its coefficients in k. Then v can be extended to k(x) because
this is the field of fractions of k[z]. Now v can be extended to k(z)[0] by defining the
valuation of an operator in k(z)[0] as the minimum of the valuations of its coefficients in
k(). One can verify that this is indeed a valuation, i.e. that for operators f,g € k(x)[d]
we have v(f-g) = v(f)+v(g). The evaluation map 7 can be extended as well, if g € k(x)[9]
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and v(g) > 0 then 7(g) € I(x)[8] can be defined (first extend 7 to k[z], then to k(z) and
then to k(x)[d)).

Without loss of generality we may assume that f is monic (i.e. the coefficient of the
highest power of 9 in f is 1) and we only consider monic factors of f. We can choose the
point (sg, tg) in such a way that the valuation of f is 0. A monic operator has valuation < 0
because the valuation of the leading coefficient is v(1) = 0. If f = LR with L, R € k(x)[9]
and L, R are monic then v(f) = v(L) + v(R) and since the valuations of L and R are
< 0 we have v(R) = 0. So any monic right-hand factor R of f can be evaluated at the
point (s,t) = (sq,to). In other words: if f = LR with L, R monic then this factorization
can be evaluated at the point (so,to) which gives the factorization 7(f) = 7(L)7(R).
Now we can reduce the problem of computing all first order right factors of f as follows:
compute the right factors of 7(f), this gives v1(7(f)) (cf. section 3.5 for a definition).
Now for any first order right-hand factor R of f we have a right-hand factor 7(R) of 7(f)
50 T7(m1(f)) C 1 (7(f)). Choose the point (sg,to) in such a way that for any two different
exponential parts of f the images under 7 do not coincide. Then we can reconstruct
v (f) from 7(71(f)). We do not know 7(y1(f)), however. But we know that 7(vy1(f)) is
a subset of v1(7(f)) so we can check each element of v, (7(f)) to see if it yields a factor
of f. This way we find all first order right factors of f.

8. Several strategies for completing the algorithm

Suppose f € k(z)[0] and our factorization algorithm in sections 5, 6 and 7 produces
no non-trivial factorization. Can we then stop the computation and conclude that f is
irreducible? If order(f) < 4 or if there exist e,p such that pep(f) = 1 (the algorithm
computes all e ,(f) so it knows when this case occurs) then the answer is yes. In the
remaining cases we can apply the following approach that we will call the exterior power
method. It is obtained from (Beke, 1894) combined with significant improvements (namely
steps 3 and 4) given in (Tsarev, 1994; Bronstein, 1994).

1 Compute an operator A%f € k(x)[0] with the property that if y1,...,y4 € V(f)
then the Wronskian of y1,...,y4 is in V(AYf). We will call A%f the d-th exterior
power of f (called Differentialresolvente in (Beke, 1894). These equations are often
also called associated equations). The important property is that if

a¢ + ad,lad_l +---+ a06°

is a right-hand factor of f then 8 + a4_; is a right-hand factor of AZf.

2 Compute all first order right-hand factors in k(z)[0] of A?f.

3 In (Tsarev, 1994) a method (based on Pliicker relations) is given for deciding which
order 1 factors of A%f correspond to order d right-hand factors of f.

4 Use these first order factors to compute the factors of f of order d. An efficient way
to do this step is given in (Bronstein, 1994).

For operators of order 4 this approach works quite well, for order 5 it is already quite
costly, and for higher order it is usually infeasible unless the coefficients are very small.
Step 2 can be done by section 7, or by Beke’s method (cf. section 4 and (Beke, 1894),
see (Bronstein, 1992; Grigor’ev, 1990; Schwarz, 1989) for variations on Beke’s method).
We will give a number of strategies to speed up step 2.
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First we apply the factorization method from (van Hoeij, 1996) on f. If this produces
a non-trivial factorization then we have gained something, we can apply recursion on
the factors. But if no factorization is found we gain something as well, because then we
can conclude by lemma 8.1 below that if f is reducible in k(x)[0] then it is reducible
in k(x)[0] as well. Hence we only need to compute first order factors of A? in k(x)[d]
instead of k(x)[0]. This information removes the main bottleneck (which is splitting
field computations) of Beke’s method for computing factors of order 1. But we can gain
even more as follows. We first try our algorithm in section 6 on all singularities p and all
exponential parts e. Note that such computations are usually cheaper than computations
with A%f because A?f is a much larger expression than f. If we are lucky and find a
factorization, then we can apply recursion. But if no factorization was found, then we gain
something as well, namely then we know that for all e, p if pe ,(f) > 0 then p. p(L) >0
(otherwise a factorization would have been found) and in the same way p. ,(R) > 0 (by
applying the adjoint). Hence for every e, p we have p ,(L) > 0 if and only if . ,(R) > 0.
The number of possible p, in section 4 that need to be considered in Beke’s algorithm
can be very large. However, with our information on the exponential parts of L and R
we can skip a lot of different p.. The best case is if order(f) = 4. In this case L and R
must be irreducible and have order 2 and furthermore p, (L) = p.(R) (otherwise f would
already have been factored). Then p,(R) is known, and hence by proposition 3.1 the type
of 8+ ag_; is known (we had R = 0% 4+ aq_10% ' 4+ --- + apd° and d = 2). We want to
find 8 4+ a4_; as a right-hand factor of A%f, and since we know the only possible value of
1+ (0 + ag—1) we can find 9 + ag—1 by checking only 1 possibility in Beke’s algorithm. So
computing 0 + a4—1 has been reduced to finding rational solutions. If order(f) > 4 then
we can still significantly reduce the number of cases in Beke’s algorithm in this way, but
we can not reduce this number to 1 anymore.

LEMMA 8.1. If f € k(x)[0] is irreducible in k(x)[0] then it is completely reducible in
k(z)[0].

An operator is called completely reducible if it is an LCLM of irreducible (in k(x)[0])
operators. So any irreducible (in k(z)[0]) operator is completely reducible as well.

Proof: Let f; be an irreducible right factor of f in k(z)[0]. Let fi,..., f. be the conju-
gates (over the field extension k C k) of f;. Because conjugation commutes with differ-
entiation we see that fi,..., f. are irreducible right factors of f. The Galois group of the
extension k C k permutes the f; hence LCLM(fy,..., f,) is invariant under this group.
Then this LCLM is a factor of f in k(z)[0] and hence equal to f because f is irreducible
in this ring.

9. A bound for the degrees

Let f € k(z)[0] be given. Let R = 0" + a,_10" ' +--- + agd° € k(z)[0] be a right-
hand factor of f. The topic of this section is to compute bounds for the degrees of the
numerators and denominators of the a;. These bounds are known when

e For every a; and for every singularity p of f and the point p = co we have a lower
bound for the valuation of I,(a;) € k((x)).
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e We have an upper bound for the number of extra singularities. A point p € k is
called an extra singularity of the factorization f = LR if f is regular at p and R is
singular at p.

The bounds in the first item are obtained from the relation N(f) = N(L)+ N(R) (cf.
section 3.3 in (vH, Formal Solutions)). The valuation of the a; at the extra singularities
is also bounded by this relation. So all that is still needed is an upper bound for the
number of extra singularities.

9.1. THE NUMBER OF EXTRA SINGULARITIES

It is known that the number of extra singularities can be bounded using Fuchs’ relation.
This relation says that the sum of the residues is zero (cf. lemma 9.2). In this section
we will relate these residues to the list of generalized exponents. The list of generalized
exponents of a right-hand factor R of f is a sublist of the list of generalized exponents
of f. This gives us a method to bound the residues of R at the singular points of f.
The residues at the extra singularities are negative integers. Hence, since the sum of the
residues is zero, the number of extra singularities is bounded by the sum of the residues
of R at the singularities of f. Note that the result in this section is similar to (Bertrand
and Beukers, 1985). A difference is that we have a precise equation instead of a bound for
lres(f) in lemma 9.3, resulting in a sharper bound for the number of extra singularities.

DEFINITION 9.1. Let f = a,0"+an,_10" 4+ -+0agd° € k(2)[0] with a, # 0. Let p € k.
Then the residue resp(f) of f at the point p is defined as the residue of an—1/an at the
point p. The residue ress,(f) of f at co is defined as the residue of —z%a,_1/a, at the
point oo.

Let f = apd™ +a,_10" 1 +---+agd® € k((z))[8] with a,, # 0. Define the local residue
Ires(f) as the constant coefficient of an_1/an € k((x)).

LEMMA 9.1. Let f € k(x)[0]. Let n be the order of f. If p € k thenres,(f) = Ires(l,(f))+
1+24---+(n—1) and if p= oo then resp(f) =1Ires((,(f)) — (1 +2+---+ (n —1)).

Proof: Without loss of generality we may assume that f is monic. Write f = 0™ +
an—10" "1+ -+0ag8°. Suppose p € k. Then I,(f) = 0™ +1p(an—1)0" 1 +---+1,(ag)d® =
(16)™ + lp(an—1)(L6)"1 + - - + I,(ao). The coefficient of 6" in this expression is 1/z"
and the coefficient of 6" is lp(an—1)/2" ' = (1 4+ 24 --- + (n — 1))/2™. So lres(l,(f))
is the residue at = 0 of l,(an—1) (which is the same as the residue at * = p of ap_1)
minus 1 + 2+ --- + (n — 1) and hence the lemma holds for p € k.

Now suppose p = 0. I, (f) = (=26)" +p(an—1)(—28)" "' +- - -. The coefficient of 6" in
this expression is (—z)™ and the coefficient of 6" ! is (—z)" 1, (ap—1) + (—z)"(1+2 +
<=+ + (n —1)). So the local residue is —1 times the coefficient of z! in I,(a,—1) € k((z))
(this coefficient equals the residue of I,(a,_1)/2? at z = 0 and this equals the residue of
2%2a, 1atzx=o00)plus1+2+---+ (n—1).
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LeEMMA 9.2. Let f,g € k(x)[0] be monic and p € Pl(k). Then res,(fg) = res,(f) +
res,(9). If p € k and f is reqular at the point p then res,(f) = 0. Furthermore

Z res,(f) =0

pEP (k)

Proof: The proof of the first two statements is easy, we will skip it. Let f = 9™ +
an—10" "1 +---+a9d°. The third statement is easy to prove if a,_1 is of the form (z—p)™

for some p € k and m € Z. Now the statement follows because every a,_; € k(z) is a
k-linear combination of such expressions (z — p)™.

O

Note that the relation res,(fg) = res,(f)+res,(g) need not hold without the restriction
that g is monic (take for example f = 8, g = °0 and p = 0).

Let ey,...,e, € E. Define B(ey,...,e,) as the constant term in the expression ), e; +
>_j>iV'(e;i — €;), where v is defined in lemma 3.4.

LEMMA 9.3. Let f € k((z))[d] and ey, ..., e, the list of generalized exponents of f. Then
Ires(f) = —B(ey,...,en).

Proof: pp(an—1) = —>; (ei + Zj>i v'(e; — ej)), cf. lemma, 3.4. The local residue is the
constant term of a,,_1. This equals the constant term of pp(a,_1), whichis —B(ey, ..., ey).

O

LEMMA 9.4. Suppose f,L,R € k(z)[0] are monic, f = LR and f is regular at the point
p € k. Then R is singular at p if and only if res,(R) is a negative integer.

Proof: We may assume p = 0. Let v be the usual valuation on k((x)). Let n be the
order of R and by,...,b, € K[[z]] be a basis of formal solutions of R such that the
valuations v(by),...,v(b,) is the list of generalized exponents of R. Because f is regular
the list of generalized exponents of f is 0,1,...,order(f) — 1. The list of generalized
exponents v(by),...,v(b,) of R is a sublist of this. Hence B(v(b1), . ..,v(b,)) is an integer
>0+1+---+ (n—1).If Ris regular then B(v(b1),...,v(b,)) =04+1+---4 (n—1).
Conversely, if B(v(b1),...,v(b,)) =0+ 1+ ---+ (n — 1) then (after a permutation) we
have v(b;) =i—1,4=1,...,n. Furthermore b; € V(f) C k((x)). Hence by lemma 9.2 in
(vH, Formal Solutions) it follows that R is regular.

So R is singular if and only if B(v(b1),...,v(b,)) >0+ 1+ ---+ (n —1). reso(R) =
1+---+(n—1)— B(v(b1),...,v(b,)) hence this is a negative integer if and only if R is
singular.

O

Let f € k(z)[0] and R a right-hand factor of order d. Let S be the set of singularities
of f and the point co. Let T be the set of extra singularities of R. So R is regular outside
SUT and hence the residue of R is 0 outside S|JT'. We want to find an upper bound
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for the number #7T of extra singularities. Since the sum of the residues of R is zero we
have

S (resy(R)) = — 3 (res, (R)) > #1.

pES peT

res,(R) is determined by the list of generalized exponents of R at p which is a sublist of
the list of generalized exponents of f at the point p. So for every p we have finitely many
possibilities for res,(R).

We search for a bound for the integer values that _ .c(res,(R)) can have. This is
a rather difficult problem if k is a complicated field. To simplify the problem we will
substitute values for the parameters appearing in k to reduce the transcendence degree
of k to 0. Then the problem is the following: for each point p we have lists of generalized
exponents of f in Q[z~'/"] for some n. Each sublist determines one of the residues that
R can have in the point p. Every combination of the possible residues at all p € S must
be added to see if the result happens to be an integer and we must find a bound that
integer. This can require computing in algebraic field extensions over @ of an enormous
degree. So we must further simplify the problem (note that this simplification can lead
to a possibly higher bound, so the step we will make is not always the best thing to do).
This simplification can be done in several ways. One way to eliminate these algebraic
numbers is to replace each algebraic number by its image under the following €-linear
map:

U (a) is defined as the trace of a over the field extension @ C @(a) divided by the degree of
this extension (one should take into account the fact that this may alter the v'(e; —e;)).
Another way is to compute with floating point approximations.

Now we need not compute in complicated constants fields anymore, but one problem
remains, namely we must check a large number of different possibilities. To reduce this
number we can bound each residue (which is a rational number after having applied ¥)
separately, add all these rational numbers and take the largest integer which is < this
sum. Similarly one can compute a bound for the image of the residue under ¥ without
checking all sublists of the list of generalized exponents.

10. Factorization in other rings

The Labahn-Beckermann algorithm can be used to factor in other rings as well. For
example the commutative ring k(z)[y]. An element f in this ring can be factored by
computing an irreducible local factor I € k((x))[y] of f and constructing an R € k(z)[y]
of minimal degree such that [ is a factor of R, in the same way as in section 6.

Another example is the ring of difference operators k(z)[7] where 7-z = (z+1)-7. The
only place on P'(k) where we can study the difference operators locally is = oo because
all other places on P!(k) (a place on P!(k) is a valuation on k(z)) are not invariant under
7. One can compute local factorizations and define exponential parts and generalized
exponents for difference operators in a very similar way as for differential operators. So
we can apply the method from section 6 to the ring k(z)[7] as well. In the differential case
the completeness of our algorithm in section 7 depends on the fact that we can choose a
suitable singularity to apply our method from section 5 to. However, for the ring k(z)[7]
we can not always choose a suitable singularity because £ = oo is the only point we can
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take. As a consequence, our factorization algorithm for k(z)[r] is incomplete, even for
factors of order 1.
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