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The topic of this paper is formal solutions of linear differential equations with formal
power series coefficients. The method proposed for computing these solutions is based
on factorization of differential operators. The notion of exponential parts is introduced
to give a description of factorization properties and to characterize the formal solutions.
The algorithms will be described and their implementation is available.

1. Introduction

Factorization of differential operators is a powerful computer algebra tool for handling
ordinary linear differential equations. It can be applied to compute formal solutions and
to study the structure of a differential equation. A differential equation

y™ + a1y Y + .+ ay +agy =0
corresponds to a differential operator
F=0"+ap_10" 1 + ...+ apd°

acting on y. Here the coeflicients a; are elements of the differential field k((z)) and 0
is the differentiation d/dz. The field k is the field of constants. It is assumed to have
characteristic 0. The differential operator f is an element of the non-commutative ring
k((x))[0]. This is an example of an Ore ring (Ore, 1933).

Sections 6 and 8 contain the main results of this paper. These results are expressed
using the notion of exponential parts. The exponential parts will be studied in section 6
from the viewpoint of factorization, and in section 8 from the viewpoint of formal solu-
tions. They form the key ingredient for our factorization algorithm for k(x)[9] in chapter 3
in (van Hoeij, thesis). Another application is found in section 9. Here the question is:
when is a given vector space a solution space of a certain differential operator. This
question can easily be answered using the direct sum splitting in section 8.
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The algorithms in this paper are given in sections 4, 5 and 8.4. From an algorithmic
point of view the factorization in k((x))[0] is the central problem because the other
algorithms in this paper require this tool. We will discuss it in the rest of this section.

Note that in general elements of k((x)) consist of infinitely many terms. Only a finite
number of them can be computed. This means that a factorization can only be determined
up to some finite accuracy. The notion of accuracy will be formalized later. Increasing
the accuracy of a factorization will be called lifting a factorization.

From (Malgrange, 1979) we know that an element of k((z))[0] which has only 1 slope
in the Newton polygon (cf. section 3.3) and which has an irreducible Newton polynomial
(cf. section 3.4) is irreducible in k((2))[0]. In (Malgrange, 1979) Malgrange shows that
in the following two cases a differential operator f € k((x))[d] is reducible in this ring
and how a factorization can be computed:

1 An operator with a broken Newton polygon (i.e. more than 1 slope).
2 An operator with one slope > 0 where the Newton polynomial is reducible and
not a power of an irreducible polynomial.

In our method these two cases of factorization and the factorization of regular singular
operators are called coprime index 1 factorizations. Coprime index 1 means that the
factorization can be lifted by the usual Hensel lifting (cf. any book on computer algebra)
procedure. For a definition of the coprime index see section 2.
Example:
1 2 1 1
f=64+P63+E62+Fa+$—8.

The Newton polynomial is T4 +T° + 272 +T + 1. This polynomial can be factored over
as (T?+1)(T?+T+1). Because T?+1 and T%2+T+1 in Q[T] are coprime (i.e. the gcd is 1)
we can conclude from (Malgrange, 1979) that f is reducible in @((x))[9]. A factorization
of f = LR is obtained in two steps. The first step is to compute the factorization up to
accuracy 1 (definitions follow later, this integer 1 is related to the coprime index). This
accuracy is obtained when we have the Newton polynomials 72 + 1 and T? + T + 1 of L
and R (here T2 +1 and T2+ T +1 can be interchanged to obtain a different factorization).
The next step is to lift the factorization up to the desired accuracy. Because T2 + 1 and
T? + T + 1 are coprime this lifting can be done by the usual Hensel lifting procedure. In
each lift step the extended Fuclidean algorithm is used. Note that in this example the
reducibility of f can be concluded from very few coefficients of f in k; the coefficients
which determine the Newton polynomial are sufficient.

Now there remains one hard case of factorization in k((z))[0]. Here f has one slope
s # 0 and the Newton polynomial is of the form P¢, where P is an irreducible polynomial
over k and d is an integer > 1. In this case it is more difficult to decide if f is reducible
or not. A factorization of f will have coprime index > 1.
Example:

62_§6+ 1+20:c2'

2 + ot
x4 x5 z8

f=0*+
The Newton polynomial of f is T* 4+ 272 +1 = (T? +1)(T? +1). Because the two factors
T? +1 and T? +1 are not coprime we can not apply Hensel lifting to find a factorization
over Q((z))[0]. Malgrange provides a factorization method in @((x))[d] for this case. We
want to find a factorization in Q((x))[0]. In this example f is reducible in Q((x))[d].
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However, f + 1/z°® (replace the coefficient 20 by 21) is irreducible in Q((z))[0]. In the
previous example adding 1/2® would have no influence on the reducibility of f because
the reducibility could already be decided from the Newton polynomial. We see that this
example is more complicated because more coefficients of f are relevant for deciding
reducibility. We shall proceed as follows:

e Compute a first order right-hand factor @ — r of f where r € k((z)). We use a

variant on the method in (Malgrange, 1979) for this.

e Compute an operator R € k((z))[0] of minimal order such that & — r is a right-

hand factor of R.

e Perform a division to find a factorization f = LR.

For some applications, like factorization in k(z)[0], we need to compute the factors L
and R up to a high accuracy. The method sketched for computing L and R is not very
suitable for this because it is slow. We will use this slow method to compute L and R
up to a certain accuracy (up to the coprime index) and then use a different method to
lift the factorization. Coprime index > 1 means that the usual Hensel lifting does not
work because the Newton polynomials of L and R have ged # 1. For this case we give a
variant on the Hensel lifting method in section 4.

The factorization of a differential operator f is done recursively. If f can be factored
f = LR then the factorization algorithm is applied to the factors L and R (or only to
R when we are only interested in right-hand factors) until f is factored in irreducible
factors. This causes a difficulty; if a factorization is required with a given accuracy it is
not clear how accurate the intermediate factorizations should be. To solve this problem
we use lazy evaluation in our implementation. This is a computer algebra trick which
makes exact computation in k((z)) possible. It does not use truncations of some finite
accuracy. Instead, an expression a € k((z)) is denoted as the name and arguments of a
procedure that computes coefficients of a. These coefficients are automatically computed
and stored when they are needed. This method of computing in k((z)) is very efficient
because coefficients which are not used will not be computed.

The use of factorization for computing formal solutions is beneficial for the efficiency in
case the solutions involve algebraic extensions, c.f. the comments after algorithm formal
solutions in section 8.4.

2. Valuations and the coprime index

A discrete valuation on a ring D is amap v : D — Z | J{oo} such that for all @ and b in
D we have: v(ab) = v(a) +v(b), v(a+b) > min(v(a),v(b)) and v(a+b) = min(v(a), v(b))
if v(a) # v(b). v(0) = oo. An example: D is the field of p-adic numbers @, or D is a
polynomial ring @, [z] over the p-adic numbers. Define the valuation v(a) of a € @, [z] as
the largest integer n such that a € p"Z,[z]. Another example: s € Q and D = k((z))[y]
where k is a field. Write s = n/d where n and d are integers, gcd(n,d) = 1 and d > 0.
Now the valuation v,(3"; ; a;,;2°y”) is defined as the minimum d — jn for which a; ; # 0.

A third example: k is a field, s € @, s > 0 and D = k((z))[d]. Here ¢ is defined as
z0 € k((x))[d], cf. section 3.2. Write s = n/d where n and d are integers, ged(n,d) =1
and d > 0. Now the valuation v,(3; ; a; ;2'07) is defined as the minimum id — jn for
which Qg5 75 0.

A filtered ring is a ring D with a chain of additive subgroups --- D D 1 D Dg D Dy ---
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such that: 1 € Dy, D = UneZ D,, and D,D,, C D,y for all integers n and m. The
chain (D), .7 is called a filtration of D. The associated graded ring grD is defined as
®nDp/Dyy1. The symbol map o : D — grD is defined as: 6(0) =0, o(f) = f + Dpyy if
f € D\ Dppy1. For more information about filtrations see (Bjork J.E, 1979). A valuation
v defines a filtration on a ring D as follows

Dy ={f € Dl|v(f) = n}.

For positive integers a the set Do/D, has the structure of a ring.
For a ring D with a valuation v we can define a truncation o, with accuracy a for
non-zero elements f of D and positive integers a as follows

0a(f) = f + Du(s)+a € Du(s)/Do(f)ta-

The symbol map is o;.

Suppose f € D can be written as f = LR where L, R € D. For invertible elements
u € D we have f = LR = (Lu)(u 'R). We will call the ordered pair L, R equivalent
with the pair Lu,u 'R. Let t be a positive integer. Then the ordered pair L, R is called
coprime with indez t if for all a > t the pair o,41(L), 0a+1(R) is determined up to the
above equivalence by o,(L), 0,(R) and 0,44(f). Assume ¢ is minimal, then ¢ is called
the coprime indezx of L, R. If L, R is not coprime for any integer ¢ then the coprime index
is oo.

For our examples @, [z], k((x))[y] and k((z))[d] the notion of equivalence for pairs L, R
can be avoided by restricting ourselves to monic elements f, L and R. Then we can define
the coprime index of the factorization f = LR as the smallest positive integer ¢ for which
the following holds: For all integers a > t and monic elements L' and R’ of D, if

0o(L') = 04(L) and o4,(R') =0,(R) and o, +(L'R") = 04ss(f)
then
Tat1 (L) = 0a41(L) and 0441 (R') = 0041 (R).

Example: Suppose we want to factor f = z? + x + 3 € D = @,[z]. First we look at the
truncation o, (f) = 2% + z € Dy/D; which factors as z(x + 1) € Dy/D;. Because z and
z + 1 have ged 1 in Dy/D; ~ F3[x] we can apply Hensel lifting to find a factorization
f=LRin D. To determine L and R up to some accuracy a we only need to know f up
to accuracy a. So the coprime index is 1 in this example.

Example: f; =2 —2> —2=LR; = (z® +1)(z? - 2) € Q4[z] and fo = z* —2?> —20 =
LyRy = (22 + 4)(2% — 5) € Q5]z]. Now f; and f, are the same up to accuracy 2 (i.e.
are congruent modulo 3?) but the factorizations L, R; and Lo, Ry are different up to
this accuracy. It follows that to determine the factorization of f; up to some accuracy a
it is not sufficient to know o,(f1). This means that the coprime index of Ly, Ry is > 1.
We cannot apply ordinary Hensel lifting to find a factorization of f; because o1 (L;) and
o1(R;1) have ged # 1.

The name coprime index is explained from the case k((z))[y]. In this ring L, R have
finite coprime index if and only if L and R are coprime in the usual sense (i.e. ged(L, R) =
1). It is shown in chapter 5 in (van Hoeij, thesis) that the coprime index of a factorization
f = LR in k((z))[0] is always finite.
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3. Preliminaries

This section summarizes the concepts and notations we will use in this paper. Defini-
tions will be brief; references to more detailed descriptions are given.

3.1. THE FIELD k((x))

k is a field of characteristic 0, k is its algebraic closure. k((z)) is the field of formal Lau-
rent series in z with finite pole order and coefficients in k. k((z)) is the algebraic closure of
k((z)). It is (cf. (Bliss, 1966)) contained in the algebraically closed field Une[N E((wl/")),
the field of Puiseux series with coefficients in .

A ramification of the field k((z)) is a field extension k((z)) C k((r)) where r is algebraic
over k((z)) with minimum polynomial " —az for some non-zero a € k and positive integer
n (cf. (Sommeling, 1993)). If a = 1 this is called a pure ramification.

For r € k((z)) (not necessarily with minimum polynomial ™ —az) we call the smallest
integer n for which r € E((z'/")) the ramification index ram(r) of r. If L is a finite
algebraic extension of k((z)) then the ramification index of L is the smallest n for which
L C k((z/™)).

k((z)) is a differential field with differentiation d/dz. If k((z)) C L is an algebraic
extension then d/dx can be extended in a unique way to L. All finite algebraic extensions
k((z)) C L are of the following form:

L=1((r)

where k C [ is a finite extension and [((z)) C I((r)) is a ramification (cf. (Sommeling,
1993), proposition 3.1.5).

3.2. THE RING k((z))[d]

Define 6 = 20 € k((z))[0]. We have 0z = zd+z in k((x))[d]. Since k((z))[0] = k((x))[d]
we can represent differential operators in the form f = a,6™ + ...+ agd®. This form has
several advantages. The multiplication formula

(PO #Q0) = 32" Y P +§)Q409)
i j n i+j=n
and the definition of the Newton polygon (cf. section 3.3) are easier for operators with
this syntax. The operators we consider are usually monic. This means a,, = 1. The order
of a differential operator f is the degree of f as a polynomial in §.

f is called the least common left multiple of a sequence of differential operators fi,..., f,
if all f; are right factors of f, the order of f is minimal with this property, and f is monic.
Notation: f = LCLM(f1,..., fr) (cf. (Singer, 1996)). The solution space of f is spanned
by the solutions of fi,..., f.. So V(f) = >V (f;) where V(f) stands for the solution
space of f.In order to speak about the solutions of differential operators a differential ex-
tension of k((x)) is required that contains a fundamental system of solutions of fi,..., f.
For this we can use the so-called universal extension that we will denote as V. This V is
constructed as follows (this construction is obtained from (Hendriks, van der Put, 1995),
our V is called R in lemma 2.1.1 in (Hendriks, van der Put, 1995)). Define the set

E = U Elz~1/m.
nelN
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First view Exp(e) and log(z) as variables and define the free k((x))-algebra W in these
variables W = k((z))[{Exp(e)le € E},log(z)]. Then define the derivatives Exp(e)’ =
2Exp(e) and define the derivative of log(z) as 1/z. This turns W into a differential ring.
We can think of Exp(e) as

e
Bxp(e) = exp( [ )
because -2 d acts on Exp(e) as multiplication by e. Now define V as the quotient ring
V = W/I where the ideal I is generated by the following relations:

Exp(e; + e2) = Exp(e1)Exp(es) for ej,es € E

and
Exp(q) = z? € k((z)) for g€ Q.

Note that this ideal is closed under differentiation. Hence V is a differential ring. It is
proven in (Hendriks, van der Put, 1995) that V is an integral domain and that k is
the set of constants of V. We denote the set of solutions of f in V as V(f). This is a
k-vector space. Since every f € k((z))[0] has a fundamental system of solutions in V" (cf.
(Hendriks, van der Put, 1995)) it follows that

dim(V'(f)) = order(f).

The substitution map S, : k((z))[0] = k((z))[d] is a k((z))-homomorphism defined by
Se(d) =0 + e for e € k((x)). Se is a ring automorphism. The following is a well-known
relation between the solution spaces:

V(f) = Exp(e) - V(Se(f))-

The algorithm “Riccati solution” in section 5.1 introduces algebraic extensions over
k((x)). This requires computer code for algebraic extensions of the constants & C . But
we can avoid writing code for ramifications. Given a field extension k((z)) C k((r)) where
r™ = ax for some a € k we will use the following ring isomorphism

Oan 2 k((r))[8] = k((2))]4]

defined by 6., (r) = = and 6,,,(6) = 14. This map enables us to reduce computations
in k((r))[d] to computations in k((x))[d ]

3.3. THE NEWTON POLYGON

The Newton polygon of a monomial z'y? in the commutative polynomial ring k((z))[y]
is defined as the set {(j,b) € R?*|i < b}. The Newton polygon N(f) of a non-zero
polynomial f € k((z))[y] is defined as the convex hull of the union of the Newton polygons
of the monomials for which f has a non-zero coeflicient (cf. (Bliss, 1966), p. 36). The
main property is N(fg) = N(f) + N(g) for f and g in k((z))[y]. A rational number s is
called a slope of f if s is the slope of one of the edges of the polygon N(f). If s is a slope
of fg then s is a slope of f or s is a slope of g.

For the non-commutative case f € k((z))[] definitions of the Newton polygon are
given in (Malgrange, 1979), (Tournier, 1987) and (Sommeling, 1993), p. 48. N(z!4’) is
defined as {(a,b) € R*|0 < a < j,i < b} and N(f) is again defined as the convex hull of
the union of the Newton polygons of the monomials that appear in f. This definition is
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slightly different from the commutative case. As a consequence all slopes are > 0. This
is needed to ensure N(fg) = N(f) + N(g). If f has only one slope s = 0 then f is called
reqular singular.

3.4. THE NEWTON POLYNOMIAL

Let s > 0 be a rational number. We have defined a valuation v, and a truncation o,
for non-zero elements of k((x))[d] in section 2. o, depends on s and will from now on be
denoted as o, ;.

If s > 0 then oy 4(L)o1,s(R) = 01,s(LR) = 01 5(R)01,s(L) for all L and R in k((x))[0].
If s =0 then Ul’s(L)Ol’s(R) = Ulgs(LR) = S—vs(L) (Ul,S(R)) . Svs(R)(Ul,s(L))-

So 01,5 is commutative (i.e. is the same for LR and RL) if s > 0. If s = 0 then oy , is
commutative up to substitutions S_, (r) and S, gy which map d to J plus some integer.

To o01,5(f) for f € k((z))[d] corresponds a certain polynomial, the so-called Newton
polynomial N,(f) (the definition is given after the example) of f for slope s. The Newton
polynomial is useful for factorization in k((x))[é] because if f = LR then oy 4(L)o1 s(R) =
01,s(f). So a factorization of f induces a factorization of the Newton polynomial.
Example: Consider the following differential operator

f=Te34+20755 4+ 22756 4+ 327302 — 32732 + 5z 748% + z744°
+22728% 4+ 22738% + 32267 + 22168 + §°

In figure 1 we have drawn every monomial x?6/ which appears in f by placing the
coefficient of this monomial on the point (7,4). This gives a set of points (j,4). For all
points (4,4) for which z¢§’ has a non-zero coefficient in f we can draw the rectangle
with vertices (0,1%), (4,4), (j,00) and (0,00). The Newton polygon is the convex hull of
the union of all these rectangles. It is the part of the plane between the points (0, c0),
(0,—6), (1,—6), (5,—4), (9,0) and (9, 00). In the commutative case (i.e. if we had written
y instead of § in f) the definition of the Newton polygon is slightly different and the point
(0, —6) would have been (0,—5) in this example. But for k((z))[d] the Newton polygon
is defined in such a way that there are no negative slopes.
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Fig. 1

The slopes of f are 0, 1/2 and 1. The Newton polynomials are No(f) = 2T, Ny ,2(f) =
T?—-3T+2and Ni(f) = T*+2T3+37?+2T +1. Here T is used as a variable. Ny(f) will
be defined for all non-negative s € €. However, we will only use the Newton polynomial
for those values s which are a slope in the Newton polygon because for other values the
Newton polynomial is trivial (i.e. degree 0).

Write s = n/d where n and d are integers, gcd(n,d) = 1 and d > 0. The valuation v,
gives a filtration (D;), i € Z. 01,4(f) is an element of D = U;ez Di/Dit1. A multipli-
cation is defined for elements of D. An addition is only defined for a,b € D which are
element of the same D;/D;, 1.

Dy and k[z"6%] are equal modulo D;. There is a k-linear bijection

which is also a ring isomorphism if i = 0. If i = 0 then N! is defined by N!(z"§¢) = T.

For every i € Z there is a unique pair of integers n;,d; such that the map ¢; :
Do/Dy — D;/D;y1 defined by ¢(a) = z™d%a is a bijection. The integers n;,d; can
be determined from the conditions 0 < d; < d and vs(2™6%) = i. Now N!(a) for
a € D;/D;;1 can be defined as N!(¢; " (a)). N! is also defined for non-zero elements of
f € k((2))[0] as Ny(01,5(f))- In our example Nj(f) = 2T, Ny ,(f) = T? —3T + 2 and
N{(f) =T+ 2T® + 37" + 2T + T5.

For slope s = 0 we define the Newton polynomial No(f) as Nj(f). From the multipli-
cation formula in section 3.2 the following property follows for L, R € k((z))[d]

No(LR) = Sr—1+4v,(r)(No(L)) No(R).
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Here Sp—7.4vo(r) (No(L)) means No(L) with T replaced by T + vo(R). For our example
f we get No(f-f)=4(T —6)T.
For slope s > 0 we have the following property for L, R € k((z))[d]

N!(LR) = T*N!(L)N'(R).

Here p is either 0 or 1, depending on the slope s and the valuations vs(L) and v,(R).
Let i = vs(L) and j = vs(R). Then ¢;(1) - ¢;(1) = z+"i§%+4 mod D;y ;1. This is
either equal to ¢;4;(1) or x"ddqﬁiﬂ-(l) mod Dj,jy1, depending on whether d; + d; is
smaller than d or not. In the first case p = 0, in the second case p = 1. For our example
N{/2(f-f) = T-(N{/Z(f))2 and N{(f-f) = (N{(f))?. Now define N(f) as N.(f) divided
by T to the power the multiplicity of the factor T in N.(f). Then

N,(LR) = N,(L)N,(R)

for s > 0 and for all L, R € k((z))[d].

Note that our definition does not correspond to the usual definition of the Newton
polynomial. It corresponds to the definition of the reduced characteristic polynomial in
(Barkatou, 1988). The roots of No(f) in k are called the ezponents of f. If f € k((z))[0]
is regular singular (i.e. f has only one slope s = 0, or equivalently degree(No(f)) =
order(f)) and all exponents of f are integers then f is called semi-regular.

Property: If f = LR then the Newton polynomial of the right-hand factor N(R) divides
Ns(f). However, for a left-hand factor this need not hold. But if s > 0 or if vo(R) = 0
(for example if R is regular singular and monic) then N,(f) = Ny(L)N,(R) so in such
cases Ny(L) divides N, (f).

4. The lift algorithm

Suppose f € k((z))[0] is monic and that f = LR is a non-trivial factorization, where
L and R are monic elements of k((z))[d]. Let s > 0 be a rational number. Recall that
there is a valuation v, on D = k((x))[d], a filtration (D), n € Z and a truncation map
0q,s depending on s. In this section we will assume that L and R have been computed
up to some accuracy a. How to compute this o, (L) and o, s(R) will be the topic of the
sections 5 and 7. In this section we deal with the question how to compute 6441 (L) and
Oa+t1,5(R) from o4 5(L), 04,s(R) and f in an efficient way. The goal is an algorithm with
the following specification:

Lift Algorithm:

Assumption: f = LR where f, L, R are monic elements of k((z))[d].

Input: a > 1, s, 04,5(L), 04,s(R) and f.

Output: Either 0441,5(L) and 0441,s(R) or ”failed”, where "failed” can only occur if
t > a where t is the coprime index.

We use this algorithm to lift a factorization. If the output is "failed” then we will use
the less efficient method in section 7 to lift the factorization. Note that since a > 1 this
can only happen if the coprime index is > 1.

Suppose t < a. We will use indeterminates for those coefficients of 044 (L) and
Oq+t,s(R) which are not yet known. Then the equation o444s(LR) = 0441,5(f) gives
a set of equations in these unknowns (more details on how to find these equations are
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given below). t < a is needed to ensure that all these equations are linear. Coprime index
t means that o,41,5(L) and 0,41,5(R) can be uniquely determined from these linear
equations.

Except if the coprime index is 1, our algorithm usually does not know the coprime
index in concrete situations. Then the lift algorithm will use a guess for the coprime
index. If the lift algorithm is called for the first time, it takes t = 2. Otherwise it takes
the guess for ¢ that was used in the previous lift step. Then it will try, by solving linear
equations, if there is a unique solution for 0441 5(L) and 6441 s(R) from o, s(L), 04,5(R)
and o44¢,5(f). If so, t remains unchanged and the accuracy of the factorization increases;
the output of the lift algorithm is o441,5(L) and o441,5(R). If the solution for o441,5(L)
and o,41,5(R) is not unique (there is at least one solution because of the assumption
that the factorization f = LR exists) the number ¢ will be increased by 1. If ¢ is still < a
then we can use recursion with our increased guess ¢ for the coprime index. Otherwise, if
t > a, the output of the lift algorithm is "failed”, and we will have to use the less efficient
method in section 7 to lift the factorization. Note that the efficiency of our lift algorithm
depends on the coprime index, if this number is very high then it may not provide any
speedup over the method from section 7.

A truncation o4,s(R) = R+ D, (R)+, is stored as an element R’ € k[z,1/x,d] with no
terms in D, (g)4q- Now write

r= Z rij;viéj
i,j

where the sum is taken over all i, j such that vy(R) + a < v,(2%0’) < v,(R) +a + t and
J < order(R). Here r;; are indeterminates. We set r;; = 0 for j = order(R), i # 0, and
set r;; = 1 for j = order(R), ¢ = 0. Similarly write L' and I. Now we look for values
for the l;; and r;; such that R' +r and L' + [ approximate R and L up to accuracy
a + 1. If the coprime index is ¢, the accuracy is at least a + 1 if the following holds:
Oatt,s (L' + 1) (R +71)) = 0q11,5(f), or equivalently

(LI + l)(RI + T’) = f mOd Dvs(f)+a+t'

(L' +1)(R' +7)=L'R' +IR'"+ L'r 4+ Ir. To determine /R’ mod D, (f)4e+¢ it suffices to
have R' up to accuracy t because vy(l) + vs(R') > vs(f) + a. Similarly oy 4(L') suffices
to compute L'r mod Dy (f)4att- vs(Ir) > vs(f) +a+a > vs(f) + a+t so Ir vanishes
modulo D, ()4a+¢- Hence

f=L'R +lo;,(R) 4+ 0y5(L")r mod D, ()4att-

By equating the coefficients of the left-hand side to the coefficients of the right-hand side
(the coeflicients of all monomials of valuation < vs(f)+a+t) we find the linear equations
in ;; and 7;;. To determine these equations we must multiply ! by o s(R'), (= 0¢,5(R)
because R’ equals R up to accuracy a and t < a) which is the lowest block of R with
slope s and width ¢ in the Newton polygon of R. Similarly we must compute o s(L')r.
Usually the most time consuming part is the multiplication L' R' modulo D, (f)4at¢-
One approach is the following. Compute L'R' in k[z,1/z,d] and store the result together
with L' and R'. In the next lift step a similar multiplication must be performed, but then
L' and R' are slightly changed. Suppose we must compute the product (L' 4 e;)(R' + e3)
in the next lift step. Here L' and R' are large expressions and e; and ey are small.
Using the previous multiplication L'R’' we can speed up this multiplication by writing
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(L'+e1)(R +e)=LR +e R + L'es + e1e. The result of this multiplication is again
stored for use in the next lift step.

In this approach L'R' has been computed exactly. This is not efficient since we only
need it up to accuracy a+t, i.e. modulo D, (f)4q4¢- Computing modulo D, (#)4 44 is nOt
as convenient as computing modulo a power of z when using the multiplication formula
in section 3.2. We compute L'R’' modulo a suitable power of x such that L' R’ can still
be determined modulo D, (#)4.q+¢- Unless the slope s is zero, however, a few more terms
of the product L'R' than needed have been computed then. These terms are stored to
speed up the multiplication the next time that the lift algorithm is called.

5. Coprime index 1 factorizations

The lifting process for coprime factorizations can be done by solving linear equations.
However, for coprime index 1 solving linear equations can be avoided. In this case we must
solve a system (see section 4) of the form loy 5(R) + 01,5s(L)r = g where g is computed
by multiplying the so far computed truncations (called L' and R' in section 4) of L and
R and subtracting this product from f. As in section 3.4 this equation can be converted
to an equation [Ry 4+ rLy = g for certain I,r, Ly, Ry, g € k[T] and I, unknown. Such an
equation can be solved by the Euclidean algorithm.

Consider the example f in section 3.4. f has slopes 0, 1/2 and 1 in this example. In
(Malgrange, 1979) a method is given to compute a right-hand factor f; with only slope
0 and order 1, a right factor fo with slope 1/2 and order 4 and a right factor f3 with
slope 1 and order 4. The Newton polynomial of f> is the same as the Newton polynomial
N1/2(f) of f for slope 1/2. Tt is 2—3T+T? = (T'—1)(T —2). Because ged(T—1,T-2) =1
this f» is again reducible in @((x))[d], cf. (Malgrange, 1979). It has a right factor g; of
order 2 and slope 1/2 with Newton polynomial T' — 1 and a right factor g» with Newton
polynomial T — 2. So to obtain g; two factorization were needed. In one application, our
algorithm for factorization in @(z)[0], we are mainly interested in one of the irreducible
right-hand factors of f in Q((x))[d]. That is why we want to be able to compute gy
directly without using an intermediate factorization to compute fo. This is done by the
following algorithm.

Algorithm Coprime Index 1 Factorizations:

Input: f € k((x))[0], f monic

Output: All monic coprime index 1 factorizations f = LR in k((x))[d] such that R does
not have a non-trivial coprime index 1 factorization.

Note: the definition of coprime index depends on the valuation that is chosen on k((z))[d].
Here only the valuations v that are defined in section 2 are considered.

for all slopes s of f do
g:=Ns(f)
Compute a prime factorization of g in k[T], g = cgf* - - - ¢,
where g; are the different monic irreducible factors and ¢ € k.
if s = 0 then
M= {gla" '797‘}
N =M\ {9|9(T) = T +1i),h € M,i € N,i >0}
else
N = {07}
end if
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for hin N do
Write h = T? + hy,_1 TP~ + ... + hoT°.
Write s = n/d with d > 0 and ged(n,d) =1 (if s=0thenn =0,d =1)
R :=évd 4+ hp,lx_"é(p_l)d + hp,gm_Q"(S(p_Q)d + ...+ hoz~P"§0.
Now R' has Newton polynomial h. We want to lift R’ to a right
factor R such that R’ is R modulo D, (g)41-
L' := an operator such that o1 5(f) = 01,s(L'R').
L' is uniquely determined by requiring that L' has no
monomials of valuation > vy (L').
f, L', R' with the lift algorithm gives a factorization f = LR
end do
end do

We need to prove the following:

1 L' and R’ lift to a unique coprime index 1 factorization f = LR.

2 The right factors R do not allow a non-trivial coprime index 1 factorization.

3 All such coprime index 1 factorizations f = LR (f, L and R monic) are obtained
this way.

Suppose 04,5(L'R') = 0,4,5(f), meaning that the factorization has been lifted up to
accuracy a. If no lift steps were done yet, then a = 1. Now we look for [ € D, ()4, and
7 € Dy, (R')+a Such that oqp1,,((L' +1) (R +71)) = 0ay1,5(f) and order(r) < order(R'). To
prove statement 1 we have to show that [, r exist and that 0441 (L' +1) and o441, (R'+7)
are uniquely determined. This means that [ mod D, (r)4e41 € D (cf. section 3.4) and
r mod Dy, (R)+at1 € D are uniquely determined. Then L' and R’ are replaced by L' +1
and R' +r and the accuracy of the approximations I/ and R' for I and R has increased
by 1. I and r must satisfy the following equation in D

o1,s(L)r +101,5(R) = f — L'R' mod D, (f)4q+1-
By applying N! we obtain the following equation in k[T if s =0
Sr=r1a(Lo)ro +1loRo = g
and
Lorg+1lgRy =g or TLorg+1lgyRy =g

if s > 0. Here lg = Ny(I mod Dy, ()4qt1), "o = Ny(r mod D, (g)ta+1), Lo = Ng(L),
Ry = Ny(R) and g = Ny(f — L'R' mod D, (f)4q+1)- Note that vs(R) is 0 if s = 0. The
requirement order(r) < order(R) means degree(ry) < degree(Rp). To prove statement 1
we now have to show that lp,ro € k[T] exist and are uniquely determined. For this it
is sufficient to show that ged(TLg,Ro) = 1 if s > 0 and ged(Sr—14yq(Lo), Ro) = 1 if
s = 0. First the case s > 0. Ry is the factor h of the Newton polynomial in the algorithm.
LoRy = N.(f) = T N4(f) for some integer i. The set N of factors h of N,(f) is chosen in
such a way in the algorithm that ged(h, Ns(f)/h) = 1. Also ged(h,T) = 1 because Ng(f)
does not contain a factor T by definition and h is a factor of Ny(f). So ged(T Lo, Ry) = 1.
Now the case s = 0. We have LoRy = N,(f) because vs(R) = 0 (see the multiplication
formula for Ny in section 3.4). Ry is the factor h of N,(f) in the algorithm. We have to
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show that ged(St=7+4(Lo), Ro) = 1. The set N containing these factors h was chosen in
such a way that this holds for all a > 1.

To prove the second statement we distinguish 2 cases. Suppose s = 0. Then the Newton
polynomial of R is irreducible. Hence R must be irreducible because a factorization of R
gives a factorization of the Newton polynomial. Now suppose s > 0. Then the Newton
polynomial is of the form p* where p is irreducible and 4 is an integer. If i > 1 then
it is not clear whether R is reducible or not. Suppose R can be factored R = R;R».
Then the Newton polynomials of R, and Ry are both factors of p’. So the ged of these
Newton polynomials is not equal to 1. Coprime index 1 would mean that oq41,s(R1)
and o441,s(R2) can be uniquely determined from o, s(R1), 04,s(R2) and o,41,5(f)- To
determine oq41,5(R1) and oq41,5(R2) requires solving an equation lo Ny (R1)+roNs(R2) =
g in k[T]. Such an equation has a unique solution if and only if the ged of the Newton
polynomials Ns(R;) and Ng(R2) is 1. So a possible factorization R = R; Ry cannot be a
coprime index 1 factorization, which proves statement 2.

Suppose f = LR is a monic factorization satisfying statement 2. Now we need to show
that the algorithm finds this factorization. R can have only one slope s, otherwise it could
be factored by the given algorithm (which contradicts the assumption that statement 2
holds). First consider the case s = 0. Then N,(R) must be an irreducible polynomial,
otherwise R can be factored by the algorithm. So Ny(R) must be an element of the set
M in the algorithm. It cannot be an element of {g|g(T) = h(T +1i),h € M,i € N,i > 0}
because then ged(St—744(Lg), Ro) = 1 does not hold for all @ > 1 which was shown to be
a necessary and sufficient condition for having coprime index 1 if s = 0. So Ns(R) € N.
This means that o1 ;(R) and hence also 01,5(L) are the same as o1 5(R1) and o1 5(Lq) for
a factorization Ly, Ry of f given by the algorithm. Because the coprime index is 1 this
factorization L1, Ry is completely determined by o1 s(R1), 01,5(L1) and f. Hence these
two factorizations L; R; and LR are the same and so the third statement holds. In the
same way the case s > 0 is proven.

O

Remark: the given method can also be applied for factorization in the ring L[d] where
L is a finite extension of k((z)), because

e The method is not different for algebraic extensions of the constants k C I.

e Ramifications over I((z)) can be handled using the map 6, , in section 3.2.

e All finite field extensions of k((x)) are obtained as an algebraic extension of the
constants followed by a ramification, cf. section 3.1.

Consider again the example f in section 3.4 and let k¥ = @. The given algorithm
produces a right-hand factor R; with slope 0, order 1 and Newton polynomial T, a right
factor Ry with slope 1/2, order 2 and polynomial T'— 1, a right factor R with slope 1/2,
order 2 and polynomial 7' — 2 and a right factor R4 with slope 1, order 4 and Newton
polynomial (T2 + T +1)2. Now R;, R, and Rj are irreducible in @((z))[d] because their
Newton polynomials are irreducible. But it is not yet clear whether R, is irreducible or
not. The second example in section 1 remains unfactored as well. Reducible operators f
that remain unfactored by the given factorization algorithm are of the following form: f
has one slope s > 0 and N,(f) is a power > 1 of an irreducible polynomial. The given
algorithm will compute only a trivial factorization L = 1, R = f for this case. If such an
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operator is reducible then a factorization must have coprime index > 1. In section 6 the
notion of exponential parts will be introduced. Using exponential parts a description of
the irreducible elements of k((x))[d] will be given.

If f has one slope s > 0, s € N and the Newton polynomial is a power of a polynomial
of degree 1, then compute S.,-s(f) where ¢ is the root of the Newton polynomial (see
also case 4 of the algorithm in section 5.1). Then apply the factorization algorithm to
Sce—s(f) and find a factorization of f by applying S_.,-s to the factors of S.,-s(f). For
all other cases (i.e. s € N or degree(Ny(f)) > 1) we apply the method in section 7. The
factorization obtained that way lifts rather slowly, i.e. it costs much time to compute
more terms. The lifting will be speeded up using the lift method of section 4 whenever
that is possible (when its output is not the message ”failed”).

A differential operator can have infinitely many different factorizations. For example
0? which equals 1/z? times 62 — § has az + b as solutions, where a and b are constants.
Hence it has 8 — (az +b)'/(ax +b) = @ — a/(az +b) as right factors. Note that algorithm
coprime index 1 factorizations produces only a finite number of different factorizations.
In the semi-regular case (cf. section 3.4) it computes only 1 unique factorization, although
like the example 2 shows other factorizations could exist as well.

5.1. COMPUTING FIRST ORDER FACTORS OVER k((z))

An element r of some differential extension of k((x)) is by definition a Riccati solution
of f € k((z))[d] if § —r is a right factor of f. The reason this is called a Riccati solution is
that they are solutions of the so-called Riccati equation. This is a non-linear differential
equation. The Riccati equation of f € k((z))[d] can be found by computing a right
division of f by § — u, where u is an indeterminate. The remainder of this right division
is the Riccati equation. It is a polynomial in u and the derivatives of u. It vanishes
precisely when we substitute for v an element r such that § — r is a right-hand factor of
f. The Riccati solutions are of the form zy'/y where y is a solution of f. In the usual
definition the Riccati solutions are the logarithmic derivatives y'/y of solutions of f. The
definition in this paper differs by a factor x because we work with § = 20 instead of 9.
In this paper only Riccati solutions in k((x)) are considered. In general there exist more
Riccati solutions in larger differential fields. The implementation does not determine the
Riccati equation itself because this can be a large expression. Instead we use factorization
to find Riccati solutions. Computing first order right-hand factors of f is the same as
computing Riccati solutions.

The following algorithm is similar to the Rational Newton algorithm (cf. (Barkatou,
1988)) which is a version of the Newton algorithm (cf. (Tournier, 1987; Della Dora, di
Crescenzo, Tournier, 1982)) that computes formal solutions using a minimal algebraic
extension of the constants field k. A difference between the Rational Newton algorithm
and the following algorithm Riccati solution is that we use factorization of differential
operators. So the order of the differential operator decreases during the computation.

Algorithm Riccati solution:

Input: f € k((z))[d]
Output: a first order right-hand factor in k((z))[0]

1 If order(f) =1 then the problem is trivial.
2 If one of the following holds
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(a) f is regular singular and the No(f) is reducible.
(b) The Newton polygon has more than 1 slope.
(¢) f hasone slope s > 0 and N,(f) is not a power > 1 of an irreducible polynomial.

then compute a coprime index 1 factorization and apply recursion to the right-hand
factor.

3 If f has one slope s and the Newton polynomial N,(f) is of the form p® with p
irreducible, e > 1 and p is of degree d > 1. Then extend k by one root r of p. Now
compute a right factor of order order(f)/d with (T — r)¢ as Newton polynomial
using a coprime index 1 factorization as in the algorithm in section 5. This is a
coprime index 1 factorization because the ged of (T'—r)¢ and p¢/(T — r)¢ (this is
the Newton polynomial of the left hand factor) is 1. Now apply recursion to the
right-hand factor.

4 If f has one slope s > 0, s € N and N,(f) is a power of a polynomial of degree 1,
then compute S,,—s(f) where c¢ is the root of N,(f). Use recursion (this recursion
is valid because the slopes of S.,-s(f) are smaller than the slope of f) to find a
first order factor of S.;—s(f). Then apply S_ z-s-

5 If f has one slope s > 0, s € N and the Newton polynomial is a power of a
polynomial of degree 1, then write s = n/d with ged(n,d) = 1, n > 0. Now we will
apply a ramification of index d. Instead of extending the field k((z)) we apply the
isomorphism 6, 4 : k((r))[6] = k((x))[0] of section 3.2. First we need to compute a
suitable value a € k. 0,.4(x) = 6,,4(r%/a) = z?/a. Write the Newton polynomial of
fas (T'—c)®, where ¢ € k and e € N. Then the Newton polynomial of 8, 4(f) equals
a constant times (T¢ — d%ca™)®. Now choose a equal to ¢P, p € Z, such that d%ca™
is a d-th power of an element b € k. This is done by choosing p such that pn + 1 is
a multiple of d. Then the Newton polynomial (7T¢ — d%ca™)¢ equals (T¢ — b?)¢ and
can be factored as (T'—b)¢g® with gcd((T'—b)¢, g°) = 1. Now use a coprime index 1
factorization as in section 5 with (T"— b)¢ as Newton polynomial for the right-hand
factor. This provides a right factor R of order e = order(f)/d. Now use recursion
on R to find a first order factor and apply 0;}1.

Note that there are two cases where a field extension of k((x)) is applied. One case
was an extension of k of degree d, and the other case was a ramification of index d. Both
these cases were extensions of k((z)) of degree d. In both cases the algorithm finds a
right factor of order order(f)/d over this algebraic extension. In the three other cases
field extensions were not needed. We can conclude

LEMMA 5.1. Every f € k((z))[d] has a Riccati solution which is algebraic over k((z)) of
degree < order(f).

6. Exponential parts

A commutative invariant is a map ¢ from k((z))[d] to some set such that ¢(fg) = ¢(gf)
for all f,9 € k((z))[d]. An example is the Newton polygon, i.e. N(fg) = N(gf) for all
non-zero f and g. However, there are more properties of differential operators that remain
invariant under changing the order of multiplication. We want a commutative invariant
which contains as much information as possible. In (Sommeling, 1993) Sommeling defines
normalized eigenvalues and characteristic classes for matrix differential operators. The
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topic of this section is the analogue of normalized eigenvalues for differential operators in
k((2))[6]. We will call these exponential parts. The exponential parts are useful for several
topics. They appear as an exponential integral in the formal solutions (this explains the
name exponential part). They describe precisely the algebraic extensions over k((z))
needed to find the formal solutions. The exponential parts are also used in our method
of factorization in the ring k(z)[0] in chapter 3 in (van Hoeij, thesis). For factorization
in k((z))[d] the exponential parts will be used to describe the irreducible elements, (cf.
theorem 6.2).

Differential operators (in this paper that means elements of k((z))[0] or k((x))[d]) can
be viewed as a special case of matrix differential operators. So our definition of exponen-
tial parts could be viewed as a special case of the definition of normalized eigenvalues in
(Sommeling, 1993). A reason for giving a different definition is that the tools for com-
puting with matrix differential operators are not the same as for differential operators.
Important tools for matrix differential operators are the splitting lemma, and the Moser
algorithm. The tools we use for differential operators are the substitution map and the
Newton polynomial. That is why we want to have a definition of exponential parts ex-
pressed in these tools. Because then the definition allows the computation of exponential
parts using a variant of the “algorithm Riccati solution”, namely the “algorithm semi-
regular parts” in section 8.4. A second reason for our approach is that it allows the
definition of semi-regular parts of differential operators.

Let L be a finite extension of k((z)). Since L C k((z'/™)) for some integer n we can
write every r € L as r = e + t with e € E and t € z'/"k[[z'/"]]. Now e is called the
principal part pp(r) of r € L. Using the following lemma we can conclude e € k((z))[r] C
L.

LEMMA 6.1. Let n €  and r € k((z)) be equal to r,z™ plus higher order terms. Then
rax™ is an element of the field k((z))[r].

Proof: Write r = r, 2" + r, ™ plus higher order terms, where m € @, m > n. We want
to prove that there exists an s € k((z))[r] of the form r,z™ plus terms higher than z™.
Then we can conclude r,2" € k((z))[r] by repeating this argument and using the fact
that the field k((z))[r] is complete (cf. (Bourbaki, 1953) Chap I, §2, thm. 2). We can find
this s as a @-linear combination of r» and :Ufii—;.

O

DEFINITION 6.1. Let f € k((2))[d], e € E andn = ram(e). Let P = No(Sc(f)), the New-
ton polynomial corresponding to slope O in the Newton polygon of S.(f) € k((z/™))[4].
Now pe(f) is defined as the number of roots (counted with multiplicity) of P in %Z and
L. (f) is defined as the number of roots (counted with multiplicity) of P in Q.

Recall that ram(e) denotes the ramification index of e. Note that we have only defined
the Newton polynomial for elements of k((z))[d], not for ramifications of k((z)). Define
No(f) for f € k((z'/™))[d] as follows. Write f = >, 2/ f; with f; € k[5]. Then No(f)
is (written as a polynomial in § instead of T') defined as f; where 4 is minimal such that
fi #0.

We define an equivalence ~ on E as follows: e; ~ e if e; —es € %Z where n is the
ramification index of e;. Note that the ramification indices of e; and ey are the same if
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e1 —e2 € Q. If eg ~ ez then pe, (f) = pe, (f) for all f € k((z))[d] so we can define p, for
e € E/ ~. Similarly i, (f) is defined for e € E/Q.

DEFINITION 6.2. The exponential parts of an operator f € k((x))[d] are the elements
e € E/ ~ for which p.(f) > 0. The number p.(f) is the multiplicity of e in f.

LEMMA 6.2. Let f = LR where f, L and R are elements of k((z'/™))[6]. Let Ny be the
number of roots of No(f) in %Z, counted with multiplicity. Similarly define Ni, and Ng.
Then Nf = NL +NR.

The proof of this lemma is not difficult; we will skip it. Note that if n = 1 then Ny =
po(f)-

LEMMA 6.3. If f = LR where f, L and R are elements of k((x))[0] and e in E or in

E[ ~ then pie(f) = pe(L) + pe(R).
If f = LR where f, L and R are elements of k((z))[d] and e in E or in E/Q then

Be(f) = Be(L) + 1 (R).

Proof: If n is the ramification index of e, then y.(f) is the number of roots in 1Z of
No(Se(f))- Now the first statement follows using the previous lemma and the fact that
Se(f) = Se(L)Se(R). The proof for 1 is similar.

O

THEOREM 6.1. Let f be a non-zero element of k((x))[6], then the sum of the multiplicities
of all exponential parts is:

> helf) = ordex().
e€E/~

Let f be a non-zero element of k((x))[d], then

> B(f) = order(f).
eEE/Q

Proof: If order(f) = 1 then both statements hold. If f is reducible then we can use
induction and lemma 6.3 so then both statements hold. In k((z))[d] every operator of
order > 1 is reducible (see also the algorithm in section 5.1 which computes a first order
right-hand factor in k((z))[d]) so the second statement holds.

To prove the first statement we need to show that the sum of the multiplicities is the
same for y over all e € E/ ~ and [ over all e € E/Q. Suppose € is an element of E/Q. The
sum of p.(f) taken over all e € E/ ~ such that € = e mod @ is equal to Gz(f) because
they are both equal to the number of rational roots of the same Newton polynomial. So
we can see that the sum of the multiplicities fz is the same as sum of the multiplicities
by grouping together those exponential parts of f that are congruent modulo @.
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6.1. SEMI-REGULAR PART

An operator f € k((z))[d] is called semi-regular over k((x)) if f has only one exponen-
tial part which is equal to 0 € E/ ~. A semi-regular operator is a regular singular operator
with only integer roots of the Newton polynomial. In other words po(f) = order(f). An
operator f € k((z))[0] = k((x))[0] is regular (or: non-singular) if f can be written as
a product of an element of k((z)) and a monic element of k[[z]][0]. A regular operator
is regular singular and the roots of the Newton polynomial are 0,1,...,order(f) — 1.
So a regular operator is semi-regular. We can generalize the notion of semi-regular for
algebraic extensions k((z)) C L.

DEFINITION 6.3. f € L[d] is called semi-regular over L if it is regular singular and all
roots of No(f) are integers divided by the ramification index of L.

For a ramification r™ = az an isomorphism 6, ., : k((r))[d] = k((x))[d] was given in
section 3.2. Now f € k((r))[d] is semi-regular over k((r)) if and only if 6, ,(f) € k((z))[d]
is semi-regular over k((z)).

DEFINITION 6.4. Let f € k((z))[6]. Then the semi-regular part R, of f for e € E is the
monic right-hand factor in k((z))[e,d] of Se(f) of order p.(f) which is semi-regular over

k((2))[e]-

R, can be computed by a coprime index 1 factorization of S.(f) as in section 5 using
slope s = 0. The Newton polynomial (called h in the algorithm) is the largest factor
of No(Se(f)) for which all roots are integers divided by the ramification index. Since
such coprime index 1 factorizations for a given Newton polynomial are unique (see the
comments after Algorithm Coprime Index 1 Factorizations) it follows that R, is uniquely
defined. Note that if the ramification index n is > 1 then in fact our algorithm does not
compute with S, (f) but with 6, ,,(Se(f)) for some constant a, cf. the remark in section 5.
Then we have to compute the highest order factor of 6, (Se(f)) of which the roots of
the Newton polynomial are integers, instead of integers divided by n.

S_e(R.) is a right-hand factor of f. Note that if e; ~ ez then S_, (Re;) = S_¢y(Resy)-
Hence the operators S_.,(Re,),...,S ¢,(R.,) in the following lemma are up to a per-
mutation uniquely determined by f.

LEMMA 6.4. Let f be an element of k((z))[d]. Let e1,...,e, € E be a list of representa-
tives of all exponential parts in E/ ~ of f. Then

J=LCLM(S ¢,(Re,),---,S ¢, (Re,))-

Remark: A similar statement (expressed in the terminology of D-modules) is given in
corollaire 4.3.1 in (Malgrange, 1979). There is, however, a subtle but important difference
namely that in our lemma the operators R; are semi-regular instead of regular singular.
To this difference corresponds a different notion of exponential parts as well; in corollaire
4.3.1 in (Malgrange, 1979) a notion appears which, in our terminology, can be viewed as
elements of E/k instead of our E/ ~. One often distinguishes the two notions irregular
singular and regular singular. In this paper we propose to drop the notion of regular
singular as much as possible and only to make a distinction between semi-regular and
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not semi-regular, and measure the “non-semi-regularity” using the exponential parts in
E/ ~. The motivation for doing this is to generalize algorithms that work for regular
singular operators to the irregular singular case. In (van Hoeij, thesis) the benefits of this
approach are shown.

Proof: Let R = LCLM(S_¢,(R.,),---,S—¢,(Re,)). Conjugation over k((z)) only per-
mutes S_, (R.,),--.,S—¢,(Re,). Hence R is invariant under conjugation over k((z)) and
s0 R € k((z))[0]- S_e, (Re,) is a right factor of R, so R., is a right factor of S,,(R). So
No(Re;) is a factor of No(S, (R)), hence p,, (R) > degree(Ng(Re;)) = pe; (f) because all
roots of Ny(R,,) are integers divided by the ramification index. Then by theorem 6.1 we
can conclude order(R) > order(f). R is a right-hand factor of f because the S_., (Re,)
are right factors of f. Hence f = R.

O

This provides a method to compute a fundamental system of solutions of f. The
solutions of f = LCLM(S_.,(Re,),--.,S5—c,(R.,)) are spanned by the solutions of
S_ei(Re,),---,8—,(Re,). The solutions of S_., (R,,) are obtained by multiplying the
solutions of R, by Exp(e;) (recall that Exp(e;) = exp([ £dx), cf. section 3.2). Con-
sequently, when all e; and R., have been computed, then the problem of finding the
solutions of f is reduced to solving semi-regular differential operators, which is a much
easier problem (cf. section 8.1).

Define R, for e € E and f € k((z))[d] as the largest regular singular factor of S,(f)
for which all roots of the Newton polynomial are rational numbers. Now we can show in
the same way for f € k((z))[d] that

f= LCLM(S—EI (Rm)a R S—eq (Req)) (6'1)

where e1,...,e, € E is a list of representatives for all e € E/Q for which g, (f) > 0.

6.2. IRREDUCIBLE ELEMENTS OF k((z))[d]

If r € k((z)) is a Riccati solution of f € k((x))[d] then the principal part e = pp(r) €
k((2))[r] modulo ~ is an exponential part of f. Conversely, if p.(f) > 0 then f has
a Riccati solution r. € k((z))[e] of which the principal part is e modulo ~. Though
there may be infinitely many such Riccati solutions, we can compute one such r, in a
canonical way. The algorithm in section 5 provides (although infinitely many different
factorizations could exist) only 1 unique factorization of semi-regular operators (namely
the one that has coprime index 1). This way we can compute a unique right factor § —r,
of S_.(Re) by computing a first order factor of R, and applying S_.. If e; ~ e; then
Te, = Tey. S0 T is defined for exponential parts e € E/ ~ of f.

Suppose e; € E is algebraic over k((x)) of degree d and suppose p, (f) > 0. Suppose
e1,...,eq € k((x)) are the conjugates of e; over k((z)). If L is a Galois extension of
k((x)) then conjugation over k((x)) is an automorphism of L[d]. So p., (f) = pe,; (f) for

all 4,j. We can find unique right factors § — r., € k((x))[e;,d] C k((z))[d] of f as just
described. Then R = LCLM(d — r¢,,...,0 — r,) is a right-hand factor of f. Because
conjugation is an automorphism the r,, are all conjugates of ., over k((x)). So the set
{6 —7¢y,...,0 — e, } is invariant under conjugation which implies that R is invariant
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under conjugation over k((z)). Hence R € k((z))[d]. In general
order(LCLM(fy, ..., fn)) < > _ order(f;)

because the order of an operator is equal to the dimension of the solution space, and
the solution space of LCLM(f1,..., fn) is spanned by the solutions of fi,...,f,. So
order(R) < d. Since e, (R) = pe;(R) > 0 for all ¢ = 1,...,d we can conclude by
theorem 6.1 that order(R) > d if all e; represent different exponential parts. For this
we must prove e; —e; € @ if i # j. Suppose e; — e; € . We now have to prove that
e; = €. The Galois group G of k((x))[e1, - - ., eq] over k((x)) acts transitively on eq, .. ., eq.
Hence ~y(e;) = e; for some v € G. If y(e;) = e; + (e; — e;) where (e; — e;) € @ then
v#G (e;) = e; + (#G)(e;j — e;). Here #G denotes the number of elements of G. However,
for any finite group G and element v € G the equation y#% = 1 holds so 7#%(e;) = e;.
Hence (#G)(e; —e;) = 0 and e; = e;. Now we can conclude order(R) = d. We have
partly proven the following

THEOREM 6.2. f € k((z))[d] has an exponential part e which is algebraic over k((z)) of
degree d if and only if f has an irreducible right-hand factor R € k((x))[d] of order d.

Note: In a different terminology (normalized eigenvalues, characteristic classes and D-
modules) this result is found in (Sommeling, 1993) as well.

Proof: Given an exponential part of degree d over k((x)) we have already shown how to
construct R as LCLM(§ — 7¢,,...,0 — 7¢,). Now we must show that R is irreducible in
k((2))[6]. Suppose R has a non-trivial right-hand factor R; of order d; < d. By induction
we can conclude that R; has an exponential part e which is algebraic over k((z)) of
degree d;. Lemma 6.3 shows that e is an exponential part of R. Then e,eq,...,eq are
d + 1 different exponential parts of R contradicting theorem 6.1. So R is irreducible.
Now suppose f has an irreducible right factor R of order d. The exponential parts of R
are exponential parts of f by lemma 6.3. We will show that all exponential parts of R are
conjugated over k((z)) and algebraic of degree d over k((x)). Let e; be an exponential

part of R algebraic of degree p over k((z)). So the conjugates e1, ..., e, are exponential
parts of R and by our construction we find an irreducible factor R; of R of order p.
Since R is irreducible we have Ry = R and hence p = d. Now ey,...,¢e4 are d different

exponential parts of R. Because of theorem 6.1 there cannot be more exponential parts,
so all exponential parts of R are conjugated with e;.

7. Coprime index > 1 factorization

How can one compute an irreducible factor of a polynomial f € Q[y]? A method is to
compute a root 7 and the minimum polynomial of r. This is not the usual factorization
method for the ring Q[y]. But for the ring k((x))[d] this idea supplies a method for the
cases we have not yet treated. The role of the root is played by a Riccati solution. The
analogue of the minimum polynomial for a Riccati solution r is the least common left
multiple of § —r and its conjugates. A minimum polynomial is the product of y —r and its
conjugates. One does not need to compute the conjugates to determine this product. The
same holds for the least common left multiple. To see this write the LCLM as an operator
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R with undetermined coefficients R = a,0™ + - - - + agdé®. Now the statement that § — r
is a right factor of R translates into a linear equation in ay, ..., a,. This is an equation
over k((z))[r]. We know that all conjugated equations (which we do not compute) hold
as well. Then this system of equations can be converted to a system over k((z)). We show
how this can be done in a slightly more general situation. Suppose « is algebraic of degree
d over a field K and we have an equation bpa® + ---bg_1a?"! = 0 (in our application
K =k((z)), @ = r and the b; are k((x))-linear expressions in a;). The system formed by
this linear equation and all its conjugates is equivalent with bg = b; = --- = bg_1 = 0.
The reason is that the transition matrix (which is a Vandermonde matrix) between these
two systems of linear equations is invertible.

This method for computing R is not very efficient for two reasons. The right-hand
factor R is computed by solving linear equations over k((x)) which is rather complicated.
The computation of these linear equations involves an algebraic extension over k((z)).
So we prefer to lift R with the algorithm in section 4 whenever possible.

Example:
f=6"+28 - 2y 1 k((2))[9]
x 4z x2?

The exponential parts are e; = ﬁ + —VZ_I in E/ ~ and the conjugates es, e3, e4 of e; over

Q((x)). If /=1 & k then e, is algebraic of degree 4 over k((x)) and then f is irreducible
in k((x))[0]. Now assume that /=1 € k. Then e is algebraic of degree 2 over k((x)) and
hence f has an irreducible right-hand factor R € k((x))[0] of order 2. To e; corresponds
the following right-hand factor in k((z))

—12 V-l g 27 31, 45 1587 41411, ,
”“' 5 % (5~ 0 " T ({og00 T 12800 *

Write R = 62 + a18 + ao where ag,a1 € k((x)) are to be determined. Dividing R by r
results in a remainder of the form aobo’o + albo’l + b0,2 + zl/? (a0b1’0 + a1b1,1 + b1’2) for
some b; ; € k((z)). By equating this to zero, the following linear equations are obtained:
apbi0 + a1b;1 +bi2 =0, 9= 1,2. Solving these equations over k((x)) gives

R = 52+<(%—\/—_1)m0+( 573 | 3661Vl

r=4—

6400 6400
24/—1 12291v/—-1 4
o4 (__\/ B 3_7)$0 (- 91/ + 8663)331 )8
5 40 64000 64000
It is not efficient to compute many coefficients of ag, a; in this way. It suffices to determine
R in this way up to accuracy 2 (i.e. to determine the coefficient of z° in a; and the

coefficient of 27! in ag). Then the higher terms can be computed more efficiently by the
lift algorithm in section 4.

)$1+...)51+

8. Formal solutions of differential equations

8.1. SOLUTIONS OF SEMI-REGULAR EQUATIONS

Let f € k((z))[0] be a semi-regular operator of order n > 1. Then we can apply

section 5 to factor f = L(§—r) where r is an element of Z + - k[[z]]. S, (f) = S,(L)5. We
can recursively compute a fundamental system of solutions a1, ...,a, 1 € k((z))[log(z)]
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of Sy(L). Define s; = [ %dx for i = 1,...,n —1 and s, = 1. Then s1,...,5, is a
fundamental system of solutions of S,.(f). These s; are elements of k((z))[log(x)] because
a;/z € k((z))[log(x)] and every element of k((z))[log(z)] has an anti-derivative in this
ring. By requiring that the coefficients of xz%log(x)? in s;,...,s, 1 are 0 the s; are
uniquely defined. To obtain the solutions of f we multiply the solutions of S,.(f) by
t = Exp(r) = exp(f Ldz). This ¢t € k((x)) can be computed efficiently as follows. If r is
written as m € Z plus an element of z - k[[z]] then ¢ can be written as 2™ + ¢, 2™+ +
tma22™ 2 4 - - .. The the fact that t is a solution of § —r gives a linear equation for #,,,1,
after solving it we find an equation for t,,,2, etcetera.

The same method can also be used for an element f of L[] which is semi-regular over
L, where L is an algebraic extension of k((z)), for the same reason as in the remark
in section 5. This way a uniquely defined basis of solutions si,...,s, € L[log(z)] can
be computed. By theorem 8.1 in section 8.3 (first apply the theorem to k((x))[d], then
generalize using the remark in section 5) it follows that f is semi-regular over L if and
only if f has a fundamental system of solutions in L[log(x)].

8.2. THE CANONICAL BASIS OF SOLUTIONS

Let e1,...,e, € E be representatives for the exponential parts of f. Computing e; and
the corresponding semi-regular parts R, can be done by the algorithm in section 8.4.
Note that the algorithm only computes the e; up to conjugation over k((z)). This means
that the formal solutions will also be computed up to conjugation over k((z)), i.e. if a
number of solutions are conjugated then only one of them will be computed.

The semi-regular R,; € k((x))[e;,d] has a basis of solutions s; ; € k((z))[e;,log(x)]. So
according to section 6.1 we get a basis of solutions of the form

y = Exp(e;)s;; where e; € E and s;; € k((z))[es,log(x)] (8.1)

(recall that Exp(e;) € V stands for exp([ %)). In the LCLM factorization in lemma, 6.4
the S_, (Re,) are uniquely determined. Furthermore a unique basis of solutions for semi-
regular operators was defined in the previous section. As a consequence, the basis of
solutions obtained in this way is uniquely defined. We will call this basis the canonical
basis of solutions.

For a solution in the form (8.1) s;; is called the semi-regular part of (8.1) and e; is
called the exponential part of (8.1). The exponential part of (8.1) is an exponential part
of the operator as well. The semi-regular part s; ; is a solution of the semi-regular part
R.,. Note that from a given y in the form (8.1), e; can be determined modulo ~ (without
further restrictions on s; ; one cannot determine e; € E from y because when replacing
for example e; by e; — 1 and s; ; by « - s; ; in y we obtain an equivalent expression).

A few introductory comments on the next section: Every f € k((x))[d] is an element
of some L[] where L is a finite extension of k((z)). By a suitable transformation 6, 4 as
in the remark in section 5 the problem of finding solutions of f can be reduced to finding
solutions of an operator 8, 4(f) € I((z))[d]. The solutions of f can be obtained from the
solutions of 6, 4(f). But the elements of the basis of solutions that we find for f are not
necessarily in the form (8.1) (in other words: are not necessarily an element of some V;)
but are element of some V., definitions follow in the next section.

Example: § — \/z/(2 + 2y/z). Apply 6:» to obtain 16 — 1z/(1 + z). A basis for the
solutions is 1+x. This is of the form (8.1) with e = 0. Now apply an inverse transformation
to find the solution 1 + /z of f. This is not of the form (8.1) but it is a sum of two
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terms of the form (8.1), one with e = 0 and one with e = 1/2. This example shows
that the direct sum decomposition V(f) = @ V.(f) in theorem 8.1 in the next section
which holds for f € k((z))[0] need not hold for f € k((x))[d]. For f € k((z))[d] a less
precise statement is given in theorem 8.1, corresponding to the less precise version @ of
exponential parts.

8.3. THE SOLUTION SPACE AND EXPONENTIAL PARTS

DEFINITION 8.1. Define for e € E the set

Ve =Exp(e) - k((z))[log(z)] C V
and
Ve = Exp(e) - (k- k((z))[e])[log(2)]) C Ve
Ife; ~ ey then'V,, =V, so V, is also defined for e € E/ ~. Similarly V. is defined for
e € E/Q. Define

Ve(f) =Ve(NV(f) and Ve(f) = Ve[V

Note that % - k((z))[e] = k- k((z'/")) where n = ram(e). The reason for writing
k- k((z'/™)) instead of k((z'/™)) is that in general (namely if k # %) the field &((z'/"))
is not a subfield of k((x)).

THEOREM 8.1. For non-zero f € k((z))[d]
V() =EPVe(f) and dim(Ve(f)) = pe(f)

where the sum is taken over all e € E/ ~. For non-zero f € k((z))[0]

V() =EVe(f) and dim(V.(f)) =7 (f)

where the sum is taken over alle € E/Q.

This theorem enables us to give an alternative definition of exponential parts and their
multiplicities pe(f) in terms of the solution space of f.

Proof: Let f € k((z))[0]. Each element of the basis of solutions in the previous section is
an element of some V, where e is an exponential part of f. So the sum of the V. NV (f)
contains a complete basis of solutions of f. In this basis of solutions, u.(f) elements are
in the form (8.1), i.e. pe(f) elements are in V,(f). Hence

V()= Ve(f) and dim(Ve(f)) > pe(f)

where the sum is taken over all exponential parts of f. It follows from the following
lemma 8.1 that this is a direct sum. Then order(f) = dim(V (f)) = >, dim(V.(f)) >
> e te(f) = order(f) hence the > must be an equality. The second statement follows in
the same way.
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LEMMA 8.1.

V=P W and V= Ve

eEE/~ ecE/Q

Proof: Let n € N. Then k((z)) = @, Exp(q) - (k- k((x/™))) where the sum is taken over
allge @ with0<g<1/n.Soforeec E/Q

szeave

where the sum is taken over all e € E/ ~ such that € = e mod @. This reduces the first
direct sum to the second one. Because of the relations Exp(e;)Exp(es) = Exp(e; + e3)
every element of V' can be written as a polynomial in the Exp(e) of degree 1. So V' =
Y- V& We will show that this is a direct sum which finishes the proof of this lemma.

Let e1,...,eq € E be different modulo Q. Let s; € k((z))[log(z)] and s =
> ;Exp(e;)s; = 0. To prove that the sum is direct we need to show that all s; are
zero. Assume that not all s; = 0 and that d > 1 is minimal with this property. Then
all s; # 0. Now xg—; = 3 . Exp(e;)(essi + xsj). Suppose the vectors (si,...,sq) and
(e1s1 + xst,...,eqsq + xs)y) are linearly independent over k((z))(log(z)). Then we can
find a linear combination in which at least one (but not all) of the components van-
ishes. This contradicts the fact that d is minimal (multiply with a suitable element of
k((z))[log(x)] to eliminate log(z) from the denominator). So these two vectors must be
linearly dependent over k((x))(log(z)). It follows that

e181 +s]  easat+xsh

= € k((z))(log(z))

S1 S2

S0
ey —e1 = x8) /81 — x8h /52 = xb' /b

where b = s1/s2 € k((z))(log(z)). But ex —e; € E and e; — e; ¢ @ which contradicts
lemma 8.2.

O

LEMMA 8.2. Let b € k((z'/™))(log(x)). Suppose that the logarithmic derivative c = xb' /b
is an element of k((z)). Then c € 1Z + /™ - k[[z'/]].

Proof: Write b = p/q with p,q € k((z'/"))[log(z)]. Write p = plog(x)! + --- and
4 = gmlog(z)™ + --- where p;,¢m € k((z'/™)). The dots stands for an element of
E((z'/™))[log(x)] of lower degree as a polynomial in log(z).

v zp  xq _ zpjlog(z) +--- _ zgplog(x)™ + -

b p q pilog(z)t +---  gplog(z)™ +---

z(P)gm — qpi)log(z)! ™ 4 - - -
=2 et € K(@)).
Pigmlog(z)tm 4 ..

Then z(pgm — ¢5,,p1)/ (P1gm) must be the same element c of k((z)). Write r = p /gy, €
B((2/7)). Then ¢ = o(plgm — gtupt)/ (rgm) = a7’ fr € LZ + 21/ - K{fat/].
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8.4. CoPRIME INDEX 1 LCLM FACTORIZATION

LEMMA 8.3. Let fi,...,fds € k((x))[0], e € E/ ~ and f = LCLM(f1, ..., f4).- Then
max; He(fz') < Ne(f) < Zﬂe(fz’)-

In particular every exponential part e of f is an exponential part of at least one of the

Ji-

Proof: These inequalities follow from the dimensions of V, (f) and V,(f;) in the following
equation: V.(f) = Ve N2, V(fi)) = X_; Ve(fi). The second equality holds because the
V(f;) are direct sums of V(f;) (| Ve, taken over all e; € E/ ~.

O

LEMMA 8.4. Let f € k((z))[0] be monic and let fi,...,fq € k((z))[d] be right hand
factors of f. Suppose that y, order(f;) = order(f) and that the f; have no exponential
parts in common. Then

e f=LCLM(f1,..., fa)

o Ife€ E/ ~ and pe(f) > 0 then there is precisely one f; such that V.(f) C V(f;).
e For this e and f; the semi-reqular part R, of f is the semi-regular part of f; as
well.

Proof: Using the previous lemma, the fact that the f; have no exponential part in
common and theorem 6.1 we can conclude that order(LCLM(f1,..., f4)) = _ order(f;),
and this equals order(f) by the assumption in this lemma. Since all f;, and hence this
LCLM, are right-hand factors of f the first statement follows. If e is an exponential part
of f then for precisely one i we have p.(f;) > 0. Then p.(f;) = pe(f) because of the
previous lemma and because the p. of the other f; are zero. For the second statement
note that V,(f;) C V.(f), because f; is a right-hand factor of f. Since pe(f;) = pe(f)
the dimensions are the same. Hence V. (f) = V.(f;) C V(f;). The third statement follows
because V(S_(R.)) = Ve(f) C V(fi), hence S_.(R,) is a right-hand factor of f; and so
R, is a right-hand factor of S (f;)-

O

LEMMA 8.5. Let f,g € k((x))[0] and suppose gcd(Ns(f), Ns(g9)) =1 holds for all s € @,
s > 0. Suppose gcd(Ns(f), ST=14n(Ns(g))) = 1 holds for s =0 and alln € Z. Then f
and g have no exponential parts in common.

Proof: For every exponential part e of f there exists a Riccati solution r, of f such that
e is the principal part of r, modulo ~, cf. section 6.2. Now the proof follows from the
next lemma.
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LEMMA 8.6. Let r € k((z)) be a Riccati solution of f € k((x))[d]. Suppose r, viewed as
an element of |J,, E((z'/™)), can be written as r,x® plus higher order terms, where s € @,
s<0andrs 20 if s <0. Write s =n/d with n,d € Z, gcd(n,d) =1 and d > 0. Then
—s is a slope of f and re is a root of the Newton polynomial N_,(f).

Proof: § — r is a right-hand factor of f. If the ramification index of r is 1 the lemma
can easily be proved using the fact that the slopes of factors of f are slopes of f and the
Newton polynomials of right factors of f are factors of the Newton polynomials of f, cf.
section 3.4. However, we have not defined the Newton polygon and Newton polynomial
over ramifications of k(()). Choose d' € N such that 61 (6 — r) € k((x))[6]. Then d
must divide d'. Now 61 ¢ (6 —r) is a right-hand factor of 61 4 (f). The slope of 61 4 (6 —7)
is —sd' s0 01 ¢ (f) has this slope as well. Hence f has a slope —s. The Newton polynomial
of 01,0 (8—r)is 7T —rs. I N_y(f) = (TP +ap_1TP~' +-- - +aoT°) where c is a constant
then N_,q: (61,4 (f)) is a constant times T?% +d'%a,_, T®~Dd4... 4" aTO. So +T—r,

is a factor of this Newton polynomial hence rg is a root of TP + ap 1 TP~ + - - + aoT°.

O

Now we can write algorithm LCLM factorization as follows. Take algorithm Coprime
Index 1 Factorizations in section 5. Replace the lines

if s = 0 then
M := {917"'797‘}
N :=M\{g|g(T) =h(T +1i),h € M,i € N,i >0}

else
by the lines

if s = 0 then
M:={g1,...,9:}
M':= M\ {g|9(T) = h(T +i),h € M,i € N,i >0}
M" = {{n|3iezgn(T +i)=h}he M'}
N = {[lien9i'lh € M"}

else

The resulting algorithm produces a number of factorizations. The sum of the orders of
the right factors is equal to the order of f. The different right factors fi,..., f4 have no
exponential parts in common because of lemma 8.5. Hence f = LCLM(f1, ..., f4)- This
variant on the algorithm in section 5 produces an LCLM factorization, i.e. it produces
a number of right-hand factors fi,..., fg such that f = LCLM(fy,..., f4). The orders
of the f; need not be minimal because we only apply the “easy” (i.e. coprime index 1)
factorization method.

Algorithm semi-regular parts:

Input: f € k((z))[0]

Output: representatives ej,...,eq € FE for all exponential parts up to conjugation over
k((z)) and the corresponding semi-regular parts R, € k((x))[e;, d].
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1 Same as case 1 in Algorithm Riccati solution. This is also a special case of case 6
below after a suitable substitution map S..

2 If algorithm LCLM factorization produces a non-trivial (i.e. d > 1) LCLM factor-
ization f = LCLM(f1,..., f4) then apply recursion to the right factors f1,..., fq-

3 If the condition of case 3 in Algorithm Riccati solution holds, and furthermore
the slope of f is non-zero, then proceed as in case 3 in Algorithm Riccati solution;
apply recursion to the right-hand factor.

4 Same as case 4 in Algorithm Riccati solution, apply recursion to S.;-s(f)-

5 Same as case 5 in Algorithm Riccati solution, apply recursion on R.

6 If f has one slope s = 0 and the Newton polynomial has the following form
Ns(f) =9 -Sr=1+i,(9) - - - Sr=7+4, (9) Where n > 0 and i; are integers, and g is an
irreducible polynomial. Let r € k be a root of g. Extend the field k with 7 (note that
g can have degree 1 in which case r € k). Define h =T - (T +i1)--- (T + iy). This
is the largest factor of No(S,(f)) which has only integer roots. Now use a coprime
index 1 factorization (cf. Algorithm Coprime Index 1 Factorizations in section 5)
to compute a right factor R of S,(f) that has Newton polynomial h.

The right-hand factors R that this algorithm produces in case 6 are the semi-regular
parts of f (actually such R is an image of a semi-regular part under certain maps 6,4
that were used in case 5). The corresponding exponential parts are obtained by keeping
track of the substitution maps S, and ramification maps 6, 4 that were performed. The
recursion in case 2 of the algorithm is valid because of lemma 8.4.

In the cases 3 and 5 of the algorithm a field extension over k((z)) is applied (also in
case 6 if degree(g) > 1 but the argument is almost the same for this case). Suppose the
degree of the of this field extension is d. Then the algorithm computes a right factor f;
of f and uses recursion on this right factor. Let f1,..., fq € L[d] be the conjugates of f;
over k((z)) where L is some finite extension of k((x)). Lemma 8.5 and lemma 8.4 were
formulated for k((x))[d] instead of L[d], but they are still applicable when using the less
precise notion of exponential parts fi. We must replace the condition “for all n € Z” by
“for all n € €” in lemma 8.5 in order for this lemma to hold for the case of 7 instead of u.
So our algorithm would produce all exponential parts and semi-regular parts if we would
use recursion on not only f; but also on fs,..., f;. However, this could introduce very
large algebraic field extensions (worst case d factorial) which could make the algorithm
too slow to be useful. If we would use recursion on f,,. .., fg we will only find conjugates
of the exponential parts and semi-regular parts that are obtained from f;. So there is no
need to do the recursion on fs,..., f; because the result of that computation can also
be obtained as the conjugates (which are not computed, however) of the output of the
recursion on fi.

Algorithm formal solutions:

Input: f € k((z))[d]

Output: a basis of solutions, up to conjugation over k((x))

Step 1: this is the main step: apply algorithm semi-regular parts.
Step 2: compute the solutions s; ; of R., as in section 8.1.

Step 3: Return the set of Exp(e;)s; ;.

Our method for computing formal solutions cannot avoid the use of field extensions
over k((z)) because these field extensions appear in the output. It does, however, delay the
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use of algebraic extensions as long as possible. The use of algorithm LCLM factorization
reduces the problem of finding solutions of f to operators of smaller order. This way the
order of the operator is as small as possible at the moment that an algebraic extension
is introduced, and so the amount of computation in algebraic extensions is minimized.
Lazy evaluation is used to minimize the number of operations in the field of constants.

9. A characterization of the solution spaces

The symbol log(z) is viewed as an element of a differential extension of k((z)) which
satisfies the equation y’' = 1/z. The corresponding linear differential equation is y" +
%y’ = 0. We do not view log(z) as a function on an open subset of the complex plane,
but as a formal expression which is defined by the property that the derivative is 1/z.
From this viewpoint it is clear that the k((x))-homomorphism

Stog : k((x))[log(z)] — k((x))[log(x)]

defined by Siog(log(z)) = log(x) + 1 is a differential automorphism, because the deriva-
tive of log(z) + 1 is also 1/z, and hence all differential properties of log(z) + 1 and
log(z) are the same. This automorphism can be extended to the ring V by defining
Siog (Exp(e)) = Exp(e). If f € V[é] and y € V is a solution of f then Si,g(y) is a solu-
tion of Siog(f). Note that the differential Galois group G of the Picard-Vessiot extension
k((z)) C k((x))(log(x)) contains more elements than just Si,z. However, we will see that
it is sufficient to consider only Sjog. This is explained from the fact that G is equal to
the Zariski closure of the group generated by Siog.

Let f € k((z))[d]. The questions of this section are: what are the possible right-hand
factors of f in k((z))[d], or in k((z))[d], what are the semi-regular and regular right
factors. Every right factor R corresponds to a subspace of solutions V(R) C V(f). But
not every linear subspace W C V(f) corresponds to a right factor of f because we do
not look for right factors in V[d] but only in smaller rings like k((x))[d]. So the question
now is the following. Given a finite dimensional k-vector space W C V, when is W the
solution space of either

a semi-regular operator in k((x))[d]
a regular operator in k((z))[d]

any operator in k((x))[d]
any operator in k((z))[d].

S N =

Example: Let log(z) be a basis of W. Now there cannot be any f € k((x))[d] such that
W = V(f). Because then Sj,g(log(x)) would be a solution of Siz(f) = f. So f has log(x)
and Siog (log(z)) — log(z) = 1 as solutions. Hence the dimension of V'(f) is at least 2.

LEMMA 9.1. Let W be a n dimensional k-subspace of V.. Then W = V(f) for some
semi-regular f € k((2))[d] if and only W has a basis by,...,b, € k((z))[log(z)] and
Siog(W) =W.

Proof: Let f € k((z))[d] be semi-regular. Then it follows from section 8.1 that V(f) has

a basis of solutions in k((z))[log(z)]. Furthermore Siog(V(f)) = V(Siog(f)) = V().
Now suppose Siog (W) = W and suppose by, ..., b, € k((z))[log(z)] is a basis of W as

a k-vector space. We want to construct a semi-regular operator f such that V(f) = W.
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Let b be an element of W of minimal degree d as a polynomial in log(x). Suppose d > 0.
Then Siog(b) — b € W has degree d — 1 which contradicts the minimality of d. Hence
d =0, so bis an element of k- k((z)). Then b € | - k((x)) where [ is some finite extension
of k. After multiplication by a constant we may assume that one of the coefficients of b
is 1. Then, by taking the trace over the field extension k¥ C I, we may assume b € k((z))
and b € W (use here that W has a basis of elements in k((z))[log(x)], hence the trace
over k of an element b € W is an element of W). Now b # 0 because the trace of the
coefficient 1 is not 0. Because b € V (f) for the operator f that we want to construct it
follows that R = 6 — zb' /b must be a right factor of f. This operator R is a k-linear map
from V to V. The kernel is the solution space of R. It has dimension 1. Because the kernel
is a subspace of W it follows that dim(R(W)) = n — 1. It is easy to check that R(W)
satisfies the conditions of this lemma, hence by induction there is a semi-regular operator
L € k((z))[d] such that V(L) = R(W). Now define f = LR. This is a semi-regular
operator in k((z))[d] because L, R € k((x))[d] are semi-regular. f(W) = L(R(W)) = {0}
and dim(W) = order(f) so V(f) = W.

O

From the remark in section 5 it follows that the lemma is also valid when k((x)) is
replaced by a finite extension L of k((x)).

LEMMA 9.2. Let W be a n dimensional k-subspace of V.. Then W = V(f) for some
regulor f € k((z))[d] if and only W has a basis by,...,b, € k[[z]] and all non-zero
elements of W have valuation < n.

Proof: If f € k((z))[d] is regular it is known by the Cauchy theorem that there exists a
basis by, . . .,b, € k[[z]] of solutions such that b; is z'~! modulo z™. It is easy to compute
these b; as follows. The equation f(b;) = 0 (writing f as an element of k[[z]][0] is more
convenient for this) gives a linear equation in the coefficient of 2™ in b;, a linear equation
for the coefficient of ™11, etcetera. From these equations the coefficients of b; can be
computed.

To prove the reverse statement let by,...,b, € k[[z]] be a basis of W and suppose
that all non-zero elements of W have valuation (i.e. the smallest exponent of x which
has a non-zero coefficient) smaller than n. Then, after a basis transformation, we may
assume that b; is ! modulo z". Now define R; € k[[z]][0] as Ry = & — b} /b;. Define
for 1 < d < n the operator Rg41 € k[[2]][0] as follows: define yg+1 = Ra(ba+1). Note that
V(R;i(bgy1)) =d—ifor 1 <i < d. Sov(yay1) = 0 and hence 0 —y;,, /yar1 € K[[z]][0].
Now define Rgy1 = (0 — yjy1/Yir1)Ra- Now f = R, is a monic element of k[[z]][0],
hence regular, with V(f) = W.

O

From the lemma we see that right factors of regular operators need not be regular.
Suppose for example that 1, z,z? is a basis of solutions of f. Then the right-hand factor
given by the basis of solutions 1,22 is not regular. But the right factor with the basis
1,z + x? is regular. An LCLM of regular operators is not necessarily regular either.
For certain purposes (not for all) semi-regular is a more convenient notion than regular
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because factors, products, LCLM’s and symmetric products of semi-regular operators are
semi-regular.

If W C V is a solution space of a differential operator f € k((z))[0] then W =
@ (W V=) because of theorem 8.1. Furthermore Siog (W) must equal W because f is
invariant under Siog. This proves one part of the following lemma.

LEMMA 9.3. Let W be a finite dimensional k-subspace of V. Then W = V(f) for some
f € k((x))[0] if and only W = @-(W (Ve) = Siog(W) where the sum is taken over all
ec E/Q.

Proof: Assume W # {0} is finite dimensional and W = @(W Vz) = Siog(W). Let

e € E such that W, = WV, # {0}. Note that Siog(Ve) = V. hence W, is invariant
under Sioz. W, has a basis of the form Exp(e) - s;, ¢ = 1,...,t where s; € k((z))[log()]
so s; € L[log(z)] for some finite extension L of k((z)). Using lemma 9.1 it follows that
there exists an operator R, € L[§] which has s;, i = 1,...,t as a basis of solutions. So
S_.(R.) has Exp(e)s;, i = 1,...,t as a basis of solutions and so S_.(R,) must be a
right-hand factor of the operator f that we want to construct. Choose a representative
e € E for every € € E/Q for which W (V¢ # {0}. Construct the corresponding S_.(R.)

and define f as the LCLM of these S_.(R.). Then V(f) =W.

O

LEMMA 9.4. Let W be a finite dimensional k-subspace of V.. Then W = V (f) for some
I € k((2))[d] if and only the conditions of the previous lemma hold, and furthermore W is
invariant under the action of the Galois group of the algebraic extension k((z)) C k((z)).

Proof: if 7 is a k((z))-automorphism of k((x)) then 7 can be extended to V by set-
ting 7(log(z)) = log(z) and 7(Exp(e)) = Exp(7(e)). Now for any f € k((z))[0] we
have V(7(f)) = 7(V(f)) because conjugation commutes with differentiation. So if f €
k((2))[6] then V(f) = 7(V(f)) which proves one part of the lemma. Now suppose W =
V(f) for some monic f € k((z))[0] and suppose that W = 7(W). Now order(f — 7(f)) <
order(f) and W C V(f — 7(f)) so dim(V(f — 7(f))) > order(f — 7(f)) and hence
f —7(f) must be 0. So if W is invariant under the Galois group of the algebraic exten-
sion k((z)) C k((z)) then f is invariant as well, hence f € k((x))[d].

O

Every y € V is a finite sum y = ) _ b with b, € V.. Define W as the closure under
Galois actions and under Sj,, of the set ) k- b.. Now W satisfies the conditions of
the previous lemma, hence for every y € V there is a g € k((z))[d] \ {0} such that
y € V(g). From this it follows that for any non-zero f € k((z))[0] the map f:V - V
is surjective. This is seen as follows. If the kernel of g is not contained in the image of f
then the dimension of the kernel of gf would be smaller than the sum of the dimensions
of the kernels of g and f. In other words, order(gf) < order(g) + order(f) which is a
contradiction. Hence V' (g) C f(V) for every g and so f is surjective, f(V) =V.
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