
Practical Polynomial Factoring in Polynomial Time

William Hart
∗

University of Warwick
Mathematics Institute

Coventry CV4 7AL, UK
W.B.Hart@warwick.ac.uk

Mark van Hoeij
†

Florida State University
Tallahassee, FL 32306
hoeij@math.fsu.edu

Andrew Novocin
CNRS-INRIA-ENSL

46 Allée d’Italie
69364 Lyon Cedex 07, France

andy@novocin.com

ABSTRACT

State of the art factoring in Q[x] is dominated in theory by a
combinatorial reconstruction problem while, excluding some
rare polynomials, performance tends to be dominated by
Hensel lifting. We present an algorithm which gives a practi-
cal improvement (less Hensel lifting) for these more common
polynomials. In addition, factoring has suffered from a 25
year complexity gap because the best implementations are
much faster in practice than their complexity bounds. We il-
lustrate that this complexity gap can be closed by providing
an implementation which is comparable to the best current
implementations and for which competitive complexity re-
sults can be proved.

Categories and Subject Descriptors

I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; G.4 [Mathematics of Computing]: Mathemati-
cal Software

General Terms

Algorithms

Keywords

Symbolic Computation, Factoring Polynomials, Lattice Re-
duction

1. INTRODUCTION
Most practical factoring algorithms in Q[x] use a structure

similar to [22]: factor modulo a small prime, Hensel lift this
factorization, and use some method of recombining these
local factors into integer factors. Zassenhaus performed the
recombination step by an exhaustive search which can be

∗Author was supported by EPSRC Grant number
EP/G004870/1
†Supported by NSF Grant numbers 0728853 and 1017880

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0675-1/11/06 ...$10.00.

made effective for as many as 40 local factors as is shown
in [2]. While quite fast for many cases, the exponential
complexity of this exhaustive technique is realized on many
polynomials.

Polynomial time algorithms, based on lattice reduction,
were given in [4, 12, 19]. For a polynomial f of degree N ,
and entries bounded in absolute value by 2h, these algo-
rithms perform O(N2(N + h)) LLL switches. These algo-
rithms are slow in practice, because the size of the combi-
natorial problem depends only on r, where r is the number
of local factors, while the LLL cost depends on N and h,
which can be much larger than r. This problem was the
motivation for van Hoeij’s algorithm [8], but no complexity
bound was given. There are several variations on van Hoeij’s
algorithm, as well as implementations. The most interesting
is that of Belabas [3]. His version is designed in such a way
that the vectors during LLL have entries with O(r) bits.
In experiments, the number of LLL switches appears to be
bounded by O(r3). Other implementations, such as NTL
and Magma, have a comparable performance in practice.

For a number of years, the practical behavior of these im-
plementations was a complete mystery; there was no com-
plexity bound that came anywhere near the running times
observed in practice. There are two ways to reduce the gap
between practical performance and theoretical complexity:
(a) make the algorithm slower in practice (this was done in
[4] because it makes it easier to prove a polynomial time
bound), or (b) keep the algorithm at least equally fast in
practice and do a more precise analysis.

Note that this O(r3) in Belabas’ version (and other well
tuned implementations) is an observation only, we can not
prove it, and suspect that it might be possible to construct
counter examples. However, we can prove O(r3) after mak-
ing some modifications to Belabas’ version. This was done in
[17]. The phrase ‘r3 algorithm’ in [17] refers to an algorithm
for which we can prove an O(r3) bound on the number of
LLL switches. The paper [21] explains the lattice reduction
techniques in an easier and more general way (more applica-
tions) than [17], however, for the application of factoring, the
bound in [21] is O(Nr2) LLL switches, which is not optimal.
So in order to accomplish (b) in the previous paragraph, it
remains to show the part “at least equally fast in practice”,
and this can only be done with an actual implementation.

The goals in this paper are: (1) Implement an algorithm
that works well in practice (at least comparable to the best
current implementations), that (2) is simpler than the algo-
rithm in [17], and (3) for which the O(r3) analysis from [17]
still works. In addition, (4) verify the claim in [17] that the



so-called early termination strategy can make the implemen-
tation faster on common classes of polynomials by doing less
Hensel lifting, without hurting the practical performance on
the remaining polynomials.
In [17] the metric termed Progress (see Section 2.3) is

introduced. The main result of that work is that in order to
guarantee O(r3) total LLL-switches it is enough to ensure
that LLL is only called when a sufficient increase in progress
can be made, and that moreover, this is always possible.
At every step in our algorithm it is necessary to check that

the properties which make the analysis in [17] go through,
also hold for the decisions made by our algorithm.
The verification is routine, but it is not the aim of this

paper to re-cast or simplify the analysis of [17]. Similarly it
is not the aim of this paper to report on a highly optimised
implementation of the new algorithm. Rather, our goal is
to show, with an implementation, that it is possible to have
the best theoretical complexity without sacrificing practical
performance. A complete complexity analysis of the algo-
rithm we present exists in pre-print format and can be found
here [7].
Roadmap Necessary background information will be in-

cluded in section 2. The algorithm is laid out in an im-
plementable fashion in section 3. Practical notes, including
running time and analysis are included in section 4.

2. BACKGROUND
In this section we will outline necessary information from

the literature. The primary methods for factoring polynomi-
als which we address can all be said to share a basic structure
with the Zassenhaus algorithm of 1969 [22].

2.1 The Zassenhaus algorithm
In some ways this is the first algorithm for factoring poly-

nomials over Z which properly uses the power of a computer.
For background on the evolution of factoring algorithms see
the fine treatment in [9].
The algorithm utilizes the fact that the irreducible factors

of f over Z are also factors of f over the p-adic numbers Zp.
So if one has both a bound on the size of the coefficients
of any integral factors of f and an irreducible factorization
in Zp[x] of sufficient precision then one can find the inte-
gral factors via simple tests (e.g. trial division). To bound
coefficients of integer factors of f we can use the Landau-
Mignotte bound (see [5, Bnd 6.33] or [1] for other options).
For the p-adic factorization it is common to choose a small
prime p to quickly find a factorization over Fp then use the
Hensel lifting method to increase the p-adic precision of this
factorization. Due to a comprehensive search of all com-
binations of local factors the algorithm has an exponential
complexity bound which is actually reached by application
to the Swinnerton-Dyer polynomials [11].

Algorithm 2.1. Description of Zassenhaus algorithm
Input: Square-free1 polynomial f ∈ Z[x] of degree N
Output: The irreducible factors of f over Z

1. Choose a prime, p, such that gcd(f, f ′) ≡ 1 modulo p.
2. Modular Factorization: Factor f mod p ≡ lc·f1 · · · fr.

1Assumed square-free for simplicity. A standard gcd-based
technique can be used to obtain a square-free factorization
(see [5, sct 14.6])

3. Compute the Landau-Mignotte bound L =
√

(N + 1)·
2N · ‖ f ‖∞ and a ∈ N such that pa > 2L

4. Hensel Lifting: Hensel lift f1 · · · fr to precision pa.
5. Recombination: For each v ∈ {0, 1}r (and in an

appropriate order) decide if gv := pp(lc ·∏ f
v[i]
i mods

pa) divides f over Z, where pp(h) = h/content(h).
It is common to perform steps 1 and 2 several times to

attempt to minimize, r, the number of local factors. Infor-
mation from these attempts can also be used in clever ways
to prove irreducibility or make the recombination in step 5
more efficient, see [2] for more details on these methods. Al-
gorithms for steps 2, 3, and 4 have been well studied and we
refer interested readers to a general treatment in [5, Chap-
ters 14,15]. Our primary interests in this paper lie in the
selection of a and the recombination of the local factors in
step 5.

2.2 Overview of the LLL algorithm
In 1982 [12] Lenstra, Lenstra, and Lovász devised an al-

gorithm, of a completely different nature, for factoring poly-
nomials. Their algorithm for factoring had a polynomial
time complexity bound but was not the algorithm of choice
for most computer algebra systems as Zassenhaus was more
practical for the majority of everyday tasks. At the heart
of their algorithm for factoring polynomials was a method
for finding ‘nice’ bases of lattices now known as the LLL al-
gorithm. The LLL algorithm for lattice reduction is widely
applied in many areas of computational number theory and
cryptography, as it (amongst other things) gives an approx-
imate solution to the shortest vector problem, which is NP-
hard [14], in polynomial time. In fact, the van Hoeij algo-
rithm for factoring polynomials [8] can be thought of as the
application of the LLL lattice reduction algorithm to the
Zassenhaus recombination step. The purpose of this sec-
tion is to present some facts from [12] that will be needed
throughout the paper. For a more general treatment of lat-
tice reduction see [13].

A lattice, L, is a discrete subset of Rn that is also a Z-
module. Let b1, . . . ,bd ∈ L be a basis of L and denote
b∗
1, . . . ,b

∗
d ∈ Rn as the Gram-Schmidt orthogonalization

over R of b1, . . . ,bd. Let δ ∈ (1/4, 1] and η ∈ [1/2,
√
δ).

Let li = log1/δ ‖ b∗
i ‖2, and denote µi,j =

bi·b∗

j

b∗

j
·b∗

j
. Note that

bi,b
∗
i , li, µi,j will change throughout the algorithm sketched

below.

Definition 2.2. b1, . . . ,bd is LLL-reduced if ‖ b∗
i ‖2 ≤

1
δ−µ2

i+1,i
‖ b∗

i+1 ‖2 for 1 ≤ i < d and |µi,j | ≤ η for 1 ≤ j <

i ≤ d.

In the original algorithm the values for (δ, η) were chosen
as (3/4, 1/2) so that 1

δ−η2 would simply be 2.

Algorithm 2.3. Rough sketch of LLL-type algorithms
Input: A basis b1, . . . ,bd of a lattice L.
Output: An LLL-reduced basis of L.

1. κ := 2
2. while κ ≤ d do:

(a) (Gram-Schmidt over Z). By subtracting suitable
Z-linear combinations of b1, . . . ,bκ−1 from bκ

make sure that |µi,κ| ≤ η for i < κ.
(b) (LLL Switch). If interchanging bκ−1 and bκ will

decrease lκ−1 by at least 1 then do so.



(c) (Repeat). If not switched κ := κ + 1, if switched
κ = max(κ− 1, 2).

That the above algorithm terminates, and that the output is
LLL-reduced was shown in [12]. There are many variations
of this algorithm (such as [10, 15, 18, 19, 20]) and we make
every effort to use it as a black box for ease of implemen-
tation. What we do require is an algorithm which returns
an LLL-reduced basis and whose complexity is measured in
the number of switches (times step 2b is called). In fact the
central complexity result of [17] is that the r3 algorithm has
O(r3) switches throughout the entire algorithm, in spite of
many calls to LLL.
Intuitively the Gram-Schmidt lengths of an LLL-reduced

basis do not drop as fast as a generic basis (for more on
generic bases and LLL see [16]). In practice this property
is used in factoring algorithms to separate vectors of small
norm from the rest.

2.3 Lattice-based Recombination
Each of [3, 4, 8, 17] use lattice reduction to directly attack

the recombination phase of Zassenhaus’ algorithm (step 5 in
Algorithm 2.1). The goal of these algorithms is to find tar-

get 0–1 vectors, wi ∈ {0, 1}r, which correspond with the

true irreducible factors of f over Z, namely gi ≡
∏r

j=1 f
wi[j]
j .

Each of these algorithms begins with an r × r identity ma-
trix where each row corresponds with one of the local factors
f1, . . . , fr ∈ Zp[x]. Then they augment columns and/or rows
of data extracted from the corresponding local factors such
that:

• The augmented target vectors have boundable norm

• The vectors which do not correspond with factors in
Z[x] can be made arbitrarily large

• This augmented data respects the additive nature of
the lattice.

So far, to the best of our knowledge, only traces of the fi
(sums of powers of roots) or so-called CLDs (Coefficients of
Logarithmic Derivatives, i.e. f · f ′

i/fi) have been used for
this purpose. The CLD is important enough that we give a
formal definition:

Definition 2.4. For a p-adic polynomial g ∈ Zp[x] which
divides a polynomial f ∈ Z[x] in Zp, we call the coefficient of
xj in the p-adic polynomial g′ · f/g the jth CLD of g. This
quantity is typically known to some p-adic precision, pa.

For example, the rows of the following matrix form the
basis of a lattice which could be used:



















pa−bN

. .
.

pa−b1

1 c1,1 · · · c1,N
. . .

...
. . .

...
1 cr,1 · · · cr,N



















Where ci,j represents the jth CLD of fi divided by pbj

and pbj represents
√
N times a bound of the jth CLD for

any factor g ∈ Z[x] of f . In this lattice all target vectors
have this format: ({0, 1}, . . . , {0, 1}, ǫ1, . . . , ǫN ) where ǫj is

a rational number of absolute value ≤ 1/
√
N . These target

vectors have a Euclidean-norm ≤
√
r + 1, whereas a vector

corresponding with a factor in Zp[x] \Z[x] could have an ar-
bitrarily large Euclidean-norm for arbitrarily precise p-adic
data.

Brief differences of the algorithms. In [8] the first
factoring algorithm to use LLL for the recombination phase
was designed and in this case traces were used for the p-adic
data. Belabas [3] also used traces, but fine tuned the idea by
gradually using this data starting with the most significant
bits; this led to more calls to LLL which cost less overall
by working on smaller entries. In [4] the idea of using CLDs
was introduced, for which we have tighter theoretical bounds
than traces. This allowed for an upper bound on the amount
of Hensel lifting needed before the problem is solved. Also
lattices using CLDs instead of traces tend to have a greater
degree of separation between the target vectors and non-
targeted vectors at the same level of p-adic precision.

In [17] an approach is outlined which mimics the practical
aspects of Belabas while making measures to ensure that
the behavior is not harmed when attempting to solve the
recombination phase ‘too early’. The primary complexity
result in [17] is a method of bounding and amortizing the
cost of LLL throughout the entire algorithm. This was done
by introducing a metric called Progress which was to never
decrease and which was increased by at least 1 every time
any call to LLL made a switch (step 2b of Algorithm 2.3).

The Progress metric mimicked an energy-function with an
additional term to deal with ’removed’ vectors, namely:

P := 0·l1+1·l2+· · ·+(s−1)·ls+(r+1)·nrv ·log (23r(r + 1))

Where li is the log of the norm of the ith Gram-Schmidt
(from here on G-S) vector, s is the number of vectors at
the moment, 23r was the bound on the norm of any vector
throughout the process, and nrv is the number of vectors
which have been removed from the basis so far.

The factoring algorithm in [17] is then shown to terminate
before the progress can cross some threshold of O(r3), where
r is the number of p-adic factors of f . The Progress metric
gives us a method for determining that a call to LLL will be
guaranteed to move the algorithm forward. Every decision
made by the r3 algorithm and the algorithm we present here
is tied to ensuring that Progress is never decreased by too
much and is increased every time LLL is called.

3. THE MAIN ALGORITHM
In this section we present a modified version of the algo-

rithm presented in Novocin’s thesis, [17], but for which the
same complexity analysis holds. We divide the algorithm
into several sub-algorithms to give a top-down presentation.
The sub-algorithms are as follows:

• Algorithm 3.1 is the top layer of the algorithm. We
choose a suitable prime, perform local factorization,
decide if the Zassenhaus algorithm is sufficient, per-
form Hensel lifting, and call the recombination process.

• Algorithm 3.2 creates a knapsack lattice, processes the
local factors (extracts information from CLDs) and
tests how much impact on progress they will have. If
the progress will be sufficient according to the results
of [17] then the CLD information is added to a lattice
and LLL is called. We test to see if the algorithm has



solved the problem and decide if more Hensel lifting
will be needed.

• Algorithm 3.3 takes CLD data and decides whether or
not a call to LLL will make enough progress to justify
the cost of the call to LLL. This step guarantees that
the complexity analysis of [17] holds.

• Algorithm 3.4 is a practical method for bounding the
size of CLDs arising from ‘true factors’. This bound is
the analogue of the trace bounds from [8] and gives us
some idea of how much Hensel lifting will be needed
before a call to LLL can be justified (via the Progress
metric).

• Algorithm 3.5 gives a heuristic ‘first’ Hensel bound.

• Algorithm 3.6 decides whether or not we have found a
true factorization of f .

3.1 Main Wrapper
The input to the algorithm is a square-free primitive poly-

nomial, f ∈ Z[x]. The output is the irreducible factoriza-
tion of f . The strategy at this level is the same as that of
van Hoeij’s algorithm and indeed that of Zassenhaus and its
variants.
We select a prime, p, for which f is square-free in Fp[x]

and find the factorization of f modulo p. This step is well
understood (see for example [5, Chpts.14,15]). Standard
heuristics are used for selecting a ‘good’ prime.
Next, we perform Hensel lifting of the factors to increase

their p-adic precision. We then call a recombination proce-
dure to attempt a complete factorization at the current level
of p-adic precision. If this process fails then we Hensel lift
again and re-attempt recombination, etc.

Algorithm 3.1. The main algorithm
Input: Square-free polynomial f ∈ Z[x] of degree N
Output: The irreducible factors of f over Z

1. Choose a prime, p, such that gcd(f, f ′) ≡ 1 modulo p.
2. Modular Factorization: Factor f modulo p ≡ lc ·

f1 · · · fr.
3. if r ≤ 10 return Zassenhaus(f)
4. Compute first target precision a with Algorithm 3.5

5. until solved:
(a) Hensel Lifting: Hensel lift f1 · · · fr to precision

pa.
(b) Recombination: Algorithm 3.2(f, f1, . . . , fr, p

a)
(c) if not solved: a := 2a

3.1.1 Choosing an initial Hensel precision

Step 4 provides a starting p-adic precision, pa, by calling
Algorithm 3.5. Other standard algorithms choose this value
such that pa ≥ 2L where L is the Landau-Mignotte bound
(see [5, sct 14.6]). This is an upper-bound precision for
which the true factors can be provably reconstructed for
every possible input.
Our algorithm attempts recombination at a lower level of

p-adic precision, noting that the Landau-Mignotte bound
is designed for the worst-case inputs. As section 4 shows
our reduced precision is often sufficient, and is substantially
lower than other methods.
An example of where this strategy pays dividends is when

f can be proven irreducible in the recombination phase at

our reduced precision. In this case there is no need to Hensel
lift to a higher precision. Another case is when we can re-
construct low-degree factors of f at the current precision
and prove the irreducibility of the quotient when f is di-
vided by these small factors. The precision needed to solve
the recombination problem and the precision needed to re-
construct integer factors once the recombination is solved
are unrelated. Further the precision needed to solve the re-
combination is not well understood, there is a theoretical
worst-case in [4] which has never been reached in practice.

The worst-case for our algorithm is when either the re-
combination requires the same or more p-adic precision than
the Landau-Mignotte bound or when the true factorization
has two or more factors of large degree with large coeffi-
cients (in which case they each require precision near the
Landau-Mignotte bound and they cannot all be discovered
by division). We do not know, a priori, which case we will
be in, so we design the algorithm to ensure that in the worst
case we do no worse than other algorithms and in the best
case we minimize Hensel lifting.

We designed our Hensel lifting procedure for the case that
we need to increase the precision frequently. Our imple-
mentation uses a balanced factor tree approach as presented
in [5, Sect. 15.5]. To minimize overhead in Hensel lifting
multiple times our implementation caches the lifting tree, in-
termediate modular inverses computed by the extended gcd,
and the intermediate products of the lifting tree itself. This
way there is little difference between Hensel lifting directly
to the end precision or lifting in several separate stages.

3.2 Recombination
The next several sub-algorithms form the core the new

approach. In Algorithm 3.2 we are given a local factoriza-
tion at a new p-adic precision and (except for the first call
to this sub-algorithm) we are also given an LLL-reduced lat-
tice. This is the layer of the algorithm which organizes all of
the lattice decisions, including the creation of new columns
and/or rows from the p-adic factorization, the decision as
to when lattice reduction is justified, the lattice reduction
itself, and the extracting of factors from the information in
the reduced lattice.

Algorithm 3.2. Attempt Reconstruction
Input: f , f1, . . . , fr the lifted factors, their precision pa,

and possibly M ∈ Zs×(r+c).
Output: If solved then the irreducible factors of f over Z

otherwise an updated M .

1. If this is the first call let M := Ir×r

2. Choose a k heuristically (see below for details)
3. For j ∈ {0, . . . , k − 1, N − k − 1, . . . , N − 1} do:

(a) Compute CLD bound, Xj , for xj using Algo-
rithm 3.4

(b) If
√
N ·Xj ≤ pa/21.5r then compute new column

vector xj := (x1,j , . . . , xr,j)
T where xi,j is the co-

efficient of xj in f · f ′
i/fi

4. For each computed xj do:
(a) justified:= True; While justified is True do:

i. Decide if LLL is justified using Algorithm 3.3
which augments M

ii. If so then run LLL(M)
iii. If not then justified := False
iv. Compute G-S lengths of rows of M



v. Decrease the number of rows of M until the
final Gram-Schmidt norm ≤

√
r + 1

vi. Use Algorithm 3.6 to test if solved
This algorithm provides the basic framework of our attack.

The rows of the matrix M provide the basis of our lattice-
based recombination (see section 2.3). We compute bounds
for the 2k CLDs, {0, . . . , k − 1, N − k − 1, . . . , N − 1}, from
these bounds we can determine if pa is a sufficient level of
p-adic precision to justify computing any of the 2k actual
CLDs.
For each CLD which is actually computed we call Al-

gorithm 3.3 to decide what to do. Details are given in
the next section. Steps 4(a)iv and 4(a)v are the same as
both [8] and [17], but we note that step 4(a)iv can be done
with a well-chosen floating-point algorithm since M is LLL-
reduced.
The heuristic k. In practice we need not compute all of

the coefficients of the r p-adic polynomials f ′
i · f/fi. Often

only a few coefficients are needed to either solve the problem
or decide that more precision will be needed. The value
of k provides a guess at the number of coefficients which
will be needed and can be determined experimentally. In
our implementation we found that a value of 5 ≤ k ≤ 20
was usually sufficient. A fail-safe value of k = N/2 can be
used for the cases when the p-adic precision is close to the
theoretical bound and where the problem is yet to be solved
(which did not occur for us in practice).
It is best to compute the highest k coefficients and/or the

lowest k coefficients of each logarithmic derivative. There
are two reasons for this:

• To compute the bottom k coefficients of f ′
i · f/fi mod

pa, power series techniques can be used. Thus only the
bottom k coefficients of fi and f are needed (same for
the top k coefficients) rather than all coefficients.

• The heuristic we use in Algorithm 3.5, for initial p-
adic precision, only Hensel lifts far enough to guarantee
that either the leading CLD or trailing CLD can justify
a call to LLL.

The soundness of these heuristics is checked by examining
the CLD bounds for true factors and comparing them with
pa. If our heuristics are well-adjusted then some of the com-
puted 2k CLD bounds will be smaller than pa. These CLD
bounds are cheap to compute and a method is provided in
Algorithm 3.4. Of course other choices are possible for each
of our heuristics, and a more sophisticated heuristic could
be designed.

3.3 Determining if a potential column justifies
LLL

The following algorithm is given both a column vector
whose ith entry is the jth CLD i.e. the coefficient of xj in
the p-adic polynomial f ′

i · f/fi (which is known to a preci-
sion pa) and a matrix M . The rows of M form a reduced
basis of a lattice which must contain the small target vectors
corresponding to irreducible factors of f over Z.
The algorithm decides if augmenting M by an appropriate

transformation of the given column vector would increase
the norm of the rows of M by enough to justify a call to
LLL on the augmented M . The metric used is the Progress
metric of [17]. This algorithm also performs scaling in the
style of [3], to prevent entries of more than O(r) bits in M .

This sub-algorithm is important to the proven bit-complexity
of the algorithm and not to the practical complexity. The
purpose of this sub-algorithm is to bound the timings of all
potential worst-cases via the theoretical analysis of [17]. One
of the important contributions of this paper is to show, via
implementation, that this sub-algorithm does not harmfully
impact the performance of our algorithm.

Algorithm 3.3. Decide if column is worth calling LLL
Input: M ∈ Zs×(r+c), data vector xj , pa, Xj the CLD

bound for xj

Output: A potentially updated M and a boolean justified

1. Let B := r + 1 and s be the number of rows of M
2. If pa < Xj · B ·

√
N · 2(1.5)r justified := False and

exit
3. Find U the first r columns of M
4. Compute yj := U · xj

5. If ‖ yj ‖∞< Xj · B ·
√
N · 2(1.5)r then justified :=

False and exit
6. If pa − Bpa/2(1.5)r >‖ yj ‖∞ ·(2(3/2)s−1 − 2) then

no vec :=True otherwise False
7. New column scaling 2k, closest power of 2 to

‖yj‖∞
Xj ·B·

√
N·2(1.5)r

if no vec is True or to pa

Xj ·B·
√

N·2(1.5)r if False

8. Embed xj and pa/2k into Z/2r by rounding and denote

results as x̃j and P̃
9. If no vec is True then augment M with new column

ỹj = U · x̃j

If no vec False then also adjoin a new row so

M :=

[

0 P̃
M ỹj

]

10. Justified :=True; return M
The most significant change of this algorithm from the

algorithm in [17] is that we round the new column after
scaling. We keep log r bits after the decimal for the sake of
numerical stability. Consider this change a practical heuris-
tic which we can prove does not impact the O(r3) bound
for the number of LLL switches (see [7]). This proof uses
the bounds we have on the size of unimodular transforms
encountered throughout the algorithm.

As some implementations of LLL prefer to work on ma-
trices with integer entries we note that a virtual decimal
place can be accomplished using integers by scaling up the
entries in U (the first r columns) by 2r. Such a scaling re-

quires replacing
√
r + 1 with

√

22r(r + 1) in step 4(a)v of
Algorithm 3.2.

3.4 Obtaining practical CLD bounds
The goal of this sub-algorithm is to quickly find a bound

for the absolute value of the coefficient of xj in any inte-
ger polynomial of the form g′ · f/g where g ∈ Z[x] divides
f ∈ Z[x]. This bound, which we will frequently call the
jth CLD bound, is the CLD equivalent of the Landau-
Mignotte bound.

The following method (an analogous bound for the bivari-
ate case is given in [4, Lemma 5.8]) quickly gives fairly tight
bounds in practice. The method is based on the fact that

g′f/g =
∑

α|g(α)=0

f

x− α
summed over all roots of the poten-

tial factor.

Algorithm 3.4. CLD bound



Input: f = a0 + · · ·+ aNxN and c ∈ {0, . . . , N − 1}
Output: Xc, a bound for the absolute value of the coeffi-

cient of xc in the polynomial fg′/g for any g ∈ Z[x] dividing
f .

1. Let B1(r) :=
1

rc+1 (|a0|+ · · ·+ |ac|rc)
2. Let B2(r) :=

1
rc+1 (|ac+1|rc+1 + · · ·+ |aN |rN )

3. Find r ∈ R+ such that MAX{B1(r), B2(r)} is mini-
mized to within a constant.

4. return Xc := N ·MAX{B1(r), B2(r)}
In this method, for any positive real number r, either

B1(r) or B2(r) is an upper bound for the coefficient of xc in
f

x−α
for any possible complex root α (because of the mono-

tonicity of B1 and B2, if r ≤ |α| then B1(r) is the upper
bound and if r ≥ |α| then B2(r) will be). Thus for every
positive real number r the quantity MAX{B1(r), B2(r)} is
an upper bound for the coefficient of xc in f

x−α
. The task

is then to find an r for which MAX{B1(r), B2(r)} is mini-
mized. Since the CLD is summed over every root of g we
use N as a bound for the number of roots of g to give a CLD
bound of N ·MAX{B1(r), B2(r)}.
For finding an r which minimizes MAX{B1(r), B2(r)} our

floating-point method is as follows (where sign(x) is 1 if x
positive, -1 if x negative, and 0 otherwise).

1. Let r := 1, scaling := 2, cur_sign := sign(B1(r) −
B2(r)), and pos_ratio :=

(

B1(r)
B2(r)

)cur_sign

2. Until cur_sign changes or pos_ratio ≤ 2 do:
(a) r := r · scalingcur_sign
(b) cur_sign:= sign(B1(r)−B2(r))

(c) pos_ratio :=
(

B1(r)
B2(r)

)cur_sign

3. If pos_ratio > 2 then scaling :=
√
scaling and Go

to step 2 Otherwise Return r.
Another method of finding r is simply solving B1(r) −

B2(r) = 0 for which many Computer Algebra Systems have
efficient implementations. Our method is a quick-and-dirty
method which is good enough in practice.

3.5 The new starting precision heuristic
We now outline our suggested heuristic for selecting an

initial p-adic precision, a. This heuristic is designed so that
we lift just far enough to warrant at least one call to LLL
from either the 0th CLD or the (N − 2)nd CLD, which can
be enough to solve the problem.

Algorithm 3.5. Heuristic for initial precision
Input: f ∈ Z[x], p
Output: Suggested target precision a

1. Use Algorithm 3.4 to compute b, the minimum of (CLD
bound for x0) and (CLD bound for xN−1).

2. return a :=
⌈

2.5r+log2 b+(log2 N)/2

log2 p

⌉

This heuristic is focused on either the trailing coefficient
or the leading coefficient of f and guarantees that at least
one CLD is computed in step 3b of Algorithm 3.2 and will
be used by Algorithm 3.3.

3.6 Checking if problem solved
Finally we briefly mention the new method in which we

check for true factors. One of the central novelties to the
algorithm is a reduced level of Hensel lifting when attempt-
ing to solve the problem. It has been observed that the
Landau-Mignotte bound is often too pessimistic and that

even Zassenhaus’ algorithm could potentially terminate at
a lower level of Hensel lifting. This is also true of our lat-
tice based attack, as we can often prove the irreducibility
of a potential factor before we can fully reconstruct each of
its coefficients. This is seen most frequently in polynomials
which turn out to have one large degree factor and zero or
more smaller degree factors. In these cases we must check
for true factors in a way that will recover the large factor by
dividing away any small irreducible factors.

We will begin by using a short-cut for detecting a 0-1 basis
of our lattice. Such a basis, if it exists, could potentially
solve the recombination problem.

Algorithm 3.6. Check if solved
Input: M , f , f1, . . . , fr to precision pa

Output: A Boolean, solved, and possibly the irreducible
factors of f in Z[x]

1. Sort the first r columns of M into classes of columns
which are identical

2. If there are not more classes than there are rows of M
then we have a potential solution otherwise solved :=
False and exit

3. For each class multiply2 the p-adic polynomials cor-
responding with the columns in that class and reduce
with symmetric remainder modulo pa to find the po-
tential factors

4. In order, from the lowest degree to the highest degree,
perform trial divisions of f

5. If any two polynomials fail to divide f then solved :=
False and exit

6. solved := True if there is one failed polynomial then
recover it by division of f by the successful factors

The goal of lattice-based recombination is to find the tar-
get 0–1 vectors shown in section 2.3. It is possible that we
have a basis whose echelon form gives these 0–1 vectors.
Since we know that a solution can only use each local factor
once then any echelon form solution will have a unique 1 in
each of the first r columns. We detect this by examining
which columns are identical. The symmetric remainder of
step 3 is required to capture polynomials with negative co-
efficients. By moving from the lowest degree to the highest
degree we maximize the chances of solving the problem with
less Hensel lifting than the Landau-Mignotte bound used in
Zassenhaus. Specifically when there is only one large factor
of f the small factors can be reconstructed and the large
factor can be found by division.

4. RUNNINGTIMESANDPRACTICALOB-

SERVATIONS
In this section we illustrate that our algorithm is useful

in practice and give direct evidence that our approach can
factor successfully at a lower level of p-adic precision than
the previous standard based on the Landau-Mignotte bound.
Here we make progress on the complexity gap by illustrat-
ing that an algorithm for which a good complexity result
exists (see [7]) can match (and sometimes exceed) the per-
formance of the best current implementations for polynomial

2As in Zassenhaus’ algorithm, if f is not monic then this
product should also be multiplied by the leading coefficient
of f . If the symmetric remainder mod pa of this product is
not primitive, then it needs to be divided by its content.



factoring. We do this by providing running times of our im-
plementation side by side with highly polished implementa-
tions in NTL version 5.5.2 as well as the implementation in
MAGMA version 2.16-7. We also provide the level of p-adic
precision at which the routines completed the factorization.
This is done for a collection of benchmark polynomials from
the literature [3] which was collected by Paul Zimmerman
and Mark van Hoeij. It is tempting to judge a new algo-
rithm on its performance on the diabolical Swinnerton-Dyer
polynomials (which are amongst our benchmarks), however
the practical bottleneck for standard polynomials tends to
be the cost of Hensel lifting (see [3, pg.11]). Because of
this we wish to emphasize that our algorithm successfully
terminates with far less Hensel lifting than the others.

Poly MAG NTL Z-bnd FLINT N-bnd
P1 .03 .068 29311 .096 8933

P2 .08 .204 11437 .104 1144∗

P3 .16 .312 11629 .164 1162∗

P4 1.87 1.956 13745 .940 7160∗

P5 .11 .088 1951 .044 2326

P6 .11 .12 19152 .108 2376∗

P7 1.07 1.136 3778 .524 1974

P8 2.18 3.428 13324 1.532 1184

M12 5 9.54 12.429 131171 2.88 11180

M12 6 21.49 21.697 131555 5.18 13380∗

S7 .42 .340 2978 .20 4741

S8 4.62 3.752 47140 2.06 5379

S9 165.2 71 137228 20.7 149125

T1 2.54 3.848 7495 1.23 740

T2 2.06 3.18 7200 1.25 743

T3 19.7 24.27 7984 7.35 782

P7*M12 6 240m – 191438 53m 29265

M12 5*P7 145m – 191114 78m 29236

These timings are measured in seconds (unless otherwise
stated) and were made on a 2400MHz AMDQuad-core Opteron
processor, using gcc version 4.4.1 with the -O2 optimization
flag, although the processes did not utilize all four cores.
These timings show that our algorithm, a simplification of

the r-cubed algorithm of [17], can be comparable in practice
to [8] on benchmark polynomials (and in most of the cases
a bit faster). Also of interest are the columns labeled ‘Z-
bnd’ (for Zassenhaus bound) compared with ‘N-bnd’ (for
New bound) which give the p-adic precision at which the
algorithms solved the factoring problem (MAGMA and NTL
chose the same primes and precisions). In the case of the
five polynomials which include a ∗, the level of Hensel lifting
shown was sufficient to reconstruct all of the factors but the
combinatorial problem was actually solved at half of the
shown precision. In every case we were able to solve the
factorization with significantly less Hensel lifting than the
Landau-Mignotte bound used in NTL and MAGMA. We
stopped the NTL factorizations of P7*M12 6 and P7*M12 5
after some time.
We designed the degree 900 polynomials T1 and T2 and

degree 2401 polynomial T3 to illustrate ‘everyday’ factor-
ing problems which a user of a number theory library might
naturally face. They are taken from factorizations inside
of Trager’s Algorithm, and the Hensel lifting dominates the
running times. Such examples are plentiful (see the discus-
sion in section 3.1.1) and arise naturally in many applica-
tions. Observe the large gap in p-adic precisions between

our method and the others. Our implementation is open
source and publicly available as of FLINT version 1.6 [6].

4.1 A new floating point LLL trick
We implemented a floating-point based LLL, in FLINT,

using the template of [15]. In the process we noted that the
performance of our algorithm was devastated when multi-
limb floating-point computations were needed. In order to
avoid this we implemented a new wrapper of floating-point
LLL which avoids needing multi-precision floating points, we
call it U-LLL. We present it here as this was the application
it was developed for.

Algorithm 4.1. U-LLL

Input: M whose rows form a lattice in Rn, step_size
Output: An updated M which is LLL-reduced in place

1. loop:
(a) max size :=‖ M ‖∞
(b) Find smallest integer k ≥ 0 such that ‖ M/2k ‖∞≤

2step size

(c) if (k == 0) then break

(d) Let Mtemp := ⌊M/2k⌉ rounded
(e) B := [Mtemp|I] augment an identity matrix
(f) LLL(B) =: [UMtemp|U ]
(g) M := UM

(h) if ‖ M ‖∞> max size/2step size/4 then break

2. M :=LLL(M)
The algorithm will always output an LLL-reduced M and

if each iteration of truncation continues to decrease the bit-
length of M then this algorithm will loop until the bit-size
of M is small. The advantage of this approach is that the
augmented identity on a lattice of small bit-size tends to be
numerically stable as the matrix is well conditioned. This
allowed us to avoid needing expensive multi-precision float-
ing point computations in our lattice reductions by choosing
a sensible step size.

5. REFERENCES

[1] J. Abbott. Bounds on factors in Z[x]. arXiv:0904.3057,
2009.

[2] John Abbott, Victor Shoup, and Paul Zimmermann.
Factorization in Z[x]: the searching phase. In
Proceedings of the 2000 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’00,
pages 1–7, New York, NY, USA, 2000. ACM.

[3] Karim Belabas. A relative van Hoeij algorithm over
number fields. Journal of Symbolic Computation,
37(5):641–668, 2004.

[4] Karim Belabas, Mark van Hoeij, Jürgen Klüners, and
Allan Steel. Factoring polynomials over global fields.
Journal de Théorie des Nombres de Bordeaux,
21:15–39, 2009.

[5] J. von zur Gathen and J. Gerhardt. Modern Computer
Algebra, 2nd edition. Cambridge University Press,
2003. pages 235–242, 432–437.

[6] W. Hart. FLINT. open-source C-library
http://www.flintlib.org.

[7] W. Hart, M. v. Hoeij, and A. Novocin. Complexity
analysis of factoring polynomials.
http://andy.novocin.com/pro/complexity.pdf,
2010.



[8] Mark Van Hoeij. Factoring polynomials and the
knapsack problem. Journal of Number Theory,
95:167–189, 2002.

[9] E. Kaltofen. Factorization of polynomials. In
Computing, Suppl. 4, pages 95–113. Springer-Verlag,
1982.

[10] E. Kaltofen. On the complexity of finding short
vectors in integer lattices. In Proceedings of European
Conference on Computer Algebra 1983 EUROCAL’83,
volume 162 of Lecture Notes in Computer Science,
pages 236–244. Springer-Verlag, 1983.

[11] Erich Kaltofen, David R. Musser, and B. David
Saunders. A generalized class of polynomials that are
hard to factor. SIAM J. Comput., 12(3):473–483, 1983.

[12] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász.
Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:515–534, 1982.

[13] L. Lovász. An Algorithmic Theory of Numbers, Graphs
and Convexity. Society for Industrial and Applied
Mathematics (SIAM), 1986. (Conference Board of the
Mathematical Sciences and National Science
Foundarion) CBMS-NSF Regional Conference Series
in Applied Mathematics.

[14] D. Micciancio. The shortest vector problem is NP-hard
to approximate to within some constant. Society for
Industrial and Applied Mathematics (SIAM) Journal
on Computing, 30(6):2008–2035, 2001.

[15] P. Q. Nguyen and D. Stehlé. Floating-point LLL
revisited. In Proceedings of Eurocrypt 2005, volume
3494 of Lecture Notes in Computer Science, pages
215–233. Springer-Verlag, 2005.

[16] Phong Q. Nguyen and Damien Stehlé. LLL on the
average. In Florian Hess, Sebastian Pauli, and
Michael E. Pohst, editors, ANTS, volume 4076 of
Lecture Notes in Computer Science, pages 238–256.
Springer, 2006.

[17] A. Novocin. Factoring Univariate Polynomials over the
Rationals. PhD thesis, Florida State University, 2008.

[18] C. P. Schnorr. A more efficient algorithm for lattice
basis reduction. Journal of Algorithms, 9(1):47–62,
1988.

[19] A. Schönhage. Factorization of univariate integer
polynomials by Diophantine approximation and
improved basis reduction algorithm. In Proceedings of
the 1984 International Colloquium on Automata,
Languages and Programming (ICALP 1984), volume
172 of Lecture Notes in Computer Science, pages
436–447. Springer-Verlag, 1984.

[20] A. Storjohann. Faster Algorithms for Integer Lattice
Basis Reduction. Technical Report TR249, Swiss
Federal Institute of Technology Zürich, Department of
Computer Science, 1996.

[21] Mark van Hoeij and Andrew Novocin. Gradual
sub-lattice reduction and a new complexity for
factoring polynomials. In LATIN, pages 539–553, 2010.

[22] H. Zassenhaus. On Hensel Factorization I. In J.
Number Theory, number 1, pages 291–311, 1969.


