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Abstract

In this paper the notion of finite singularities of difference operators is introduced, in order
to adapt methods for differential equations to the case of recurrence equations.

1 Introduction

The goal of this paper is to introduce the notion of finite singularities of difference equations
(recurrence equations) and to give some of their applications. So far only the singularity at
infinity has been studied because that is the only point in P!(C) which is invariant under the
shift operator 7, where 7(z) = z+1. Since z — z+1 does not leave the elements of C invariant,
the finite singularities should be elements of C/Z instead of C.

In the theory of differential operators, a singularity p is studied by considering differential
operators over C((z — p)), or C((1/z)) if p = co. The shift operator 7 : C(z) — C(z) can
be extended to C((1/z)) but not to C((z — p)) for p € C, and so for finite singularities we
can not use a construction similar to the differential case. For a finite singularity p € C/Z
we will consider left solutions and right solutions of the difference equation. We will show how
one can obtain right solutions from left solutions by deforming the difference equation with
z +— x + €. After the deformation the left solutions are defined over a larger field of constants
C(e), and a 1-1 map from these left solutions to the corresponding right solutions can be given.
Then one can study the difference in e-valuation between these left and right solutions. That
yields integers, called the valuation growths, that give useful information about the singularity,
information that only depends on the type of the equation. These integers lead to an algorithm
for computing hypergeometric solutions, given in section 5. This algorithm is the analogue of
the Beke/Schlesinger algorithm which treats the equivalent problem for the differential case, see
[5] and section 1.2.

We can also use this deformation to define a map from the left solutions to the right solutions
of the original (not deformed) equation, and a map from the right to the left solutions. In
section 6 we use the ranks of these maps to prove two theorems that show over which field of
constants the hypergeometric solutions can be found. This makes it possible to avoid the main
bottleneck (splitting fields) in the computation of hypergeometric solutions. Previously only
degree bounds were known, but not the fields themselves, so there was no easy way to avoid
splitting fields. The theorems in section 6 are essential for the efficiency in case these splitting
fields are large.

We also give two relations between infinite and finite singularities in the case of an equation
of order 1, similar to Fuchs’ relation in the differential case.
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1.1 Differential and difference operators

A linear homogeneous differential equation
any™ +an 1y -+ ary’ +ay =0
corresponds to a differential operator
L=a,0"+an, 10"+ + aod°

acting on y. The coefficients a; that are considered here are elements of the differential field C(x)
and 0 is a differentiation d/dxz. The differential operator L is an element of the non-commutative
ring C(z)[8], which is an Ore ring, cf. [14]. Multiplication in this ring corresponds to composition
of operators. A factorization L = Ly L, where L1, Ly € C(z)[d] is useful for computing solutions
of L because solutions of the right-hand factor Ly are solutions of L as well. Right-hand factors
of order 1 are particularly interesting because these are easy to solve. A right-hand factor 0 —r
where 7 € C(z) corresponds to an ezponential solution exp(fr). Multiplying L on the left
by 1/a, does not change the solution space, so without loss of generality we may assume that
an, =1, ie. L is monic.
Similarly one can also study difference operators

L=a, 7"+ ap_ 17" 4+ ---+aor®

where 7 maps z to z + 1. Such a difference operator corresponds to a difference equation or
recurrence equation

L(u) = apu(z + n) + ap—1u(z +n —1) + --- + apu(z) = 0.

Often one is interested in solutions that are sequences: u(0),u(1),u(2), ..., so then u is a function
from N to C. It will be useful to consider other kinds of solutions as well. If u is a solution of a
difference equation of order 1, so u(z+1) = r(z)u(x) for some rational function r € C(z), then u
is called hypergeometric. Just like exponential solutions in the differential case, hypergeometric
solutions correspond to first order right-hand factors 7 — r € C(z)[r] of L.

1.2 Finding exponential solutions

Consider the function exp( [ r) where r € C(z). How to find such solutions for a monic operator
L=0"+a, 10"+ -+ +ay0° In [11] two methods are given, the classical method [5]
that dates back to the previous century, and a new method. The classical method can be
explained as follows. The function exp([ r) is meromorphic at all but a finite number of points
p € PY(C) = CU{oo}. The “non-meromorphicness” of exp([r) at a point p € P'(C) can
be classified by the so-called ezponential part which (in this case) is an element of C[z~!]/Z.
For example the function z'/3 = exp([ *£2) has exponential part 1/3 + Z at the point 0. If

e € Clz™!] then exp([ ¢) has exponential f)art e+ Z at = 0. The collection of the exponential
parts of exp(fr) at all points p € P*(C) corresponds 1-1 with the type of exp([r). The type
describes the “non-meromorphicness” of exp(fr). Two exponential functions exp(f ri) and
exp(f r2) have the same type if and only if their quotient is a rational function, so if and only
if i —ry = 4'/y for some y € C(x).

At every singularity p € P'(C) of the operator L one can compute the “non-meromorphicness”
of all local solutions; one can compute all exponential parts at p. The number of different ex-
ponential parts at p is at most the order of the operator L. There are only finitely many
singularities, and at regular points only the trivial exponential part occurs. This leaves only a
finite number (but possibly exponentially large number) of cases for the type of an exponential
solution exp( [ r). When the type of an exponential solution s is known, then s is known up to
a rational factor, so s = y - exp(J r) for some known r € C(z) and unknown y € C(z). The
C (z)-automorphism of C(z)[d] given by 0 — 0 + r transforms L into an operator L& (0 + r).



The solutions of this operator are the solutions of L divided by exp( r). This way, finding s is
reduced to finding rational solutions y € C(z) of L&(d+7). So computing exponential solutions
can be done by making a finite list of possible types, and computing rational solutions for each
case.

1.3 Finding hypergeometric solutions

Similar to the differential case, computing hypergeometric solutions is equivalent to computing
first order factors 7 — r € C(z)[7] of a difference operator L. Two hypergeometric expressions
u1 and us have the same type if their quotient is a rational function. These u; and us are
solutions of 7 — r; and T — ro where r; = 7(u;)/u;. The two operators 7 — ry and 7 — r9 have
the same type (meaning that their solutions have the same type) if 71 /rs = 7(y)/y for some
y € C(z)* = C(z) \ {0}. One can compute local information about solutions at the point oo, cf.
[4, 7]. This is similar to the differential case. In the differential case all singularities are needed
for determining the possible types. Likewise, in the difference case, the singularity at infinity is
not sufficient. Finite singularities are needed as well.

The C(z)-automorphism 7 which maps z to £ + 1 can be extended to C((1/z)) but not
to C((z — p)). As a consequence, for finite p a construction like in the differential case does
not work in the difference case. This is why finite singularities of difference equations have not
been studied before; a different approach is needed for this case. The key to find the definition
of finite singularities is to study what is needed to be able to mimic methods (in particular:
exponential solutions) from the differential case to the case of difference operators. In the
differential case, the exponential parts determine the local type of an exponential solution, and
the combination of all local types determines the type. Once the possible types are known,
computing exponential solutions becomes easy. What kind of local data is needed to determine
the type of a hypergeometric solution of a difference operator, or equivalently, the type of a first
order right-hand factor?

Consider the following example: u(n) = n! = I'(n + 1), then u is a solution of 7 — (z + 1).
At negative integers, u has a pole of order 1 (the valuation is —1) and at positive integers the
valuation is 0 (i.e. u has no pole and no root at positive integers). So, going through the integers
from the left to the right, the valuation increases by 1. For p € C/Z the valuation growth of u
islatp=0+7Z € C/Z, and it is 0 otherwise. At the point infinity one can compute local data
that resembles the exponential parts in the differential case. We will show that the valuation
growths at each element of C/Z combined with local data at infinity determines the type of u.
So by determining the possible valuation growths and computing some local data at infinity it is
possible to give a finite list of possible types of hypergeometric solutions. Similar to differential
equations, for each possible type in this list one needs to compute rational solutions of a certain
transformation of the operator L.

The behavior of L at p € C/Z will be studied by considering a deformation of L. This way
a finite set g,(L) can be computed, and it is shown that for all hypergeometric solutions of L
the valuation growth at p is an element of g,(L). A finite list of possible types can then be
determined, and then we can proceed as in the Beke/Schlesinger method sketched in section 1.2.

1.4 An example in Maple
Consider the following difference operator L € C(x)[]

L=0Bz+8)B3z4+10)(z+3)(z+2)(z+ 1) -3Bz+5)Bz+T7)(z+2)(x+1)72
+3Bz+2)Bz+4)(z+1)7—Bz-1)Bz+1)

Solving the corresponding recurrence equation with Maple 5.4 and simplifying the result gives

1 —(x=1)(x—2)u(0) —16x (x — 2)u(1) + 70x (x — 1) u(2)
u() =3 Bx—1)Bx+ I (x+1)




All solutions of this difference operator L have the same type; each solution u(z) is a rational
function times 1/T'(z + 1). However, the algorithm in [15] will still distinguish a number of
different cases. The number of cases in this example can be reduced to 1 by computing the g, (L)
defined in section 4. In fact, whenever all solutions of a difference operator L are hypergeometric
and of the same type, the number of cases in the algorithm in section 5 is always 1, whereas in
the method in [15] the number of cases to check can still be exponentially high. Both methods
are fast on this example though, because of the fact that all roots of the leading and trailing
coefficients (the coefficients of the highest and of the lowest power of 7 in L) are rational numbers,
which makes this example relatively easy.

1.5 A harder example

The following example was a motivation to start working on this problem. It was sent to Maple
as a bug-report in the procedure hypergeomsols in the LREtools package. After having fixed
the bug, the algorithm still did not perform satisfactory; it takes weeks to run this example.

L = a3T3 +ayr? + a1+ ag

a0 = 182z +3)(z +2)(1402° + 1151 2% + 3114 2 + 2781)(z + 1)*

ar = —(z+2)(23660z° + 302879 25 + 1581604 z* + 4314577 23
+6487290 22 + 5099454 = + 1638144)

as = (18380306 z2 + 13291032z + 237304 25 + 1637876 2° + 4046652
+14560 27 + 6200310 z* + 13887720 z%)

a3 = —4(1402% + 73122 +12322 +678)(2z + 7)%(x + 3)%.

The current algorithm tries all combinations of all factors in C[z] of ag and all factors of aq,
that is 6912 cases. Computing with these factors requires computing with the splitting field of
aoasz. This makes the computation slow.

The computation can be done much faster by computing the sets g,(L) for each finite
singularity p € C/Z, as defined in section 4. The roots of a3 are —7/2, —3, ay, @z, a3 where
a; € C are the three roots of 14023+ 73112 +1232x+678. The roots of ag are —3/2, -2, —1,a; —
1,as — 1,a3 — 1. The finite singularities of L are the roots of agas modulo the integers, so the
finite singularities are p; = a1 + Z,ps = a2+ Z,p3 =az + Z,ps =0+ Z,p; =1/2+ Z. Using
a deformation of L we will show how in section 4.2 how to compute the sets

9p, (L) = Gp, (L) = Gy (L) = {0}
9p, (L) = {-2,-1,0,1,2}
§p5(L) = {_27_17071}

Hence if u is a hypergeometric solution, then for its valuation growth at p where p € C/Z
there are 5 cases if p = p4, 4 cases if p = ps and only 1 case otherwise. So this leaves only
4.5 = 20 cases instead of the 6912 cases in the algorithm in [15]. The singularity at infinity is not
taken into consideration in this comparison, although it would make the difference slightly larger
because of Fuchs’ relations that we will introduce. What is more important for the computation
timings than this 6912 to 20 ratio is that in our method the only singularities that really matter
(i.e. where there is more than 1 case) are ps and ps. So these 20 cases involve no algebraic
extensions, and hence each of these cases is much easier than most of the 6912 cases (most of
those do involve algebraic extensions). This way the computation can be done in less than a
minute, which is more than 10000 times faster than Maple’s implementation of [15]. The result
of the computation is that this example has no non-zero hypergeometric solutions.

Splitting fields could be avoided in this example because of the fact that pi,ps,ps were
apparent singularities. The same conclusion could (in this example, not in general) also be
drawn by computing local information at infinity. But even without this information we could
still obtain this conclusion from theorem 3 in section 6.



If an operator does not have hypergeometric solutions then this can often quickly be detected
by computing the p-curvature, see [16] for a definition. However, in the example above this does
not help because even though it does not have first order factors in characteristic 0, it does have
first order factors modulo prime numbers. We verified this for primes < 29.

2 Preliminaries and definitions

Let k = C(z) and 7 the C-automorphism of k defined by 7(z) = z + 1. A difference operator is
an operator
L=a,m™ + a7 (1)

that acts in the following way on a function f

(L())(@) = an(@) f(2 +n) + -+ ao(2) f(2).

In this paper the coefficients a; will be elements of k. The function L(f) is defined for those
z € C for which f(z),...,f(z + n) and ag(x),...,a,(z) are defined. If a,, # 0 then n is called
the order of L.

The set of all difference operators is

k[7] = {an7™ + ---ao7’In € N, ao, . .., a, € k}.

The following
T-a="71(a)T (2)

defines the multiplication on k[r]. This turns k[7] into a non-commutative ring. Using this
relation any product of difference operators can be written in a unique way in the form (1),
i.e. the coefficients in k appear on the left of the 7¢. Multiplication in k[r] corresponds to
composition of difference operators; if L = Ly - Lo then L(f) coincides with Lq(L2(f)) on the
subset of C where both are defined.

A sequence u(0),u(1),u(2),... of complex numbers is a function

u:N— C.
A function v is called a solution of L if L{u) = 0, i.e.
L(u)(z) = apu(z +n) + --- + apu(z) =0

for all z for which L(u)(z) is defined. So a difference operator L = a, 7" + - --ao7® of order
n corresponds to a recurrence relation of order n. For example the sequence u : N — C,
u(m) =m! =T(m+1) is a solution of L =7 — (z + 1).

We would also like to consider sequences that are solutions of an operator like L = 7—1/(z —
3), however, the coefficients of this L are not defined for all x € N. To avoid such problems
with domains of definition we will consider sets V,, . and V,,; consisting of germs of sequences,
just like the set S in [16]. A germ of a sequence u is 4 modulo the ideal of sequences with finite
support. So two sequences have the same germ if and only if their difference has finite support.

Denote g+ N ={¢,¢+1,¢+2,...} Cg+Z andgq—N={q,g—1,9—-2,...} Cqg+ Z. For
a,bin g + Z define an ordering by a > b iff a — b > 0.

Define V,; as the set of germs of functions u: ¢ —IN =+ C. So Vj; is the ring of all functions
from ¢ — N to C modulo the ideal of functions that are non-zero at only finitely many points
2z in ¢ —IN. Note that if g — g2 € Z then V,, ; and V,; can be identified, and so V}; can be
defined for p € C/Z as well. Similarly define V, ;. as the set of germs of functions v : ¢g+N — C.

Multiplication and addition in V,, where p = ¢ + Z corresponds to multiplication and
addition of functions u : ¢ +IN — C. The invertible elements of V},, correspond to those u for
which u(z) = 0 for only finitely many x € ¢ +N. If u is zero for infinitely many = € ¢ + N then



1/u is not defined. In this case u is either 0 in V,, . (if u has finite support) or a zero-divisor in
Vp,r otherwise.

Each element f € k is a function from C to C that is defined on all but a finite number of
elements of C. Hence k can be embedded in the ring V} ., and also in V};. Now V},, and V;
are k-algebras and k[r]-modules.

Definition 1 Let L = a, 7" + - - + ag7° € k[r] and L # 0. Denote
ord(L) = max{i|a; # 0} — min{i|a; # 0}
order(L) = max{i|a; # 0}.
L is called normal if ag # 0, 4.e. if ord(L) = order(L). Let
Vpr(L) = {u € V. »|L(u) = 0}
Vpa(L) = {u € V| L(u) = 0}
be the kernels of L on V,, and on Vp;. These are the solution spaces of L in Vp, . and in V.

The leading coefficient of L is the highest non-zero coefficient of L (which is a,, if a, # 0). The
trailing coefficient is the lowest non-zero coefficient of L (which is ag if L is normal). L is called
monic if the leading coefficient is 1.

The set Vp,, is called S in [16], where it is shown that the Picard-Vessiot ring of L over
k can be embedded in §. The same proof also shows that the Picard-Vessiot ring can be
embedded in each of the V,,, and V},;, and hence the following proposition holds (this is part 2
of proposition 4.1 in chapter 4 in [16]).

Proposition 1 The dimension (as a C-vector space) of the solution spaces is
dim(V, (L)) = dim(V, (L)) = ord(L).

Problems with vanishing of the leading or trailing coefficients of L, or coefficients having poles,
have been eliminated by taking germs of sequences. Hence the proposition corresponds to the
well-known statement that recurrence relations of order n, for which the leading and trailing
coefficients do not vanish, have an n-dimensional solution space.

Definition 2 A k-algebra V is called a universal extension of k if the following three conditions
hold

1. 7:V =V is an automorphism that extends 7 : k — k.
2. For every L € k[r] the kernel of L : V — V is an ord(L)-dimensional C-vector space.
3. For every u € V there ezists a non-zero L € k[1] such that L(u) = 0.

A universal extension exists because one can verify that {u € V}, |31 L(u) = 0} is a k[7]-module
and k-algebra (to show closure under addition and multiplication use LCLM and symmetric
products of operators, a definition follows later). See section 6.2 in [16] for another existence
proof, where a universal extension is constructed using a difference ring extension of C((1/z))
(so a local construction at the point p = 00).

Let V be a universal extension of k. V' is unique (see [16]) up to difference isomorphisms (i.e.
isomorphisms that commute with 7). V' can be embedded in each of the V,, and V},; for any
p € C/Z but not in a unique way because V has many difference automorphisms. We denote
the solution space of L in V by V(L).

From now on, unless mentioned otherwise, by solutions of a difference operator L we will
mean elements of V(L). A solution y € V(L) can also be interpreted as an element of V), ,(L)
or V,;, but only after having chosen an embedding of V' in those rings.

The ring of difference operators k[7] is a non-commutative Euclidean ring; one can compute
GCRD(Ly, L), the greatest common right divisor of two operators Ly and Ls, c.f. [14, 6]. One
can also compute an operator LCLM(Ly, L»), the least common left multiple. Requiring that
the LCLM and GCRD are monic makes them uniquely defined.



Lemma 1 For every non-zero M € k[r] there exists a unique monic normal L € k[7] for which
V(L) =V (M). If Ly and Ly are normal operators then

1. Ly is a right-hand factor of La if and only if V(Ly) C V(Ls).
2. L3 = GCRD(L4, Ls) is normal and V(L3) = V(L1) (| V(L2).
3. Ly = LCLM(Ly, Ls) is normal and V(Ly) = V(L1) + V(L2).

Later in the paper we will often only consider operators that are normal, or normal and monic.
According to the lemma this is no real restriction. The lemma appears to be known but not
explicitly written down. It is a immediate consequence of the fact that every finite dimensional
G-invariant subspace of V' (such as V(L1) [V (Lz2) and V(L1) + V(L)) is the solution space of
some element of k[7], where G is the difference Galois group. This is a non-trivial result, proven
in [10], where it is also shown that the dimension of the solution space is always < ord(L) in
any Picard-Vessiot extension of k.

Definition 3 An element u of V,,, or V,; or V is called rational if it is an element of k, and
it is called hypergeometric if it is a solution of an operator of order 1, so T(u) = ru for some
r € k. The set of all hypergeometric elements of V is denoted by H.

For example the sequence u(n) = n! = I'(n + 1) is hypergeometric. The sequence ¢" where
¢ € C is also hypergeometric. Rational sequences (u is a rational function in n) are also
hypergeometric. H* = H \ {0} is a group under multiplication; hence products:

u€S =V, un)=c"Rn)(n+a)”---T(n+a;)*

are also hypergeometric, where c¢,a; € C, e¢; € Z and R is a rational function. Every hypergeo-
metric element of Vj , can be represented in this way. If w € H* and L € k[7] then L(u)/u € k
and hence L(u) € H. However, H is not a k[r]-module because H is not closed under addition.
Similar to the differential case one can define

Definition 4 Let Li,L, € k[r] be normal and of order > 1. Then the symmetric product
L = Li®L- is defined as the normal monic operator of minimal order such that y1y> € V(L)
for all y1 € V(L1) and ys € V(Lo).

Any 7i(y;) can be written as a k-linear combination of 7°(y;),...,7" 1 (y1) using the relation
Li(y1) = 0, where n = order(L;). A similar statement holds for the 7¢(y). Then L can be
obtained by computing a k-linear relation between y1y2, 7(y1)7(y2), 72(¥1)7%(y2), . ... The same
construction is also found in the proof of lemma 6.8 in [10], where it is also shown that every
finite dimensional G-invariant subspace of V' occurs as the solution space of an element of k[7],
which implies that V(Li®L2) is spanned by {y1y2ly1 € V(L1), y2 € V(L2)}. Note that the
situation is easier when one of these two operators has order 1. Then L;®Ly can be computed
without solving linear equations.

Lemma 2 If Ly =7 —r withr € k*, u € H* with Li(u) = 0, and L is monic and normal
then 1
su-Ly-—=L1®Ly € k[r] where s= T°rder(L2)(u)/u € k*.
u

To prove this note that SU‘LQ‘% is monic and has the same solution space as L1 ®L». Furthermore
Ly -v € v-k[r] for every v € H* so su- Ly - L € su-1/u- k[r] = k[7].

3 The point at infinity

The local properties of the operator L at the point p = oo have been well studied (see [4,
7, 18, 13] and references therein). This in contrast to finite singularities of L, which have
not been considered before, but are useful as well. In this section we will review the local
information we need from the singularity at infinity (we consider the point at infinity to be a



singularity of every difference operator). Finite singularities will be introduced in section 4.
The local types at all singularities (finite singularities and the point at infinity) will be used in
section 5 to give a new and more efficient algorithm for computing hypergeometric solutions of
difference equations. This algorithm can be viewed as the analogue for the difference case of
the Beke/Schlesinger algorithm. Other local properties at finite singularities (the maps E,; and
E, ;) will be introduced in order to prove the theorems in section 6. Those theorems are used
to improve the efficiency of the algorithm in section 5.
Let L=a- (r — ) for some a and r in k*. Define the commutative group

Hoo = C* x Z x (C/Z).

We will use the additive notation for this group, (¢1,n1,d1) + (¢2,n2,d2) = (c1¢2,m1 + na, di +
d2) € Hoo. Let t = 1/x. Then r can be written in the form 7 = ¢-t" - (1 4+ dt + O(t?)) for some
¢,d € C. Now define the local type of L at oo as

9oo(L) = (e,n,d + Z) € Heo.
Define the following groups with multiplication @
kg ={r—rlr€k*} and ki={r—7(r)/rlr € K"} Ck

We have (1 —r1)®(T —12) =7 —r1712 S0 k*@ is isomorphic with the multiplicative group k*. It
is easy to verify that g, is a surjective group homomorphism from k%, to Ho. Furthermore
9oo(T — T) = goo(T — 7(r)) and hence k}, is a subgroup of the kernel of go.. So goo(L) only
depends on the type (see definition below) of L.

Definition 5 Let L = a(r —r) where a,r € k*. Then the type of L is defined as the image of
T —r in the group (with ® as multiplication) kg, /kF,.

The type is trivial, i.e. type(L) is the identity in k%, /k%, if and only if the solutions of L are
rational. The type can be defined for operators of higher order as well:

Definition 6 Two operators Ly and Lo have the same type if and only if ord(L,) = ord(Ls)
and there exists an operator r € k(7] such that r(V (L1)) = V(Ls).

This is equivalent with the existence of two operators r,7’ € k[r] for which r(V(L1)) = V(L2)
and 7' (V(L2)) = V(L1). This r' can be computed from r by the extended Euclidean algorithm
for k[r]. With this algorithm one can find ', s € k[r] for which r'r + sL; = 1. For order 1 the
two definitions of the type coincide. See [17] for several characterizations of the notion of type
for the differential case (the difference case works in the same way).

The field C((t)) where t = 1/z is a difference field extension of k, where 7(t) = 7(1/z) =
1/(z+1) = t/(14+t) € C((t)). The definition of g, (L) for a normal operator L with order(L) =1
applies for C((t))[r] as well.

Definition 7 Let L € C((t))[7] be normal. Then g, (L) is defined as the set of goo (M) for all
right-hand factors M € C((t))[7] of L of order 1.

If L € k[r] then the set of goo (M) for all first order right-hand factors M € k[r] can be a proper
subset of g (L), because L may have more right-hand factors in C((¢))[r] than in k[7].

The characteristic classes in [13] determine the isomorphism classes of all factors in C((¢))[7]
of L, whereas the set g.,(L) determines only the isomorphism classes of first order factors of L
in C((t))[r]- The set g, (L) gives a part of the information encoded in the characteristic classes,
namely the part that we use for computing hypergeometric solutions. So the following lemma
can be viewed as a special case of results in [13].

Lemma 3 The number of elements of g, (L) is at most order(L).



This lemma follows from factorization properties in C((¢))[r], and also from the structure of
the formal solutions at the point co. We give a brief sketch, for more details on factorization
and formal solutions see [4, 7, 18]. The elements (¢,n,d) € Hoo of g, (L) can be computed as
follows: For the ring C((t))[7] one can define a Newton polygon and Newton polynomial (called
the T-polygon and characteristic equation in [4]). The slopes of that polygon give the possible
values for n, and ¢ must be a root of the corresponding Newton polynomial. To find d we take
the symmetric product of the operator with 7 — 1/(ct™), then we need to search for factors of
the form 7 — (1 + dt + O(t?)). Let § = 7 — 1. By writing the operator as a polynomial in §
instead of 7 one can define a different Newton polygon (called the §-polygon in [4]). Then d can
be computed using the Newton polynomial for slope 1. This way the (¢, n,d), and hence g, (L),
can be obtained with little computational effort.

4 Finite singularities of difference equations

The two previous sections (preliminaries and the singularity at infinity) form a summary of
known work that we will use. The new results in this paper are the definitions in this section
and their applications (theorems 2, 3 and the algorithm in section 5).

Definition 8 Let L = a,m + ---ag7® € k[r] with a,, # 0 and ag # 0. After multiplying
L on the left by a suitable element of k we may assume the coefficients a; are in Clz] and
ged(ag, ... ,a,) = 1. Then g € C is called a problem point of L if q is a root of the polynomial
ag(z)an(x —n). And p € C/Z is called a singularity of L if apa, has a root in p. The point co
s considered a singularity as well.

If using the recurrence relation for solutions u of L we can not determine u(g) from u(q —
1),...,u(g—n), or we can not determine u(q) from u(q+1),...,u(qg+n), then the point ¢ € C
is a problem point. The finite singularities in C/Z are the problem points modulo Z. The set
of singularities of L is a finite subset of C/Z|J{o0}.

Let ¢ € C and r € k*. The valuation vy (r) of r at g (also called the order at ¢) is the largest
integer n such that r/(z — ¢)” € C[[z — ¢]]. The valuation of 0 is oco.

Definition 9 Let p € C/Z. Define the group homomorphism v, : k* — Z as

vp(r) =Y v, (r).

qep

Let L = a- (1 —r) for some a,r € k*. Then the valuation growth or local type of L at p is
defined as

9p(L) = vp(r) € Z.
Define H as the product of the additive group of all functions C/Z — Z with finite support and
the group Heo- Then define the collection of all local types

g(L) = (p = gp(u),goo(u)) € H.

For example u(n) = n!-2", u € H*. Then gp(u) is 1 if p=127Z, it is (2,-1,Z) if p =00 and 0
otherwise.

The map g, where p € C/Z is a group homomorphism from kg to Z. Furthermore
vp(7(r)) = vp(r) and so k is contained in the kernel of g, for finite p as well. Hence g(L)
only depends on type(L) € kg, /kp-

Definition 10 Let Hp be the set of all (f,(¢,n,d+ Z)) € H where f : C/Z — Z and ¢,d € C
and n € Z for which:

n+ Z fp)=0 and d+ Z fP)p=0 mod Z. (3)
pEC/Z pEC/Z



The relations (3) are called Fuchs’ relations, because in the differential case a similar relation
with the same name (lemma 9.2 in [11]) exists between the exponential parts, which are the
differential equivalent of the g,(L). So Hp is the set of all elements of H that satisfy the Fuchs’
relations. It is a subgroup of H. Note that the two sums are defined because f has a finite
support; f(p) # 0 for only finitely many p € C/Z.

Theorem 1 The map g : kg — H is a group homomorphism. The kernel is k. The image
is Hp. So g induces an isomorphism between the group of types of normal operators of order 1
and the group Hr.

Proof: To show that the image is contained in Hr we only need to verify that this is true for
the generators 7 — ¢ and 7 — (z — ¢) of the group kg,, where ¢ € C* and ¢ € C. The map
is surjective because if F = (f, (¢,n,d + Z)) € Hp then F = g(F') where F' = 7 — ¢(x —
q)7®) .. (x — g,,) 7). Here qi,...,q, are representants in C for the py,...,p,, € C/Z for
which f(p;) # 0, and p; # p; if ¢ # j. It is easy to see that such F' can only be in k}, if c =1
and f =0, i.e. if FF = (0,(1,0,Z)) which is the identity in Hr. So the kernel is contained in
k%, and hence equal to k.

O

That the kernel is k% is lemma 2.1 in section 2.1 in [16]. The rest of this theorem (the Fuchs’
relations and the group homomorphism g) appears to be new.

The map u — 7—7(u)/u (note that u is a solution of 7—7(u)/u) induces group isomorphisms
H*|C* — ki and H*/k* — kg /kp. This way the local types g,(u) of u at p € C/Z|J{oo}
can be defined for u € H* or u € H*/k*.

4.1 Valuation growths

According to theorem 1 the type of u € H* (i.e. the type of operators L = 7 —7(u)/u of order 1)
is determined by the local types g,(u) at all p € C/Z|J{oc}. To determine all hypergeometric
solutions u € H* of an operator L of order > 1 we will define in this section for every finite
singularity p € C/Z a finite set g,(L) of valuation growths such that g,(u) € g,(L) for every
hypergeometric solution u of L. Then, by trying all combinations that satisfy Fuchs’ relations,
we obtain a finite set of possibilities for the type of u. For each type, we divide all solutions of
L by a u' € H* with the same type, so u/u’ € k*, and then to find u the problem is reduced
to finding rational solutions. This leads to the algorithm in section 5, given in more detail in
section 6. First we will give an intuitive idea of valuation growths using an example. Then we
will define the set of valuation growths, and show in section 4.2 how it can be computed, and
that this set is finite.

Example. Let u € H* be the gamma function u(n) = I'(n) = (n — 1)!. This is a function
on C that has poles of order 1 (interpret this as valuation —1) at the non-positive integers.
It has no poles and no roots (i.e. valuation 0) at the positive integers. So, going trough the
integers from the left to the right (passing the problem point), the valuation increases by 1; the
valuation growth g,(u) =latp=7Z € C/Z. If p € C/Z is not equal to Z then u has valuation
0 (i-e. no poles and no roots) on p, so going trough p from the left to the right, the valuation
remains the same; g,(u) = 0. Also, if p # Z then there are no problem points on p so p is not
a singularity. This u is a solution of L = 7 — z, and indeed g,(L) is 1 if p = Z and 0 for all
other p € C/Z. The statement that the solution u of L has valuation 0 at positive integers
and valuation —1 at negative integers uses analytic continuation, because this is a property of
the function I'(n), and that is a continuation of (n — 1)!. We can not perform exact analytic
continuation on a computer, so to make this algorithmic requires an algebraic definition of the
valuation of a solution at a point. This will be done by extending the field of constants to C(€)
where € is transcendental over C, so € is a new indeterminate. Then we can consider solutions
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i : Z — C(e) of an operator L, = 7 — (z + €) € C(e,z)[r]. We can take a solution @ of L. for
which @(1) = 1. Then di(n) = H?:_ll (i+e€)forn>1, and a(n) =1/ H?:n(z' +e¢) for n < 0. Now
@(n) has value u(n) at e = 0 for every integer n > 1. For n < 0, @4(n) has a pole at € = 0 of order
1, i.e. the evaluation v.(@(n)) is —1 for n < 0, a definition follows later. Now the valuation
growth is
liminfoe(@(n)) — liminfoc(a(n))

which is 1 in this example. The liminf suggests that this describes local behavior at infinity.
However, that is not the case because in this liminf n does not need to go to co or —oo but only
needs to pass the problem points. Note that substituting e = 0 in @ results in an non-zero right-
solution of L, i.e. a non-zero element of Vg ,.(L). Evaluating €- @ at € = 0 results in a non-zero
left-solution of L. So apparently there is a canonical way to define maps Ey , : Vg (L) = Vo, (L)
and Eo; : Vo,r(L) = Vo, (L) in this example. Such maps can be defined in general as well. We
will use the ranks of these maps to avoid splitting fields in the computation of hypergeometric
solutions.

Definition 11 Let L € k1] and suppose p € C/Z is not a singularity. Then define V(L) as

the set of functions u : p — C that are solutions of L. If p is not a singularity then V, (L) and
Vp.r (L) can both be identified with V,(L).

The dimension of V,(L) equals ord(L), c.f. proposition 1. This identification of V,;(L) with
Vp,r (L) for non-singular p yields identification maps Ep; : Vj (L) = Vp (L) and E,, , : Vp (L) —
Vp,r(L). Later we will generalize these maps to singular p as well, in which case we will see that
these maps are 1 — 1 if and only if p is a semi-apparent singularity, definitions follow later.

Definition 12 Let € be a new indeterminate; € is transcendental over C. Define the action of
7 on C(e,x) as 7(e€) = € and 7(x) = x + 1. This turns C(e,z) into a difference field with C(e)
as the field of constants. For a € C(¢€) the e-valuation is

ve(a) = sup{m € ZJa € "C[[d]]} € Z | J{oo}-

Let L € k[r]. Define L. € C(e,z)[7] as the operator one obtains from L by replacing x by « + €.
We call L, the deformation of L.

The map L — L. defines an embedding (as non-commutative rings) of k[7] in C(e,z)[7]; if
L = MN then L, = M,N..

Suppose @ : ¢+ N — C(e) with ¢ € C, and L € C(e,x)[7]. Let Gie=o : ¢ + N — C and
Lc—o € k[7] be the result of substituting € = 0 in @ and L, and assume that this substitution can
be done, i.e. that there are no poles at € = 0. Then (L(@))c—o = Le—o(@ic=0), i.e. substituting
e = 0 commutes with applying an operator. In particular, if @ : ¢ + N — C(e) is a solution of
L., then .~ (if the substitution € = 0 can be done) is a solution of L.

It L € k[r] and p € C/Z C C(e)/Z then p is not a singularity of L.. So the ord(L)-
dimensional C(e)-vector spaces V, (L) and V}, ,(L.) can be identified with V, (L) = {G: p —
C()|Le(@) = 0}.

Let L = a,m + - + ao7® € k[r] with a,, # 0 and ag # 0, and let p € C/Z. Let q; (resp.
g-) be the smallest (resp. largest) root of ag(z)a,(x —n) in p, so ¢; (resp. g¢.) is the smallest
(resp. largest) problem point at p. If p is not a singularity (so then there are no problem points
at p) then choose arbitrary elements g, g, € p.

Definition 13 With notations as above, for non-zero @ € V,(Le) define the left valuation
Ve, (@) = min{ve(a(m))|m € ¢y — 1 — N}

the right valuation
Ve,r (@) = min{ve(a(m))|m € ¢, + 1 + N}

)
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and the valuation growth
gp,e('a) = Ue,r(ﬁ) - Ue,l('a) €Z.
Define the set of valuation growths of L at p

9p(L) = {gp,c(@)| € Vp(Le), @ # 0} C Z.

If ve (@) > 0 then the left projection pi(@) € V, (L) is defined by substituting € = 0 in @.
Similarly if v (@) > 0 then the right projection p,. (@) € V, (L) is defined.

Note that for all m € ¢ — 1 — N the leading and trailing coefficient of L. have e-valuation 0
and all other coefficients of L. have e-valuation > 0. Since the @(m) for m € ¢g — 1 — N are
determined by L. and the 4(m) for m € {q — 1,q1 — 2,...,q — n}, it follows that

Ue,l(ﬁ) = mln{ve(ﬂ(m))lm € {ql - laql - 2) ey qr — n}}

and similarly
Ve,r (@) = min{ve(4(m))|m € {gr + 1,¢r +2,...,¢ +n}}.

In fact, if S is any set of n consecutive elements of ¢ — 1 — N then one can apply the same
argument and show that v, ;(@) = min{v(@(m))|m € S}. Hence, for & € V,(L¢), 4 # 0

e () = liminf v, ((m))

and

Ve,r(G) = lgn_glof ve(a(m))

where the two limits are taken over m € p using the ordering < that was defined on the set p.
It is easy to compute the valuation growth of @ € V(L) if L has order n = 1, and one obtains:

Lemma 4 If L is normal and order(L) = 1 then the set g,(L) contains only one element,

9p(L) ={g,(L)}.
Lemma 5 Let L,N, M € k[7] be normal, L= NM. Then g,(M) C g,(L).

Proof: M is a right-hand factor of L, so M, is a right-hand factor of L., so V,(M.) C V, (L)
and hence the lemma follows for p € C/Z. For p = oo the statement follows directly from the
definitions.

O

Without proof we mention that g,(N) C g,(L) as well, and that g, (L) = Goo (M) | Goo (V).
However, if p is finite then examples show that in general the set g,(L) is not determined by
9,(M) and g,(N). The two lemmas show that

{gp(w)lu € V(L) [ H*} C g, (L)

(recall that gp(u) for w € H* has been defined as g,(7 — r) where r = 7(u)/u € k*). This
inclusion is not always an equality.

4.2 Computing the set of valuation growths

With L = a,7™ + --- + ao7°, anao # 0, q; and ¢, as before, define u; : g — 1 —N — C by: for
1<j<nletui(qg—yj) belif i =7 and 0 otherwise. The other values of u; are determined by
the recurrence equation L(u;) = 0. Now wuy,...,u, is a basis of V,,;(L). Similarly we can define
a basis vy, ...,v, of V, (L) where v; : g, + 1+ N — C. For each basis element u; of V,,;(L) we
can choose @; € V,(L,) with left valuation > 0 and p;(4;) = u;, by setting 4;(q — j) = wi(q — J)
for j from 1 through n. Similarly we can choose @; € V,(L¢) with right valuation > 0 and
pr(¥;) = vj.

12



Definition 14 With notations as above, define the minimum valuation growth of L at p as
9p,r(L) = min{g, (%;)|1 <i<n} € Z.

Define the maximum valuation growth as
9p1(L) = max{g,(:)|1 <i<n} € Z.

Define the following C-linear maps by their action on the basis elements u; and v;

Epr: Vpi(L) = Vp (L) Epr(ui) = Pr(di/egp’r(L))
Epp 2 V(L) = Vpu(L) Eya(vi) = pu(0; - €971 (1).

With @; and @; as above, every non-zero @ € V,(L.) can be written as
i = evet(®) Z a;il; = Ve (@) Z b;0;
i i
for some a;, b; € C(€) with ve(a;) > 0 and v (b;) > 0. As a consequence

gp.r(L) = min(g,(L)) and g, (L) = max(g,(L)).

If p € C/Z is not singular then g,(L) = {0}. If p € C/Z is singular and g,(L) = {0} then p
is called an apparent singularity. If g,(L) has only 1 element then p is called a semi-apparent
singularity. If g,(L) has more than 1 element then p is called an essential singularity. Note that
the definition of E,, and E,; depends on L because g, (L) and g,;(L) depend on L. So, if
ambiguity could occur, these maps should be denoted as Ep ;.. and Ep ;1. If gp (%) < gp,e(;)
then one can verify that

{9p,¢(@i + ce™j)|c € C, m € Z} = {e € Z|gp,e(@:) < e < gp,e(T5) }
and hence the set of valuation growths g, (L) is given by the following formula
9p(L) ={e € Z|gpr(L) <e < gpu(L)} CZ.

To compute this set we need to use the recurrence relation (the operator L) to compute the
values of the @; at the points on the right of ¢, (recall that g, is the largest problem point at p);
we need to compute @;(g, +1),...,%;(g- +n). And we need to compute the values of the 9; on
the left of ¢;. Then g, (L) and g,;(L) can be determined from the e-valuation of these values.
This computation should be done modulo a suitable power of € in order to reduce intermediate
expression swell. We can combine this with modular arithmetic to eliminate expression swell.
The e-valuations of these #; and 9; at the points between ¢; and ¢, can be used to bound the
denominators of rational solutions (this statement is the content of [12]).

The valuation growth g, has been defined for (solutions of) operators L of order 1 (c.f.
definition 9) and corresponds to the valuation growth g, . of solutions of L.. For higher order L, if
u € V(L) is hypergeometric, g,(u) has been defined as the valuation growth of the corresponding
right-hand factor 7 — 7(u) /u € k[7] of L. However, in general g,(u) can not be defined for every
u € V(L). Because if g,(u) for v € V(L) can be defined, and p is an essential singularity, then
gp(u) is either not minimal, or not maximal (or both), so (use any embedding V — V,, and
V = V,,) we have u € Ker(E, ), or u € Ker(E, ;) (or both). This can not hold for all u € V(L)
because a vector space V(L) can not be the union of two vector spaces Ker(E, ) and Ker(E, ;)
of lower dimension. Hence one can not define g,(u) for all u € V(L) in a way that corresponds
to the definition of g, .

If L; and L, are normal operators of order 1, then we have seen that g(L1®Ls) = g(L1) +
g(L2). Tt is not difficult to prove the following generalization
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Lemma 6 Let Li,Ls € k[r] be normal, and let order(Ly) = 1. Then yp(Ll@L2) = {e+
gp(L2)le € g,(L1)} for all p € C/Z|J{o0}.

Lemma 7 If gp (L) = gp (L) (i-e. p is a semi-apparent singularity) then E,, and E,; are
each other’s inverses. If g, (L) # gpi(L) (i-e. p is an essential singularity) then Ep o Ep; =0
and Epj 0 Ep, =0, in other words

Im(E,,) C Ker(E,;) and Im(E,;) C Ker(E,,).

Proof: E,.(E,;(v;)) = E, (p(5;e%F))) = p,(0;e91(F) [e9rr (L)) = p (;€°) where s =
9p (L) — gpr(L). Now ve,(0;€®) = ve,(0;) + s = s, which is > 0 if p is an essential singu-
larity and 0 otherwise. In the former case p,(9;€®) = 0, and in the latter case p,.(0;€®) = v;. The
linear map E,; o E, , can be computed in the same way.

O

If p € C/Z is not a singularity then E,; and E, , are isomorphisms of G-modules where G is
the difference Galois group (for a definition see [16]) of L. However, at essential singularities the
linear maps E, . and E,; are in general not G-homomorphisms, because at essential singularities
the kernels and images are non-trivial even when L is irreducible.

5 Computing hypergeometric solutions

Computing hypergeometric solutions is equivalent to computing first order right-hand factors;
if uw € H* is a non-zero hypergeometric solution then 7 — 7(u)/u € k[r] is a right-hand factor of
L. The type of u is determined by g(u), so when g(u) is known, an operator 7 — r with the same
type can be constructed. By taking the symmetric product with 7 — 1/r we get a right-hand
factor 7 — (7(u)/u)/r which has the trivial type and hence a rational solution. So u can be
found by trying all possible values of g(u) and computing rational solutions for each case. This
leads to the following algorithm.

Algorithm hypergeometric solutions
Input: L = a,7" + -+ ao7°’ € k[7] with a, # 0, ap # 0 and n > 2.
Output: All hypergeometric solutions, parametrized by constants c;.

1. Let S ={p1,...,pm} C C/Z|J{oo} be the set of singularities.
2. result := {}
3. For all h = (hu, ..., hy) with h; € g, (L) that satisfy Fuchs’ relations do

(a) Construct r € k* such that all singularities of 7 — r are in S, and g, (T — ) = h;.
(b) Let by,...,bs € k be a basis of rational solutions of Le(r — 1/r).

(c) If ¢ > 0 then result := result | J{u - (c1b1 + - - + ¢4by)} where ¢; are parameters and
u € H* is a solution of 7 — r.

4. Output: result.

Step 3a is theorem 1 and computing g, (L) is section 4.2. Note that we could remove all
apparent finite singularities from S, that would not change the computation. Furthermore we
can compute r € k* such that {g,(r —r)} = g,(L) for all semi-apparent singularities p € C/Z
and such that 7 — r does not have other finite singularities. Then L&(7 — 1/r) has an apparent
singularity at all these p, and this way these p can be discarded as well.

For L € k[r] the field of definition is the smallest subfield Cy of C such that L € Cy(x)[7].
This is always a finite extension of ) and hence not an algebraically closed field. After multiply-
ing by a polynomial we may assume that the coefficients a; of L = a,, 7" +- - - +ao7° are in Cy[z].
Then the algorithm in [15] computes in the splitting field of a,ag over K. The degree of this
field extension can be very high, in which case the computation becomes infeasible. Avoiding
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large algebraic extensions is the main problem in computing hypergeometric solutions. Results
on this are given in [9] for order 2, where one tries all factors of the discriminant of the defining
polynomial of the singularities. If Cy = € then one has to factor in Z (works fine unless the
coefficients are big) but for larger fields this becomes complicated.

The algorithm above computes in a splitting field; the field generated by all essential sin-
gularities. This is a subfield of the splitting field of a,ag. Since semi-apparent singularities
do not contribute to this subfield, it can be much smaller than the splitting field of a,ag, and
this makes significant difference. However, although less frequent, the problem of exponentially
large algebraic extensions can still occur in the above algorithm, causing the computer to “run
forever” or run out of memory. So the main problem has been reduced, not yet solved. The
introduction of finite singularities is the main result of this paper because it makes it possible
to solve this problem. For order < 4 this is done in section 6 using the maps E,; and E, .. The
higher order case is more technical as there are more cases to distinguish. This will be done
later.

Another advantage of our algorithm is that the number of cases (the number of loops in
step 3) in our algorithm is in general much smaller than (but at most equal to) the number of
cases in [15], where one takes all combinations of all factors of ag with all factors of a,. If a, is
square-free then the number of factors of a, is 27 where d is the degree.

6 Avoiding splitting fields.

When during the computation a hypergeometric solution u is found (equivalently: when a first
order right hand factor 7 —r is found where r = 7(u)/u € k*), we can write L = Ly- (7 —r). Let
M = Le(r—1/r) = L3 - (r — 1) for some L3 with order(L3) = order(L) — 1. The non-constant
hypergeometric solutions of M can be obtained by computing the hypergeometric solutions of
L3 and applying Gosper’s algorithm (c.f. [8] or [1]). Multiplying the hypergeometric solutions
of M by u gives the hypergeometric solutions of L. This process is known as reduction of order.
It may speed up the algorithm in the previous section if a hypergeometric solution is found early
in the computation, but it is not always an improvement.

If all singularities are semi-apparent then the algorithm in the previous section is fast because
there are few cases to check in step 3. If p € C/Z is not semi-apparent then in some cases we
can use the images and kernels of E, , and E,; to find factors or hypergeometric solutions of L.
For example if L is normal and has order 2 then by lemma 7 we have Im(E, ;) = Ker(E,;) and
Im(E, ;) = Ker(E, ,) at every essential singularity p. If u € H* is a hypergeometric solution of
L, then either g,(u) = g,(L) or u € Ker(E, ). And either g,(u) = g,;(L) or u € Ker(E, ;).
So u € Ker(E,,) or u € Ker(E,;) (or both). Let r = 7(u)/u € k*. If we had bounds on
the degrees of the numerator and denominator of r then r can be computed by checking two
cases u € Ker(E, ) or u € Ker(E,;). So there are at most two possible r. Such bounds can be
obtained by a careful study of the algorithm in the previous section. Let C, C C be the smallest
field over which p and L are defined. Then all right-hand factors 7 — r that we find are defined
over Cp, because Ker(E, ) and Ker(E, ;) are 1-dimensional and are defined over Cj. So then r
must be an element of Cp(z) for every essential singularity p, and we can conclude

Theorem 2 Let L € Co(z)[r] be an operator of order 2, where Co C C and let C, = Co(q) if
p=¢q+Z for some q € C. Let S C C/Z be the set of essential singularities. If S # () then the

number of first order monic right-hand factors T — r is at most two, and they are elements of
K(z)[r] where K = [,c5 Cp.

If S = () then computing the first order right-hand factors is easy. In this case the only algebraic
extension needed is the ¢ € C* in (¢, n,d) at infinity, which can be at most an extension of
degree order(L) = 2. If S # @ then we can skip all cases in the algorithm that would lead to an
extension larger than K. This way computations with exponentially large algebraic extensions
are avoided in the algorithm in the case of order 2.
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A similar result can be obtained for order 3. To compute the hypergeometric solutions effi-
ciently, we first try only those r in step 3a of the algorithm that involve no algebraic extensions.
Splitting fields over Cy are not needed for this computation. If no hypergeometric solutions are
found this way then we use the lemma and theorem below in order to find all hypergeometric
solutions (including the ones that involve algebraic extensions) without having to compute with
splitting fields.

Lemma 8 Let L € Co(z)[7] a monic normal operator of order 3. If L has a first order right-
hand factor T —r € k[7] and no first order right-hand factor in Co(x)[7] then L can be written as
L = LCLM(7—71,7—72,T—73) for somer; € Co(z) or as L = Ly Ly for some Ly, Ly € Co(x)[0]
with order(Ls) = 2.

Proof: If L has a first order right-hand factor in k[7] then using the algorithm in section 5 we
can find a first order right-hand factor 7 — r € Co(z)[r]. Then take Ly as the LCLM of 7 — r
and its conjugates over Cy. One sees that Ly is invariant under the Galois group of Cy/Cy and
hence Ly € Cy(z)[0]. If order(Ly) = 3 then the first case holds, otherwise the second case.

O

In the second case in the lemma we can find L; by computing those hypergeometric solutions
of the adjoint of L (see [1] for a definition) that involve no algebraic extensions of Cy. Then to
compute the hypergeometric solutions of L we apply theorem 2 on L,. The remaining case is
that L is an LCLM of three first-order operators in Cp(z)[7].

Theorem 3 Let L € Co(z)[r] be a monic normal operator of order 8 which is reducible in k[7].
Let p € C/Z be an essential singularity. Then L is reducible in Cp(z)[7].

Proof: We may assume that L is irreducible in Cy(z)[r] and reducible in k[7]. Then lemma 8
says that L = LCLM(7 — r1, T — 72,7 — r3) for some r; € Co(x).

Let u; € H* be a solution of 7 —r;, for ¢ € {1,2,3}. The solution space of LCLM(7 —ry, 7 —
r9,T—r3) is spanned by the u;, and hence the u; are linearly independent. For each of the u;, the
valuation growth is not minimal (then w; € Ker(E, ,)) or not maximal (then u; € Ker(E,;)).
The dimension of these kernels is at most 2 (the order minus 1). At least one of the following
two cases must hold: at least two u; do not have minimal valuation growth, or at least two u; do
not have maximal valuation growth. Hence at least one of the the two kernels is spanned by two
of the u;. Assume that Ker(E, ) is spanned by ui,us. Let M = LCLM(7 — r1,7 — r3). Then
Vpi(M) = Ker(E, ,), and hence this solution space is defined over the field C,, or equivalently,
the Galois group of Co/C, maps V,;(M) to itself. Since the monic normal operator M is
uniquely determined by its solution space, it follows that M is invariant under this Galois group
as well, and hence L has a right-hand factor M € Cp(z)[r] of order 2. Now L = N M for some
N € Cp(x)[7] of order 1. To find a right-hand factor in Cp(z)[7] of L of order 1, we can compute
those hypergeometric solutions of L that have the same type as V.

O

Note that if there are no essential singularities, then the only algebraic extension needed in the
algorithm is the ¢ of the (¢,n,d) at the point infinity. This is an algebraic extension of degree
<3.

The consequence of theorems 2 and 3 is that computing hypergeometric solutions of oper-
ators of order < 3 can be done very efficiently, because either a singularity p is semi-apparent
(and can be discarded after a transformation of L), or p reduces the algebraic extension of Cy
over which solutions have to be searched. For order < 3 the algebraic extensions we have to
compute with will be small because of this. Once we know a field C' over which the solutions
can be found, then we do not need to use splitting fields anymore, because we can apply the
following algorithm.
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Algorithm: Compute all hypergeometric solutions that are defined over a given field C' C C.
Input: L ="  a;7° where a; € C[z] with a¢ and a,, non-zero.
Output: all solutions u of L for which 7(u)/u € C(z).

1. Let S be the set of irreducible monic factors of aga, in C[z]. Whenever S contains two
factors P # @ for which P(z) = Q(x+1) for some integer i remove either P or @), until there
are no more factors in S that are an integer shift of each other. Let S = {Py,...,Pp_1}
be the set of factors that remains. The singularities are the roots (modulo the integers) of
these polynomials and the point at infinity.

2. Compute g, (L) using the 7 and § polygon, see section 3. Remove the elements from
Joo(L) that are not defined over C. If there are no elements left then then there are no
non-zero hypergeometric solutions defined over C.

3. For each P, € S do

(a) Let ay be root of Py. This can be done by introducing a new variable Y and letting
Clax) =C[Y]/(Pr(Y)). Now p = ax+Z € C/Z is afinite singularity of L. Compute
the roots of ap and a,, on p; and determine the smallest and largest problem point ¢
and ¢, on py.

(b) Let @;(qs —j) be 1if i = 5 and 0 if ¢ # j for all integers i,j from 1 to n, and the same
for ©;(gr + j).

(c) Letting i; and 9; be solutions of L. determines i;(q),;(q) € C(a,e€) for every q € pg.
These values can be computed by applying the recurrence relation given by L.

(d) g,, (L) is a set of consecutive integers. Compute the right-valuation of the @; by
computing the smallest e-valuation of @;(g, + j) where j runs from 1 through n. The
smallest right-valuation of the ; equals the smallest element of g,, (L). Then compute
the smallest left-valuation of the #;. Multiply this by —1 to obtain the largest element
of g, (L).

4. Let p, = oo. For every combination (eq, .. .,e,) with e; € g, (L) that satisfies the Fuchs’
relations do

(a) Now ey,...,en—1 are integers and that e, is a 3-tuple. Let ¢ be the first entry of e,,.
Let r = CH;’;l Pfi, s0 gp, (T —r) = e; for i from 1 through m — 1. Note that the fact
that the e; satisfy Fuchs’ relations simply means that g (7 —7) = epp,.

(b) Compute the rational solutions of L& (r —1/r). Multiply them by a non-zero solution
of 7—r and return the product as output. Note that to compute rational solutions we
first need to bound the denominators of rational solutions; for each point ¢ we need
a lower bound for the valuation of these rational solutions at ¢. Such a bound can
be obtained from the e-valuation of the @;(q) and 9;(q). This idea is treated in more
detail for the case of systems in [12].

The following remarks are topics for a subsequent paper. The set g, can also be defined and
computed for systems of equations 7(Y') = AY where A € GL,(k), without having to use cyclic
vectors, so our algorithm works for systems as well. In fact the definition for systems when p is
finite is less technical than the one for operators given in this paper. Furthermore certain facts,
for example that g,(L) depends only on the type of L, are easier to prove using systems. A
reason for treating only operators in this paper is that the three given theorems easier to prove
that way.

The same methods can also be used to compute solutions that are m-interlacings of hyper-
geometric sequences (see [10] for a definition), because the valuation growths are the same and
computing bounds for the denominators of interlacings of rational functions also works the same.
The methods in this paper can be applied for ¢-difference equations as well if g is not a root of
unity. The main difference is that in the g-difference case there are two special singularities (0
and infinity) instead of just one, and so the Fuchs’ relations will be different.
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