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1 Introduction

Let C be a field of characteristic 0 and C be its algebraic closure. Denote
k = C(x) with the derivation 0 = -£. Let

L{y) = > aiy® =0, ay # 0, a; € Cla]
=0

denote a homogeneous linear differential equation of n-th order. For such dif-
ferential equations, there is a differential Galois theory analogous to that for
polynomial equations. Let y1,...,¥y, be a basis of the vector space V(L) of
solutions. By adjoining the solutions ¥, ..., vy, and all their derivatives to k,
we get a differential field extension K D k (called a Picard-Vessiot extension);
the differential Galois group G of L (over k) is then defined as the group of
k-automorphisms of the differential field K (i.e. k-automorphisms of K that
commute with the derivation). The group G acts faithfully on the vector space
V(L), and so G can be viewed as a subgroup of GL(V(L)). It ‘measures’ the
differential relations satisfied by the solutions of L(y) = 0 over k. One way to
obtain information on G (and thus on the solutions) is to compute invariants:

Definition 1.1 An element v of some symmetric power Sym™(V (L)) that is
fized by the differential Galois group G s called an invariant of G.

A standard method for computing invariants consists in building an operator
L®™ (for a definition see section 2.3) whose solution space is a G-homomorphic
image of Sym™(V (L)) and then search for rational solutions of this operator.
Via differential Galois theory, one can (usually) reconstruct invariants from
these rational solutions (see [SU196] for more details).

However, the computation of L&™ can be complicated for computers. For this
and for other reasons (cf. section 2.3) we will use the companion system of L,
which we note Y’ = AY. It is then easy to construct a system Y’ = S™(A)Y
whose solution space is G-isomorphic with Sym(V (L)). Our algorithm consists
in finding rational solutions of the latter system under two guidelines: we do
not perform a costly conversion into an equation and for efficiency we use as
much as possible the structure of the system (i.e. the fact that it is a symmetric
power of a companion matrix system).

In section 2, we develop and motivate this approach and its links with the
previous methods. Let F' denote a rational (i.e. entries in k = C(x)) solution
of Y = S™(A)Y. Such an F will be called a dual first integral. In section 3,
we define generalized exponents of a local differential operator and show how
to use these to compute bounds for the numerators of denominators of the
entries of F. Let Sym™(U) denote the m-th symmetric power matrix (defini-
tions follow later) of U, where U is a fundamental solution matrix of Y = AY".

A

Note that Sym™(U) can be computed from a basis 4, . .., §, of formal solu-



tions of L. Using the bounds from section 3, we show in section 4 how the
evaluation of a finite number of terms of the series in Sym™(U) (plus linear
algebra) yields all rational solutions of Y’ = S™(A)Y. Our strategy is first to
design a fast heuristic to construct a space that contains all invariants (plus
maybe some additional rubbish), then to convert these (candidate) invariants
to (candidate) dual first integrals using the matrix Sym™(U). Then we check
which candidate invariants are really invariants by checking which candidate
dual first integrals are indeed dual first integrals. To do this conversion effi-
ciently, we show how to reduce significantly the number of rows and columns
of Sym™(U) that need to be evaluated.

The algorithm is implemented in MAPLE; an experimental code is available

from the authors.
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2 Invariants of differential Galois groups

In this section, we recall some basic facts and notations about the various
ways to present the invariants of differential Galois groups. For more detailed
introductions to differential Galois theory, unfamiliar readers could consult
[Sin89,Lev89,MRa89,Ber86,Beu92|.

2.1 Two presentations of the invariants

If y is a generic solution of L(y) = 0, we can form the vector

Y = (y, vy, y(”_l))t .

This vector satisfies a first order linear system Y’ = AY, where A is the
companion matriz of L. Let vy, ..., y, denote a basis, fixed once for all, of the
solution space V(L) of L(y) = 0. Then the vectors Y¥; = (y,-, Yyl ,ygn_l))t
form a fundamental system of solutions of Y’ = AY. This solution space is
G-isomorphic with V(L). The n x n matrix U whose columns are the Y; is

called a fundamental solution matriz for Y' = AY'.



2.1.1 Polynomial invariants

It is well known ([Lan92]) that Sym(V (L)) can be identified with the poly-
nomial ring C[X1,..., X,], where X;,..., X, are variables on which G acts
the same as on yi,...,y,. Under this identification, we will say that a ho-
mogeneous polynomial P that is fixed by the Galois group is a polynomial
invariant. In the sequel, the coefficients (in C) of such a P will be referred to
as the wvector of coefficients of the invariant, or the vector invariant.

Let f = P(yi1,...,yn) € K. As P is an invariant, f is fixed by G. The differ-
ential Galois correspondence then implies that f € k. We will call this f the
value of P.

For an invariant in Sym™(V (L)), the expression of P depends on the choice
of the basis of V(L). But the value f of the invariant is independent of this
choice. For some applications, one just needs this value (for example to com-
pute algebraic solutions [SU193b] or to solve second order equations [UWe94]),
and there, ‘to compute an invariant’ means ‘to compute its value’. For other
applications (to compute Liouvillian solutions [SUI96]), one needs the expres-
sion of the polynomial invariant, together with its value.

2.1.2 The symmetric power system

Let y denote again a generic solution of L(y) = 0, and let pim,, . m,] == y™ -
(y")"2 - - - (y™= V)™= (with 3 m; = m) denote a differential monomial of degree
m in y. Then

!
Fima,...;mn] = T m1—1mat1,mn] T 00 F M1 ma,..imp—1 —1,mp +1]

n a; 1
+my _Z . H...omj+1,...;mp—1]

j=1 On

(with the convention that pp. _1.] = p.m+1,.] = 0) so this derivative is

a k-linear combination of monomials of degree m in the y(®. As there are

N = (":Tl_ 1) such monomials, the vector

Y = (y",. ..,y (ynmymeL (ynmhym)

of all such monomials satisfies an N x N system Y’ = S™(A)Y. Note that the
matrix S™(A) is very sparse and that it is immediately given by the relations
above. So it can be computed quickly, even for large n and m.



2.1.83 The symmetric power matriz

Let K be a field. The action of g € G1,(K) on K™ induces an action, denoted
by Sym™(g), on the vector space Sym™(K™). In other words we have a group
homomorphism Sym™ : GIl,(K) — Gl(Sym™(K™)). After having chosen a
ordering on the monomials in Xi,..., X, of degree m, we can identify the
vector space Sym™(K™) with KV (here N is the number of such monomials;
N = (":Tl_ 1)) This way a group homomorphism

Sym™ : Gl (K) — Gly(K). 1)

has been defined.

Remark 2.1 The above definition of Sym™(g) (which from now on will be
considered as an element Gly(K) instead of GI(Sym™(K™))) depends on the
ordering that was chosen for the monomials of degree m. It is irrelevant which
ordering we choose, however, to have a consistent definition we must always

use the same ordering. We will use the lexicographic ordering with X, < --- <
X,.

The matrix Sym™(g) is called m-th symmetric power matriz of the matrix g.
We use the same symbol Sym™ for symmetric powers of vector spaces as well.
We use the symbol S™ for the symmetric power of a differential system (cf.
section 2.1.2); Sym™ is not the same matrix construction as S™ and this is
why we must use a different notation.

Remark 2.2 If g is the matriz (g;;) then Sym™(g) can be computed as fol-
lows: Put v; = }>;c¢jg; and Y is the vector? of monomials in the v;. Then
Sym™(g),s is found from the r-th entry of Y by taking the coefficient of the
s-th monomial in the c;.

2.2 Dual first integrals

Proposition 2.3 Let A be the companion matrixz of a differential operator
L, let G be the differential Galois group and let W be the solution space of
Y' = S™(A)Y. There erists a G-isomorphism

A Sym™(V (L)) —» W.

2 Defining a vector of monomials implies choosing an ordering on the monomials,
we take the same ordering as in remark 2.1.



Let U be a fundamental solution matriz of Y' = AY. Then the columns of
Sym™(U) form a basis of W.

PROOF. Let K be the Picard-Vessiot extension generated by the entries
of U. From remark 2.2 one can verify that Sym™(U) satisfies the equation
Y'=8"(A)Y. As Sym™ is a group homomorphism, Sym™(U) is an invertible
matrix and hence the second statement follows.

The entries of Sym™(U) are in K, so W C K~ and hence the Galois group G
acts on W. Let g € GG. Because K is the base field in the construction of the
homomorphism Sym™ in the previous section, automorphisms of K commute

with Sym™, i.e. g(Sym™(U)) = Sym™(g(U)).

The automorphism g acts on U as multiplication on the right with a matrix
g € Gl,(C). Let W, be the solution space of Y’ = AY. The columns of U form
a basis of Wj. On this choice of basis, the action of g on W, is given by the
matrix §. The action of g on V(L) is also the matrix g, where Uy 1,..., U,
is chosen as a basis for V(L). Then by definition of the matrix Sym™(g), the

action of g on Sym™(V (L)) is given by the matrix Sym™(g).
g9(Sym™U)) = Sym™(g(U)) = Sym™(U - ) = Sym™(U) - Sym™(g)

So g acts on W as the matrix Sym™(g), where the columns of Sym™(U) are
chosen as basis for W. So the matrix of the action of g is the same for W as
for Sym™(V (L)), hence W is G-isomorphic with Sym™(V(L)). O

We can describe A more explicitly as follows. After choosing a basis y1, ..., ¥n
of V(L), or equivalently, after choosing a fundamental solution matrix U of
Y’ = AY, an element of Sym™(V (L)) can be represented as a homogeneous
polynomial P in the variables Xi,..., X, of degree m. Let C € C" be the
vector of coefficients of P. Then

A(P) = Sym™{U)-C € W. (2)

Note that in fact both Sym™(V (L)) and W are defined independently of a
choice of basis yi, ..., y,, and that A : Sym™(V (L)) — W is also independent
of this choice.

Via A, an invariant in Sym™(V (L)) can be presented as an element F € W
whose entries are left fixed by the Galois group; this is equivalent with saying
that FF € WNkY™. An invariant given in this presentation (i.e. given as a



rational solution F' of Y' = S™(A)Y) will be called a dual first integral® .

Lemma 2.4 Let P be a polynomial invariant and let C be the vector of its
coefficients. Then, Sym™(U) - C is a dual first integral.

Conversely, let F' be a dual first integral and let the vector C be such that F =
Sym™(U) - C. Then, C is the vector of coefficients of a polynomial invariant
P. Moreover, the first entry of F' is the value of P.

PROOF. The first two statements follow from equation (2) and the fact
that A\ is a G-isomorphism. For the third statement note that the first row in
Sym™(U) is the vector of all monomials in y, ..., y,. Hence the first entry of
F equals P(yy,...,Yn), i.e. P with y; substituted for X;. O

A different way to explain the relation between invariants and dual first inte-
grals is given by the following proposition.

Proposition 2.5 Let K be the Picard-Vessiot extension and G the differential
Galois group of L. Define the C-algebra homomorphism

¢ Sym(V (L)) = K[X1,..., X,

by (it suffices to define ¢ for homogeneous elements of degree 1)

oy) =3 Xy for ye V(D).

i=1

Then ¢ is an embedding (as C-algebra and as G-module) of Sym(V (L)) in
K[X1,..., Xa].

PROOQOF. ¢ gives an embedding (as C-vector space and as G-module) of V(L)
in K-X; +---+ K - X,,. Furthermore if y;,...,%, is a C-basis of V(L) then
their images form a K-basis of K- X; + -+ K- X, because the Wronskian of
Y1, - - -, Yn has non-zero determinant. Hence ¢ is an embedding of Symg(V (L))
in Symg(K - X1 +---+K-X,)=K[Xy,...,X,]. O

If we identify the K-vector space of homogeneous polynomials of degree m
with KV then the maps ¢ and A from Sym™(V (L)) to W C K coincide.

3 This name comes from the fact that solutions of the dual of Y’ = S™(A)Y are
first integrals for Y/ = AY.



2.8  Computational aspects

The operator whose solution space is spanned by all monomials of degree m in
the y; is noted L™ and is called the m-th symmetric power of L. Its solution
space is a G-homomorphic image of Sym™(V (L)) ([SUI93a]); V (L®™) = p(W)
where p : KV — K is the projection on the first component. The order of L®™

is<N = (”’;Tl_ 1) (the number of monomials of degree m in n variables); it

is < N if and only if there is a non-zero P € C[X1,..., X,], homogeneous of
degree m, having value 0, i.e. P(y1,...,y,) = 0. In this case it can happen
that the value of a homogeneous polynomial P of degree m is in k£ even though
P is not an invariant. If order(L®™) = N then P is invariant if and only if
its value is in k. So, the standard method for computing invariants is the
following: replace L (if necessary) by an operator with an isomorphic solution
space, in such a way that L™ has the correct dimension N. Then the set of
values of the invariants of degree m is the space of rational solutions of L™,
cf. [SU193b,SU196]. The usual method (given in [SUI93a]) to construct L®™
amounts to converting the system Y’ = S™(A)Y to an equation by using the
(putative) cyclic vector (1,0,...,0).

This method has three drawbacks. First, the cost of the computation of L®™
grows very fast with m and n (because we must perform elimination on sys-
tems whose size grows exponentially). So, in practice, the computation be-
comes rapidly impossible.

Secondly, if L®™ does not have the right order, then one has to perform a
transformation on L and re-do the whole computation (though some informa-
tion can be saved, see [Wei95a]).

And thirdly, for some applications, one indeed needs the invariant in the form
of a dual first integral (e.g. [Com96]).

The first motivation of this paper was not to find a faster method, but a
method that would work when computation of L®™ fails, and that would
avoid the above drawbacks. The approach in this paper consists in solving
directly the system Y’ = S™(A)Y, without converting it to an equation. For
any point 2y € P*(C), the system has a local formal fundamental solution
matrix Sym™(U) where U is a local solution matrix of Y’ = AY. The system
Y’ = S™(A)Y has a rational solution F' (a dual first integral) if and only if

there exists C € C such that Sym™(U)C = F € kY. We will use this in
section 4 to compute F'. Thanks to lemma 2.4, this will give us the invariants
in all the presentations at the same time.



3 Bounds on exponents using generalized exponents

This section addresses the question of finding the denominator and a bound
on the numerator of each entry of a dual first integral F'.

When computing rational solutions of a differential operator L, one first com-
putes a lower bound for the integer exponents of L at each point o € P'(C).
We would like to compute rational solutions of symmetric powers (and other
constructions) of differential operators. In the regular singular case, [SUI94]
give the bound for the integer exponents of symmetric powers L&™ in terms of
the exponents of L. In the irregular singular case, however, we can not obtain
a bound for the integer exponents of L®™ from the exponents of L. The rea-
son is that in this case there are “too few exponents”: in the irregular singular
case, there are, counted with multiplicity, less than order(L) exponents. To
handle this difficulty we will use a generalization of exponents. An alternative
way to get a bound (a different bound than ours) is found in lemma 3.3 in
[Sin93] using a different generalization of exponents found in [BBe85].

For convenience of notation we will now assume that the point of interest
is the point £ = 0. Then L in C(z)[d] is viewed as an element of the ring

C((«))[0] = C((2))[0] where

3.1 A few preliminaries on local differential operators

In this section we list a few known facts about local differential operators that
will be used in later sections.

Definition 3.1 Let L = Y a;;z'0? € C((z))[d] be non-zero and let T be a
variable. Let v be the smallest integer such that a,; # 0 for some j. Then the

Newton polynomial Ny(L) for slope 0 of an operator L is defined as Y a, ;T €
C[T].

If L can be written as a product L = L, - Ly then Ny(Ls) is a factor of Ny(L).
The Newton polynomial is used in algorithms for computing factorizations
and/or formal solutions of differential operators. One defines a Newton poly-
gon and for each slope in the Newton polygon a Newton polynomial can be
defined. Definition 3.1 gives the Newton polynomial only for slope 0 in the
Newton polygon. Definitions and properties of Newton polygons and polyno-



mials can be found in [Mal79,Tou87,Bar88,Hoe95a].

Definition 3.2 The exponents of L are those elements e € C for which there
15 a solution of L of the form

zfs where s¢€ C((z))[log(z)] with wv(s)=0.

Here the valuation v(s) is defined as the smallest rational number such that
the coefficient of V) in s is non-zero.

Note: If s € C((w))[log(x)] then s € C((x/7))[log(x)] for some integer r. The
smallest r with this property is called the ramification indez of s. The valuation
v(s) for s # 0 is the largest number in @ such that sz € C[[z'/"]][log(x)].
The valuation of 0 is co.

The following is a well-known property of exponents. It is generalized in propo-
sition 3.7.

Lemma 3.3 An element e € C is an exponent of L if and only if e is a root

Of No(L)

Note: In the literature exponents are often also called indices, and the Newton
polynomial Ny(L) is then called the indicial polynomial or indicial equation.

We denote the linear universal extension of C((x)) by V. This is a ring that
contains C'((z)) and a basis of solutions of all homogeneous linear differential
equations over C'((x)). Furthermore V' is minimal with this property. A con-
struction is given in [HvP94], lemma 2.1.1. From the way that V' is constructed

in [HvP94] it follows that one can define a map

Exp:C((z)) =V
with the following properties: Exp(e) is a non-zero solution of § — e, Exp(q) =
x? for ¢ € @ and

Exp(e1 + e2) = Exp(e1)Exp(ez)

for e1,eo € C((x)), i.e. Exp behaves like an exponential function. One can
think of Exp(e) as

Exp(e) 7 =7 exp(/ %dx) "= gf.

We have
Exp(e) € C((z)) <= e € Z + x - C|[x]]

10



and

Bxp(e) € O((7)) <= ¢ € O(@) (UCZ + 2 - C[)).

T

Definition 3.4 Define the substitution map

Se : C((2))[6] = C((2))[4]

for e € C((z)) as the C((x))-homomorphism that maps 0 to 6 + e.

The substitution map has the following well-known property: Exp(e)y is a
solution of L if and only if y is a solution of S, (L).

3.2 Definition of generalized exponents

Using the substitution map, one can rewrite the standard property of expo-
nents (lemma 3.3) as follows:

Lemma 3.5 Let L € C((z))[6] \ {0}. An element e € C is an exponent of L
if and only if 0 is a root of the Newton polynomial No(Se(L)).

With this lemma in mind, we can generalize the exponents by replacing the
set, C' by a larger set of exponents E. Define

E=JClz "

In the following definition we need to generalize definition 3.1 to non-zero
elements of C'((x))[d]. Take ¢ € @ minimal such that the coefficient of 27 in L
is non-zero. Then Ny(L) is this coefficient (which is in C[d]) with § replaced
by the variable 7.

Definition 3.6 Let L € C((x))[0] \ {0}. For an element e € E the number
ve(L) is defined as the multiplicity of the root 0 in Ny(Se(L)).

e € E is called a generalized exponent* of L if v.(L) > 0. The number v,(L)
s called the multiplicity of the generalized exponent e in the operator L.

Alternative approaches are found in the literature (e.g. [CLe55,Put95]). The
exponents are those generalized exponents that are in C.

* A generalized exponent was called canonical exponential part in [Hoe95b]. We

changed this name to point out the use of this notion, which is to generalize methods
that use exponents (for example: [SU194]) to the irregular singular case.

11



The generalized exponent should not be confused with the definition of expo-
nential part in section 3.2 in [Hoe95b]. A generalized exponent is an element
of the set E, whereas an exponential part is an element of the set £/ ~. Here
the equivalence ~ is defined by

1

ram(e;)

Z

€1 ~ ey <= €1 — ey €

where ram(e;) is the ramification index of e;. From the definition in section
3.2 in [Hoe95b] it follows that the multiplicity pe, (L) of an exponential part
e; equals the sum of the multiplicities v,,(L) of the generalized exponents e,
taken over all e; € E for which e; ~ e;. So by theorem 1 in [Hoe95a] it follows
that

> ve(L) = order(L). (3)

eckE

Many mathematical and algorithmic difficulties with irregular singular oper-
ators are caused by the fact that for such operators there are (counted with
multiplicity) “too few” exponents. Because of equation (3) these difficulties no
longer exist when using generalized exponents; for our purposes the irregular
singular case is not different from the regular singular case.

Computing the generalized exponents can be done using one of the several
factorization algorithms. It is a subproblem of computing formal solutions, so
the generalized exponents can be computed using a part of the algorithm for
computing formal solutions, cf. [Tou87,Bar88]. We use “algorithm semi-regular
parts” in [Hoe95a]. This algorithm is a modified version of Malgrange’s factor-
ization algorithm [Mal79]. It uses a different type of ramifications (obtained
from [Bar88]) to minimize the algebraic extensions.

The relation between generalized exponents and formal solutions is the fol-
lowing (this is theorem 1 in [Hoe95b]):

Proposition 3.7 Let L € C((z))[0] \ {0}. An element e € E is a generalized
exponent of L if and only if L has a solution of the form

Exp(e)s where se€ C((z))[log(z)] and wv(s)=0.

Note that, instead of using a Newton polynomial, the generalized exponents
can be defined from the formal solutions using this proposition. A different
generalization of exponents by using formal solutions is found in [BBe85].

12



3.8  Minimal exponents

As already mentioned, our reason for introducing generalized exponents was
to obtain information about the exponents of L®™ without computing the
operator L®™. Now a natural question arises: Given the generalized exponents
of L at the point = 0, can one determine all (generalized) exponents of L&®™?
The answer is negative, as showed by the following example.

Example 3.8 Consider the operators Ly = 0° +x and Ly = 0° + z + 1.
These operators are reqular at x = 0. Hence both L, and Ly have power series
solutions with valuations 0, 1 and 2 at x = 0; the exponents at x = 0 are 0,1, 2
for both operators. Making products of these solutions, one finds solutions of
L?Q and L2@2 with valuations 0,1,2,3,4. Hence L?Q and L?Z will have at
least the exponents 0,1,2,3,4 at x = 0. However, not all exponents of L?Q
and LSSDQ have been determined by this. L2@2 15 reqular at x = 0, so it has
exponents 0,1,2,3,4,5. But L?Q has exponents 0,1,2,3,4,6 at x =0 (z =0
is an apparent singularity, i.e. all solutions are analytic). The conclusion of
this example is that the exponents 0,1,2 determine the smallest exponents of
the second symmetric power, but not necessarily all exponents.

Let M be a differential operator whose solution space is spanned by differential
monomials in the solutions of L. If L is regular at a point + = o (where o € C),
then M need not be regular at x = . However, products, sums and derivatives
of analytic functions are analytic, hence all local solutions of M at x = « are
analytic. It follows that all generalized exponents of M at r = « are integers,
bounded from below by 0. So in this section we only need to compute lower
bounds for the exponents of M at the singularities of L and the point infinity.

These remarks and the example suggest that, instead of trying to find all
generalized exponents of symmetric powers of L, we should settle for a different
goal, namely to compute the minimal generalized exponents.

Definition 3.9 Let r be a positive integer. Define the following partial order-
g <, on B

1
61§r62<:>61—62€;z and e; — e <0.

For a set S C E define min,(S) as the set of minimal elements of S with

respect to the ordering <,.
For an element L € C((x))[d] \ {0} define min, (L) as min,(S) where S is the
set of generalized exponents of L.

If L has an integer exponent e € Z then min,(L) N %Z contains at least one
element which is < e. So if we can compute min, for symmetric powers of

13



L then we find lower bounds for the integer exponents of these symmetric
powers. This is done by proposition 3.11 below, using the following definition:

Definition 3.10 The symmetric product® of L, and Lo, denoted by L,® Lo,
1s the monic differential operator of minimal order for which

Y1Y2 € V(Ll@LQ) for all Y1 € V(Ll),yg € V(LQ)

The notation L) denotes the monic differential operator defined by:
V(LW) = {&'yly € V(L)}.

Proposition 3.11 Let L; and Ly be non-zero elements of C((x))[d]. Let r
be the least common multiple of all ramification indices of the generalized
exponents of Ly and Lo. Define for sets S1,So C FE the sum S; + Sy as
{51 + 2|81 € S1,80 € So} C E. Then

min, (L;®Ls) = min, (min,(L;) + min,(Ls)).

Corollary 3.12 Let m be a positive integer and r be the ramification index
of L. Denote for S C E the setm-S as S+ S +---+ S (m times). Then

min, (L®™) = min, (m - min,(L)).

In particular if L™ has an integer ezponent e then min,(m - min, (L)) N +Z
contains one element which is a lower bound for e. This lower bound can be
computed from r, m and min,(L).

Remark 3.13 The fact that such a lower bound exists is not new (lemma 3.8
in [Sin93]). However, the bound in our proposition is sharper. It gives precisely
the smallest exponent of LO™ in %Z. So in case all ramification indices are
1 (i.e. m = 1) our bound for the smallest integer exponent is sharp (see also
example 4.2 page 21).

We postpone the proof of the proposition till after the proof of theorem 3.15
below. To prove this theorem we first need to introduce some notations.

Denote® V, = Exp(e)-(C-C((z))[e])[log(x)] as in [Hoe95a,Hoe95b]. Note that
C-C((z))[e] = C - C((x'/@™(®)) where ram(e) is the ramification index of e.

5 Strictly speaking, this name is mathematically hazy. We use it to emphasize the
resemblance with the symmetric power construction Z&™.

6 Here C - C((z)) denotes the smallest subfield of the algebraic closure of C((z))
that contains both C' and C((z)).
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We have V,, = V,, if and only if e; ~ e; and (cf. theorem 3 in [Hoe95a])

V=@ V. (4)

eEE/N

Now define

E,=ClzY/"|CE and V.,= @ V.

e€EE, [~

For e € E, define

Ver = Exp(e) - (C- C((2'/7)))[log(x)].

Ife; —ey € %Z then V, , = V¢, , so V., can be defined for e € Er/(%Z) Ver
is the direct sum of the V,, taken over all e; € E,./ ~ for which e is e; modulo
1Z. Hence by the direct sum in equation (4) it follows that

‘/:k,f' = @ ‘/e,r (5)

where the sum is taken over all e € E, /(1 Z).

Definition 3.14 The ramification index ram(L) of L € C((x))[d] is defined
as the least common multiple of the ramification indices of all generalized
exponents of L.

From theorem 3 in [Hoe95a], it follows that V(L) C V,, if and only if ram(L)
divides r. V, , is a differential ring extension of C'((z)) consisting of all solutions
of all L € C((x))[¢] for which ram(L) divides r. Hence if the ramification
indices of two operators L; and L divide the integer r then the same holds
for the operators L;® Lo, Lgl) (definition 3.10) and for the least common left
multiple of L; and L.

Theorem 3.15 Let L € C((x))[6] \ {0} be of order d and let r be a posi-
tive integer. Suppose that the ramification indices of the generalized exponents
divide the integer r.

(i) There exists a basis y, ..., y, of V(L) which satisfies the following con-
dition

y; = Exp(e;)s; for some s; € (C - C((x7)))[log(z)], v(s;) =0 (6)

where ey, ..., e, € F.
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(#) Suppose y1, ...,y is a basis of the solution space V(L) which satisfies
condition (6). Then

min, (L) = min,({e1,...,e,}).

PROOF. Let e € min,(L). Since {ey,...,e,} is a subset of the set of all gen-
eralized exponents of L (there are at most order(L) = d different generalized
exponents) it follows that the number of elements in min,({eq,...,e,}) can
not be larger than the number of elements in min,(L). So we only need to
prove that e € min,.({eq,...,e,}). Without loss of generality we may assume
that e;—e € 1Z fori < tand e;—e & *Z for i > t. We need to show that ¢ # 0
and that there is one ¢ < t with e; — e < 0. Then the theorem is proven as fol-
lows: We may assume that e; —e € +Z is minimal, so ¢; € min,({e, ..., en}).
Because of the minimality of e we can not have e; — e < 0 hence e = e;.

The algorithm in section 8.4 in [Hoe95a] produces a basis ¢, . . ., J, of formal
solutions (see also the proof of theorem 1 in [Hoe95b|) where each basis ele-
ment can be written in the form §; = Exp(é;)$; with §; € C((x))[é;,log(z)]
and v(5;) = 0 and where every generalized exponent €; of L occurs. Since
(C((x))[&])log(z)] € (C - C((z'/7)))[log(x)] this basis satisfies condition (6).
Furthermore the generalized exponent e of L occurs in this basis so one of the
elements of this basis is of the form y = Exp(e)s (with s € C((x))]e, log(z)]
and v(s) =0). Then y € V., and y € V(L).

Because of condition (6), each y; is an element of Vi, .. Since the y; form a
basis of V' (L), it follows that y is a C linear combination of 1, . .., y,. Because
of the direct sum in equation (5), it follows that y is a linear combination of
Y1, ..., Y, since e; for ¢ > t is not equal to e modulo %Z and so y; is in a
different component than V., for i > t. Dividing by Exp(e), we obtain that s €
Vor = (C-C((x/7)))[log(x)] is a linear combination of the Exp(e; —e)s; € Vg,
for i < t. Hence the valuation of at least one of the Exp(e; —e)s; is < v(s) = 0.
The valuation of the s; is 0 and the valuation of Exp(e; —e) € C((z/")) is
e; — e. So for at least one i < t we have ¢; — e < 0 and so the theorem
follows. O

Remark 3.16 Without the condition s; € (C-C((z'/")))[log(z)] the statement
need not hold. Take for ezample L = §*—16 andr = 1. Then min, (L) = {0, 1}.
Now take e; = e3 =0, s1 =1 and s = 1+ z'/2. Then sy does not satisfy

condition (6) and min,(L) # min,({e1,e2}) = {0}.

Remark 3.17 The existence result i) is also found in [CLe55] (with a differ-
ent terminology, though)
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[ Proof of proposition 3.11:] Let y; = Exp(e;)s;, ¢ = 1,...,order(L;) be a basis
of V(Ly) and y; = Exp(€é;)5;, j = 1,...,order(Ly) be a basis of V(Ls) which
both satisfy condition (6). Then the products y,;§; span V(L1®Ls). Let S be
a set of pairs (4, j) such that {v;7;|(¢,7) € S} is a basis for V(L1®Lz). Now
yii; = Exp(e; + &)8:5; and s;5; € (C - C((x/")))[log(z)] with v(s;3;) = 0.
Hence by theorem 3.15 it follows that min,(L;®Ls) = min,({e; + &;((¢,]) €

SY).

Now {e; + €;|(i,j) € S} is a subset of the set T of all e; + €;. So for each
e € min,({e; + €;|(¢,7) € S}) there must be precisely one é € min,(T) such
that € <, e. Furthermore T is a subset of the set of all generalized expo-
nents of L;®Ly. Hence for each é € min,(7T) there must be precisely one
e € min,(L1®Le) = min,({e; + &;[(¢,7) € S}) such that e <, & Then it
follows that min,(7) equals min,(Li®Ls). O

Lemma 3.18 Let L € C((x))[d] be non-zero and let r be the ramification
index of L. If 0 ¢ min,(L) then

min, (L) = {e + v(e) — 1|e € min,(L)}.

If 0 € min, (L) then

min, (L") = {m} [ J{e + v(e) — 1|e € min, (L) \ {0}}

where m € Z, m > —1, or

min, (L") = {e + v(e) — 1|e € min, (L) \ {0}}.

Note that order(L(")) = dim(8(V (L))) = dim(V (L)) — dim(V (L) NV (d)). So
order(L")) = order(L) — 1 if 1 € V(L) and order(L(M)) = order(L) otherwise.

PROOF. If y = Exp(e)s where s € (C - C((z'/")))[log(x)] with v(s) = 0
and e # 0 then the derivative ¢’ is of the form Exp(e + v(e) — 1)t for some
t € (C-CO((z'/)))[log(z)] with v(¢t) = 0. Now the first statement follows by
applying theorem 3.15.

For the second statement we note that v4(L) > 0 means that there is a formal
solution y € (C - C((#*")))[log(x)] of L with v(y) = 0. The valuation of
the derivative ¢’ is oo or is an integer > —1. Now distinguish the two cases:
v(y'") € min,(LM) (then: v(y') is an integer m > —1) or v(y') & min, (L™M)
(then the other case holds). O
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Note that in the case 0 € min,(L) one can get a slightly stronger statement
about min, (L") by noting that —1 € min,(L(M) if and only if (L) > 1. We
will not use this small improvement of the lemma.

Define v’ : E — @ as follows: v'(e) = v(e) for all e € E'\ {0} and +'(0) = 0. It
follows from the lemma that for each e € min, (L™)) there is an é € min,(L)
such that e — (€ + v'(é) — 1) is a non-negative integer. Repeating this, we see
that for each e € min,(L®) there is an é € min, (L) such that e— (é+i-v'(€) —1)
is a non-negative integer.

Theorem 3.19 Let L be a non-zero differential operator in C((x))[d] and r
be its ramification index. Let my, ..., m,_1 be non-negative integers and M the
symmetric product of the operators (L))®™i . Define B; = {e+i-v'(e) —i}|e €
min, (L)} and B = my- By + -+ + my_1 - B,,—1. Suppose M has a non-zero
solution y in (C-C((z'/")))[log(x)]. Then BN 1Z contains an element < v(y).

The theorem gives a lower bound for the valuation of solutions of M in (C -
C((z'/)))[log(x)]. The bound can be computed from my,...,mu_1, r and
min,(L).

To compute the bound we need to compute the set of sums mqg- By + - - - +
My—1 - B,-1 and to take the smallest element which is in $Z. This means
computing in a splitting field: it is not sufficient to take only one generalized
exponent in each conjugacy class of generalized exponents. One can try to
avoid splitting fields for computing this bound by various tricks (for example
floating point computations) but we will not go into this.

In the following procedure, the notation I, denotes the C-automorphism of
C(x)[0] given by lo(x) = x + a and 1,(8) = 8; this transformation moves the
point £ = « to = 0. Similarly, [, is a C-automorphism of C(z)[d] given by
loo(z) = 1/z and [ (d) = —zd; this moves the point infinity to z = 0.

Algorithm 1 (Procedure global-bounds) —

Input: An operator L € C(x)[0], and non-negative integers mq, ..., My_1
Output: A rational function @ € C(x) and an integer N such that every
rational solution y € C(z) of M = (L©)®mog, ... o(L=))Omn1 cqpn be
written as the product of Q) and a polynomial in x of degree < N.

(i) Q:=1.
(i) After multiplication on the left by an element of C|x], we may assume
that L = a,0" + -« -+ + a¢d° with a; € C[z] and ged(ay, ..., a,) = 1.
(iii) For each irreducible factor p of a, in C|z] (not C) do
(a) Let o € C be a root of p.
(b) Compute the generalized exponents of lo(L) at the point x = 0.
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(¢) Let r be the ramification index of lo(L) at x = 0; compute the min,
of the set of generalized exponents.
(d) Compute the set B from theorem 3.19.
(e) If BN %Z is empty then stop the algorithm and
RETURN the following output: Q =0 and N = 0.
(f) Let b, € Z be the smallest element of B %Z, rounded above to an
integer.
(9) Replace Q by Q - p*.
(iv) Perform steps 3b, 3¢, 3d, e, 3f with o = 00.
(v) Add2-(0-mo+1-mi+---+(n—1) mp_1) t0 be.
(vi) Let N be —by, plus the valuation of @ at infinity (this valuation is the
degree of the denominator of QQ minus the degree of the numerator of Q).
(vii) Return: Q) and N.

Remark 3.20 Note that, even if Q = N = 0, there may be an invariant
(whose value is zero): see the Hurwitz example in the next section for an
llustration.

The fact that the algorithm works follows from the following observations:

— Because algebraic conjugation over C is an automorphism of the differential
field C(x), it follows that if o, ap € C are conjugated over C then the two
bounds by, ,be, € Z will be the same. Hence we need to take only one
a in every conjugacy class of the singularities of L. In other words: We
need to compute the bound for only one root of each factor of a, in C[z].
Furthermore the function @ € C(z) will be an element of C(z).

— Note that for all « € P'(C) the map I, on C(z)[0] commutes with taking
symmetric products and LCLM’s (least common left multiples) because the
map [, on C(x) commutes with multiplication and addition. However, I,
does not commute with derivation if & = 0o. So [, only commutes with the
construction L — L) on C(z)[d] if @ € C. The solution space of I, (L")
equals 22 times the solution space of I, (L)), so the valuations are 2 higher
than in lemma 3.18. For the point x = oo there is a lemma similar to
lemma 3.18 with the following differences: e + v'(e) — 1 is replaced by e +
v'(e)+1 and m > —1 is replaced by m > 1. We need a different theorem 3.19
specifically for the point z = oo, i.e. for operators L € C((%))[0] instead of
L € C((x))[0]. The only difference will be that e + i - v'(e) — 7 needs to be
replaced by e + i - v'(e) + i. The algorithm computes the bound given by
theorem 3.19 and then adds 2- (0-mog+1-my +---+(n—1)-m,_1) to
correct for this difference.

Example 3.21 (The PSL; example:) The following example was adapted

from N. Katz by Elie Compoint (/[Com96]). The component of the identity of

its Galois group is PSL3(C) in its 8-dimensional representation. Let 6 = x%
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and

L=6(6- )6 - PO+ PB= 0= DG+ G+ ) =20+ 6= )

We want to compute the invariants of degree 2 and 3.

The generalized exponents of lo (L) are —1/3,1/3 and all conjugates of x~ /64
2/3. The ramification index is r = 6. Now —1/3 <, 1/3 and all the other
generalized exponents are different modulo 4. Hence min,(l(L)) contains
7 elements; all generalized exponents except 1/3. Now the smallest element in
(AZ)N(2 - min, (I (L))) is —2/3. Rounded above to an integer this is 0. The

T

smallest element in (2Z) N(3 - min, (I(L))) is —1.

The generalized exponents (which are in fact exponents) of L at x = 0 are
—5/8,—-1/4,—-1/8,0,1/8,1/4,1/2 and 5/8. So the ramification index isr = 1.
Since all exponents are different modulo %Z the set min,(L) equals the set
of ezponents. Now the smallest element in (+Z) (2 - min,(L)) is 0 and the
smallest element in (+Z) N(3 - min, (L)) is —1.

So the procedure global-bounds gives the following output for the second sym-
metric power of L: Q = 1 and N = 0. This means that the values of all
invariants of degree 2 are constants. For the third symmetric power the output
is Q@ = 1/x and N = 2, which means that the values of the invariants of degree
3 must be of the form i-(coxo + 1zt 4 ex?) for some constants ¢y, 1, ¢o which
will be computed in the next section.

4 The algorithm for computing invariants

We now have all ingredients for an algorithm. There exists an invariant of
degree m if and only if there is a rational solution F' to Y’ = S™(A)Y. The
previous section gives the denominators and bounds for the degrees of the
numerators of the entries of F'. Thus, the problem can be reduced to linear
algebra.

To obtain the numerators in F', we consider a local fundamental solution
matrix U at some (possibly singular) point zy € P'(C). We can assume z, = 0
in our algorithm after having applied the map l,,. Now F' = Symm(ﬁ) -C for
some constant vector C. We start with undetermined constants in C, compute
sufficiently many terms of the power series in Symm(f] ) and then express the
numerators in F' in terms of the constants in C, see below. As the evaluation
of the series is usually the most costly part of the algorithm, our main goal

below will be to reduce the number of columns and rows of Sym™(U) that
need to be evaluated during the process.
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4.1  Computing candidate invariants

A

First, we perform the above idea only on the first row of Sym™(U). The reason
for choosing this particular row is that the bounds in theorem 3.19 (compare
the generalized exponents of L and L(!)) are smaller than the bounds for other
rows (unless there are less than 3 singularities).

Suppose J;, 1 < i < n = order(L), is a basis of formal solutions satisfying
condition (6) on page 15. Then a monomial in these g; (i.e. a product [T(9;)™)
is again of the form (6), where the generalized exponent equals Y- m;e;. The

following lemma reduces the number of columns of Sym™(U) that need to be
evaluated.

Lemma 4.1 Let g; be a basis of local formal solutions satisfying condition (6)
on page 15 and let r be the ramification index. An entry of a vector C of
coefficients of an invariant can only be non-zero if the generalized exponent of
the corresponding monomial is in %Z.

PROOF. Let N = ("’;’f; 1) and let U be a formal fundamental matrix of

Y" = AY such that the first row is 9i,..., 9, i.e. the entries of U are the
0,...,(n—1)-th derivatives of g, ..., J,. Let P be a polynomial invariant and
C be the vector of its coefficients. Then Sym™(U) -C € C(z)Y c (Vo,)V.
Note that each column of Sym™(U) is an element of (V,,)" where e is the
generalized exponent of the first element (which is a monomial in the ;) of this
column. From the fact that the columns of Symm(U ) are linearly independent
and the direct sum (5) on page 15, it follows from Sym™(U)C € (Vi,)N that
C can only have a non-zero entry for those columns which are in (V,,)", i.e.
for those monomials whose generalized exponent is in 2Z. O

Note that the above lemma is sharp, i.e. we must consider the generalized
exponents in 2Z. Taking only generalized exponents in Z is not sufficient as
is shown by the following example.

Example 4.2 Let L € Q((x))[0] be the monic operator of order 4 which has
the following local solutions at x =0

y1=EXp(W+1—O)'(1+$ )
Yy is the conjugate (replace x'/? by —x'/2) of y,

1 4
Yz = EXP(W + 10

)
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and y4 1S the conjugate of ys. The ramification index of L is 2. L has an
invariant of degree 2, even though none of the monomials y;y; has a generalized
exponent in Z. The monomials y1ys and yoys have generalized exponent 1/2.
And, in fact, y1ys — yoys = 2x s the value of an invariant of degree 2.

Algorithm 2 (Heuristic for computing invariants) —

Input: an operator L, an integer m, a point xy, and a number v.

Output: a vector space of candidate invariants of degree m and their corre-
sponding candidate values, given as a parametrized candidate vector invariant
and candidate value.

(i) If zo # 0 then apply recursion on Iy, (L) as follows: replace L and zo by
lzs (L) and 0, apply this algorithm and then apply the inverse of ly, on
the candidate values of the invariants.

(i) Use the procedure global-bounds (page 18) to find the bounds @1, Ny for
rational solutions of the m-th symmetric power of L.

(#ii) Compute a basis of formal solution §; at x = 0 having property (6) in
theorem 3.15. Let r be the ramification index.
Let Y denote the vector of all monomials of degree m in the y;. Fach of
these monomials has a generalized exponent in Clx~'/"].

(iv) Take a vector C of unknown constants and set to zero every entry corre-
sponding to a monomaial with a generalized exponent that is not an element
of %Z.

(v) Compute p; := éy -C mod gMNtv+1

(vi) Build a linear system on C by equating to zero every term with degree
higher than Ny and all terms involving a log or a non-integer power of x.

(vii) Return: the solution of this system (this is a vector space consisting
of candidate vector invariants) and the corresponding (vector space of)
rational functions fi := p1Q.

Proposition 4.3 Denote by Wi, the vector space of candidate vector in-
variants produced by the above heuristic. Denote Wi,y oo = N, Wi mu. Then:

(i) For all v € N, any vector of coefficients of an invariant of degree m is in
WL,m,u-
(i1) There exists vy € N such that Wi m.0o = Wi muo-

PROOF. Recall from section 3 that the value of any invariant of degree m
is the product of (); by a polynomial of degree at most N;. According to
lemma 4.1, we have only computed necessary (but in general not sufficient)
linear conditions. Hence i) follows. Increasing v adds more conditions on C so
Wimit1 C Wrmi- AS Wi m.eo 18 finite dimensional, this implies ii). O

This algorithm is called a heuristic because there is no easy way of deciding
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whether its output is the vector space of invariants or a larger vector space.
The number v is can be chosen arbitrarily; the strategies of choice will be
discussed in the next section.

Remark 4.4 We have order(L®™) < N = (";Tl_l) if and only if the so-
lutions of L satisfy a homogeneous polynomaial relation of degree m. In this
case, the value of a non-zero invariant can be zero, and furthermore it can
also happen that Wi, m « contains elements that are not invariants (see the
Fys erample page 27). Note that since we do not compute LO™ we have no
easy way of checking if this case order(L®™) < N occurs, so this would be
a serious problem if we only had the heuristic to compute invariants. We do
not have this problem if we use the algorithm Invariants below; then the case

order(L®™) < N does not cause difficulties anymore.

Example 4.5 (The PSL3; example (continued)) Let L be the 8-th order
operator in the PSLs example in section 3. We had found the bounds for
rational solutions of L®? and L®3. Applying the heuristic with xy = 0 and
v = 10 the following (candidate) invariants are obtained:

352 3249799168 36064

- X, X, — 2229908 o SOUDR v

27 32805 1M T 015233605 Ot T 6m61 0D
920240 12397

il 22T en X o2
T epe1 0o T a5 e
and P () = ¢

P—— 15146075488 e XeXo Xy + 3515203()05188970556C1 XX,
61509142556 XXX — 3659426975536 XX o X
—-742223212cLX3A%JQ;+-10?;;§f16c13&)nf
—-342333;;i2388cLX1JQ%X4%—46§§2§32cp¥83
S o+ S
+ o X2 X,

1 9144576  17832200896512
Py(§) = ¢1—(1 2
and Py() =1 (1+ =302+ ——oosms %)

where ¢y, ¢, denote arbitrary constants. Note that L9? and LO3 have order 36
and 120 respectively. L®? can be computed in several days on a big computer

and L®% is out of reach of computers, whereas the above computation only
takes a few minutes.
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4.2 Strategies for the heuristic

In the heuristic the point xy and the number v can be chosen. The advantage
of choosing a singular point z, is that the number of monomials that need to
be considered (lemma 4.1) in the heuristic is often smaller, and so we need

to evaluate fewer columns of Sym™(U). This still holds (and is important for
the efficiency) for the algorithm Invariants below.

Example 4.6 (The PSL3; example (continued again)) In the PSLs ex-
ample of section 3, if we would take a reqular point xq then the heuristic
would need to evaluate 36 monomials for the invariants of degree 2, and 120
monomials for degree 3. However, when taking the singularity xo = 0, only 5
monomials of degree 2 have an integer exponent (the algorithm only considers
monomials with an exponent in %Z, and r =1 in this ezample). And only 15
monomials of degree 3 have an integer exponent. So when using the singular
point xqg = 0 the computation for both the heuristic and the algorithm is much
quicker than, say, with the reqular point Ty = 1.

Taking a point in which a ramification occurs can be disadvantageous, be-
cause computing modulo " in C[[z'/"]] involves more coefficients in C' than
computing modulo z% in C[[z]]. So, the point zy = 0 (ramification index is
1) in the PSLj3 example is more favorable than the point o = oo (ramifi-
cation index is 6). A point where the generalized exponents require algebraic
extensions can have both advantages and disadvantages. The disadvantage is
obvious: Computing the formal solutions and evaluating monomials will be
more costly. The advantage is that many monomials need not be considered,
for example:

Example 4.7 Suppose that order(L) = 3 and that at the point xy = 0 we have
3 generalized exponents ey, ey, e3 which are algebraic over C((z)) of degree 3.
From cieq + coeq + c3e3 € %Z and c1,co,c5 € Z it follows that ¢, = ¢y = c3
and hence only 1 monomial needs to be considered. So, for order 8, what
would appear to be the worst case (the e; are algebraic of degree 8), is in fact
a relatively easy case.

By reasoning as in section 1.c of [Sin93], an application of Cramer’s formulas
shows that we can take the following value for the number 1 in proposition
4.3: N(1+ (N —1)d+ Nd;) (where N = ("+m_1), d is the maximum degree of

n—1
the a;, and d; bounds the degrees of the numerator and denominator of Q).
Thus, the above heuristic could be turned into an algorithm (but then the
kernel problem order(L®™) < N of remark 4.4 would need to be addressed as
well). However, this value for vy is usually much larger than necessary. So it
is more efficient first to use the heuristic with a small value of v, and then to

apply the full algorithm Invariants from section 4.3.
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If one already has some information about the group then sometimes the
heuristical algorithm is sufficient to compute the invariants. Because if we
know how many linearly independent invariants of degree m exist, we can
simply use the heuristic by just increasing the value of v. If at a certain
point the space of candidate vector invariants has the correct dimension then
it is certain (even in the problem case order(L®™) < N) that all invariants
have been determined because the invariants form a subspace of the candidate
invariants. In practice, the required number v is usually much smaller than
the theoretical bound v, above.

Example 4.8 (The Hurwitz example) The following operator has Galois
group Ges ([SUI94]). Let 0 = L and

Tr—4 _,  2592x? — 2963z + 560 —40805 + 57024z
0° + 0+

L=9 :
* z(rx —1) 25222 (x — 1)2 2469622 (x — 1)2

The Galois group has invariants of degree 4,6,14,21. The heuristic with m =
4, z9 = oo, v = 10 yields (in 0.75 seconds) a one-dimensional space generated
by P = 1728 X1 X5 + X1® X3 — 1728 X, X3® together with the value 0. The fact
that the space of invariants of degree 4 has dimension exactly 1 proves that
P is indeed an invariant. Similarly, the heuristic yields the other invariants
quickly (see also [Wei95b]): for the invariant of degree 21, we need to com-
pute 87 monomials at infinity (using a regular point it would have been 253
monomials).

4.8 Finding and proving which candidates are invariants

Let the monomial y be a product of ¥ to the power m;, i = 0,...,n — 1.
If y is a solution of L then p is a solution of the symmetric product of the
operators (L(i))@mi. By “applying procedure global-bounds on u”, we mean
applying the procedure global-bounds on these numbers my, ..., m,_1.

Algorithm 3 (Algorithm Invariants) —
Input: L, m, xo (optional: v)
Output: the space of invariants in vector and dual forms

(i) Like in the heuristic, if o # 0 then apply the transformation l,,, use
recursion, and transform back.

(i) Now we may assume zo = 0. Compute a basis of formal solutions of L
at the point x = 0 having property (6) in theorem 3.15. Construct (7, the
fundamental solution matriz of Y' = AY from this.

(i1i) Obtain Fy = f and C from the heuristic (page 22). Note that f and C
contain parameters.
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(iv) for i from 2 to N do:

— Let p; be the i-th monomial of degree m in y,y', ...,y Y.

Obtain Q; and N; from procedure global-bounds (page 18) applied to L
and ;.

— Let p; == éSymm(ﬁ)iC mod zVit! and F,:=p;-Q;.

Sym™(U); denotes the i-th row of Sym™(U).

— equate all terms involving logarithms or fractional powers of x to O (this
gives a set of linear equations in the parameters. If the equations are
non-trivial we use them to reduce the number of parameters).

(v) Now F is a vector of rational functions and C is a vector of constants. F
and C contain parameters.

The relation F' — S™(A)F = 0 yields a system of linear equations in the

parameters. Solve this system.

(vi) Output: a basis of solutions C of this system and the corresponding dual
first integrals F € k™.

Theorem 4.9 The output of this algorithm is exactly the space of invariants
of degree m and the corresponding dual first integrals.

PROOF. That any vector of coefficients of an invariant is an element of
the vector space produced by the algorithm follows from the fact that this
was true for our heuristic, and from the fact that we only added necessary
linear conditions in this algorithm. Hence also every dual first integral F' is
an element of the vector space produced by the algorithm. Conversely, as the
F produced by the algorithm are rational vectors satisfying F' = S™(A)F,
they are dual first integrals. So, by lemma 2.4, the corresponding C are indeed
vectors of coefficients of invariants. O

4.4 Improvements and variants

Lemma 4.1 provided a speedup in the algorithm; it reduces the number of
rows of Sym™(U) that need to be evaluated. It turns out that the number of
columns that need to be evaluated can be reduced as well, using the following
observation: F' = S™(A)F is not a random system of differential equations;
there are recurrence relations so that, once some entries of F' are known, the
other entries can be deduced straightforwardly. Hence these latter entries,
and the corresponding rows in Symm([]' ), need not be considered in step 4
in algorithm 3. This provides a significant improvement of our algorithm, see

below.

The recurrence relations are found as follows: Let y be a solution of L(y) =0
and let ppmy, ma] = yml...(y(n—l))mn with my + ... + m, = m denote a
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differential monomial of degree m. Then:

!
/J'[ml,---,mn] =M1 K[m1—1,ma+1...;my] +...+ My 1 M[ma yeeeymin—1—1,mp+1]

" 4 g
+my _Z ! H...omj+1,...;mp—1]

j=1 On

(with the convention that . _1 )= fi..,m+1,.] = 0). So, by replacing m,_; by
m,_1 + 1 in the above, we have:

1

ﬂ[ml,...,mn,l,mn—kl] (H[ml,...,mn,l—l—l,mn} - ml,uf[ml—1,m2—|—1,...,mn,1—|—1,mn]

Mp—1+1

n
a;_1
— M Y gL+ L 1)) ()
j=1 o

These relations must be understood as relations among the components of a
solution F' of F' = S™(A)F. So, if we know all the entries of F' corresponding
to monomials yy. .  (and pp.;q if ¢ > 0), then the relations (x) provide
the entries corresponding to the pf. .., 7 + 1]. Thus, in the algorithm, we only
need to evaluate the rows corresponding to the p[...,0]. A detailed study of
the recursion shows that in the same way the rows corresponding to some
of the py. o can be skipped as well. This way, instead of evaluating N =

e 1), we only need to evaluate’ ("ZT; 3) rows of Sym™(U) in step 3 of
algorithm 3. Also note that, unless the number of singularities is < 3, the
rows corresponding to p..; have larger bounds as 7 increases (theorem 3.19
or the example below). So, the above relations allow us to skip the evaluation
of most of the rows, but what is even more important for the efficiency is that

we can skip the rows that have the worst bounds.

Step 5 of the algorithm can also be improved along the same lines. In the above
process, we used the derivatives of the rows corresponding to the pipm,,...m._1 ma]
with m,_; # 0 to construct the entries of F'. Thus, the corresponding rela-
tions are automatically satisfied in step 5 of algorithm 3. Hence in step 5 we
only need to consider the rows corresponding to monomials p... m,_5,0,m,]- This
eliminates a lot of redundant equations.

Example 4.10 (The F3s example) Let

L—o4 592 + 14z +9)0 5 (812° + 1852 + 229z + 81)
B 48(z + 1)%z? 432(z + 1)323

This example, taken from [GUI96], has Galois group Fsg (in their notations).
We search for invariants of degree m = 6.

" This is for n > 4. For n = 2 we need one row, and for n = 3, we need m + 1 rows.
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The number of monomials to be evaluated is 8 at x = 0 and x = oo, it s 16 at
x = —1 and 28 at a regular point, so we work at x = 0. The heuristic at x =0
with v = 10 yields a 4-dimensional space of candidate invariants of degree 6
in 0.5 seconds. The complete algorithm (with the use of the above recurrence
relations) then gives (as expected) a 2-dimensional space of invariants of degree
6 generated by

45 675
ZXIG + 135X3X2y1714 + 15X24X12 + 7y1,32X22X12
4 4 2
- @Xg‘*)(l? - 90X3%X,% — @X;”XQ = —@(x +1)%2°
16 2 16
and
1 4
TR X X~ 13,7 X7 X, 4 X
2 1
+ 6X3X5° — 45)(33)(23%)(352(2 = @(a: +1)%2°
The corresponding dual first integrals are
F = [—%(x +1)%2°, —103?334@ +1)(7z + 5),
— 2243 (23 4 4922 + Tdw ), ——® (743 + 146302 + 20862)
128 128
cay ° (258162545m3+8763967375m8+3454336210m6+4799496375z9
339738624(z+1)°x®

+144205312521° +1845281252'! +890815901027 443064338552 —21124405302°

—209857325024 —442277012—23914845 ) y
5

(24912018002 + 55358437522 3018967202528 — 971944830025
2717908992(x+1)'027

+30901623000z° +16603359750210 +4702779000211 4919606040027 —804729978x2

—72429047202° 28637726652 — 1566766802+ 71744535 )]

and

6561 2187
Fy= [T(ac +1)245, 1—6364(:5 +1)(7z + 5),

243 243
- , —

2® (=55 + 892% + 130z) , —a® (299 + 5872 + 838z) ,

128

24322 (20523 +4452%+837—93 )
ey

128

256(z+1)
1

(166157374323 4356586689525 + 190229672225 439560790152
1358954496(z+1)° z®

+1442053125210 4184528125211 —102049267027 — 184634048722 4121496316622
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-+9005910718z4 +236373147z723914845) s
1

(—12566581020m3 4553584375212 4-4111877522528 +417351119402°
10871635968(z+1)10z7

+337235735402° +17335654830210 +47913525002 11 +4284477245627 4341407467022

+133264509202% —2110373853524 —681031801‘+717445351|

To use the recurrence relations (x), we have to compute the rows correspond-
ing to monomials y*(y')%™", so that makes 7 rows (instead of 28). The bounds
are more favorable for these 7 rows than for the other rows, and indeed the
corresponding 7 entries of Fy and Fy are smaller expressions than most of the
other entries. We printed the first 4 entries and the 2 last entries above. One
sees that the last entries are significantly larger expressions. Precisely these
large (hence: costly to compute) entries can be skipped in step 4 of algorithm
3, as these are the entries that are given by the recursion. This is the main
reason why these relations are crucial for the efficiency.

The computation time is 36.7 seconds and uses 1.5Mb of memory. We per-
formed the same computation without using the recursion improvements, it
took 263.5 seconds and used 2.5Mb. We then tried the first step of the stan-
dard method (computation of L®): this took 4587 seconds and more than
10Mb of memory.

5 Conclusion

We do not claim that our method is always better than the method via sym-
metric powers of operators. However, we have practical evidence that this
method can handle much larger examples (and generally faster) than the pre-
vious one at our disposal.

To compute all the invariants of a given equation, we now face the following
open problem: given L, can one bound the degrees of the generators of the
invariant ring (when G is reductive)? As shown in [Com96], a solution to this
problem would yield an algorithm for computing reductive unimodular Galois
groups.

The method extends readily to systems: we then need formal solutions of
systems (e.g. via cyclic vectors); but we lose the recurrence relations that
enhance the algorithm, so the best there seems (surprisingly) to convert the
system to an equation, apply the above algorithms, and then perform the
correct change of variables to obtain the invariants of the original system.

We believe that the philosophy heuristic-checking is very suitable for compu-
tation. Information on the invariants can be obtained quickly by the heuristic
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and by modular arithmetic. If desired, this information can then be checked by
algorithm 3. Furthermore algorithm 3 provides additional useful information,
namely the dual first integrals corresponding to the invariants.

Applications of this algorithm are the computation of first integrals ([Wei95al),
the computation of differential relations satisfied by the solutions ([Com96]),
the computation of algebraic and liouvillian solutions ([SU193b,UWe94,SU196])
and, more generally, to compute information on the Galois group. Extensions
of the above techniques to other constructions on V(L) (and several applica-
tions) will be described in a subsequent paper.
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