
The complexity of factoring univariate
polynomials over the rationals

Mark van Hoeij
Florida State University

ISSAC’2013

June 26, 2013

Papers

[Zassenhaus 1969]. Usually fast, but can be exp-time.

[LLL 1982]. Lattice reduction (LLL algorithm).

[LLL 1982]. First poly-time factoring algorithm.

[Schönhage 1984] improved complexity to Õ(N4(N + h)2)

[vH 2002]. New algorithm, outperforms prior algorithms, but
no complexity bound.

[Belabas 2004] Gave the best-tuned version of [vH 2002].

[Belabas, vH, Klüners, Steel 2004]. Poly-time bound for a
slow version of [vH 2002], bad bound for a practical version.

[vH and Novocin, 2007, 2008, 2010]. Asymptotically sharp
bound O(r3) for # LLL-swaps in a fastest version.

[Hart, vH, Novocin], ISSAC’2011, implementation.

Progress in factoring, brief history

Factoring in practice:
year performance

< 1969 really slow

1969 fast for most inputs

2002 fast for all inputs

2011 added early termination

Factoring in theory:
year complexity

< 1982 exp-time

1982 poly-time

1984 Õ(N4(N + h)2)

2011 Õ(r6) + Poldeg<6(N, h)

Histories have little overlap!

Comparing factoring algorithms

Suppose f ∈ Z[x] has degree N and the largest coefficient has h
digits. Suppose f is square-free mod p, and f factors as
f ≡ f1 · · · fr mod p. The algorithms from the previous slide do:

Step 1: Hensel lift so that f ≡ f1 · · · fr mod pa for some a

[Zassenhaus]: log(pa) = O(N + h).

[LLL, Schönhage, BHKS]: log(pa) = O(N(N + h)).

[HHN, ISSAC’2011]: pa is initially less than in [Zassenhaus],
but might grow to:

log(pa) = Õ(N + h) (conjectured linear upper bound)
log(pa) = O(N(N + h)) (proved quadratic upper bound)

Comparing factoring algorithms, continued

Step 2: (combinatorial problem): [Zassenhaus] checks all
subsets of {f1, . . . , fr} with d = 1, 2, . . . , br/2c elements, to see if
the product gives a “true” factor (i.e. a factor of f in Q[x]).
If f is irreducible, then it checks 2r−1 cases.

Step 2: [LLL, Schönhage] bypass the combinatorial problem
and compute

L := {(a0, . . . , aN−1) ∈ ZN ,
∑

aix
i ≡ 0 mod (f1, p

a)}.

LLL reduce, take the first vector (a0, . . . , aN−1), and compute
gcd(f ,

∑
aix

i). This is a non-trivial factor iff f is reducible.

Step 2: [vH 2002], solves the combinatorial problem by
constructing a lattice, for which LLL reduction produces those
v = (v1, . . . , vr) ∈ {0, 1}r for which

∏
f vi
i is a “true” factor.

Comparing factoring algorithms, an example

Suppose f ∈ Z[x] has degree N = 1000 and the largest coefficient
has h = 1000 digits. Suppose f factors as f ≡ f1 · · · fr mod p.
Suppose r = 50. The algorithms do:

Step 1: [Zassenhaus] Hensel lifts to pa having ≈ 103 digits, while
[LLL, Schönhage] lift to pa having ≈ 106 digits.

Step 2: [Zassenhaus] might be fast, but might also be slow:
If f has a true factor consisting of a small subset of {f1, . . . , fr},
then [Zassenhaus] quickly finds it. But if f is irreducible, then it
will check 2r−1 cases.

Comparison of the algorithms, example, continued

Step 2: [LLL, Schönhage], will take a very long time because L
has dimension 1000 and million-digit entries. This explains why
these poly-time algorithms were not used in practice.

Step 2: [vH 2002], L has dimension 50 + ε and small entries.
After one or more LLL calls, the combinatorial problem is solved.

Stating it this way suggests that

[vH 2002] is much faster than [LLL, Schönhage]
(indeed, that is what all experiments show),

and hence, [vH 2002] should be poly-time as well.....

However, it took a long time to prove that
(“one or more” = how many?)
(actually, that’s not the right question)

Introduction to lattices

Let b1, . . . , br ∈ Rn be linearly independent over R.
Consider the following Z-module ⊂ Rn

L := Zb1 + · · ·+ Zbr .

Such L is called a lattice with basis b1, . . . , br .

Lattice reduction (LLL): Given a “bad” basis of L, compute a
“good” basis of L.

What does this mean? Attempt #1: b1, . . . , br is a “bad basis”
when L has another basis consisting of much shorter vectors.

However: To understand lattice reduction, it does not help to focus
on lengths of vectors. What matters are: Gram-Schmidt lengths.

Gram-Schmidt

L = Zb1 + · · ·+ Zbr

Given b1, . . . , br , the Gram-Schmidt process produces vectors
b∗1, . . . , b

∗
r in Rn (not in L!) with:

b∗i := bi reduced mod Rb1 + · · ·+ Rbi−1

i.e.
b∗1, . . . , b

∗
r are orthogonal

and
b∗1 = b1

and
b∗i ≡ bi mod prior vectors.

Gram-Schmidt, continued

b1, . . . , br : A basis (as Z-module) of L.

b∗1, . . . , b
∗
r : Gram-Schmidt vectors (not a basis of L).

b∗i ≡ bi mod prior vectors

||b∗1||, . . . , ||b∗r || are the Gram-Schmidt lengths and
||b1||, . . . , ||br || are the actual lengths of b1, . . . , br .

G.S. lengths are far more informative than actual lengths, e.g.

min{||v ||, v ∈ L, v 6= 0} > min{||b∗i ||, i = 1 . . . r}.

G.S. lengths tell us immediately if a basis is bad
(actual lengths do not).

Good/bad basis of L

We say that b1, . . . br is a bad basis if ||b∗i || � ||b∗j || for some i > j .

Bad basis = later vector(s) have much smaller G.S. length than
earlier vector(s).

If b1, . . . , br is bad in the G.S. sense, then it is also bad in terms of
actual lengths. We will ignore actual lengths because:

The actual lengths provides no obvious strategy for finding a
better basis, making LLL a mysterious black box.

In contrast, in terms of G.S. lengths the strategy is clear:

(a) Increase ||b∗i || for large i , and
(b) Decrease ||b∗i || for small i .

Tasks (a) and (b) are equivalent because det(L) =
∏r

i=1 ||b∗i ||
stays the same.

Quantifying good/bad basis

The goal of lattice reduction is to:
(a) Increase ||b∗i || for large i , and
(b) Decrease ||b∗i || for small i .

Phrased this way, there is a an obvious way to measure progress:

P :=
r∑

i=1

i · log2(||b∗i ||)

Tasks (a),(b), improving a basis, can be reformulated as:

Moving G.S.-length forward, in other words:

Increasing P.

Operations on a basis of L = Zb1 + · · ·+ Zbr

Notation: Let µij = (bi · b∗j)/(b∗j · b∗j) so that

bi = b∗i +
∑
j<i

µij b∗j (recall : bi ≡ b∗i mod prior vectors)

LLL performs two types of operations on a basis of L:

(I) Subtract an integer multiple of bj from bi (for some j < i).

(II) Swap two adjacent vectors bi−1, bi .

Deciding which operations to take is based solely on:

The G.S. lengths ||b∗i || ∈ R.

The µij ∈ R that relate G.S. to actual vectors.

These numbers are typically computed to some error tolerance ε.

Operations on a basis of L = Zb1 + · · ·+ Zbr , continued

Operation (I): Subtract k · bj from bi (j < i and k ∈ Z).

1 No effect on: b∗1, . . . , b
∗
r

2 Changes µij by k (also changes µi ,j ′ for j ′ < j).

3 After repeated use: |µij | 6 0.5 + ε for all j < i .

Operation (II): Swap bi−1, bi , but only when (Lovász condition)

pi := log2 ||new b∗i || − log2 ||old b∗i || > 0.1

1 b∗1, . . . , b
∗
i−2 and b∗i+1, . . . , b

∗
r stay the same.

2 log2(||b∗i−1||) decreases and log2(||b∗i ||) increases by pi

3 Progress counter P increases by pi > 0.1.

Lattice reduction, the LLL algorithm:

Input: a basis b1, . . . , br of a lattice L

Output: a good basis b1, . . . , br

Step 1. Apply operation (I) until all |µij | 6 0.5 + ε.
Step 2. If ∃i pi > 0.1 then swap bi−1, bi and return to Step 1.

Otherwise the algorithm ends.

Step 1 has no effect on G.S.-lengths and P. It improves the µij

and pi ’s. A swap increases progress counter

P =
∑

i · log2(||b∗i ||)

by pi > 0.1, so

#calls to Step 1 = 1 + #swaps
6 1 + 10 · (Poutput − Pinput).

Lattice reduction, properties of the output:

LLL stops when every pi < 0.1. A short computation, using
|µi ,i−1| 6 0.5 + ε, shows that

||b∗i−1|| 6 1.28 · ||b∗i ||

for all i . So later G.S.-lengths are not much smaller than earlier
ones; the output is a good basis.

Denote li := log2 ||b∗i ||. A swap bi−1 ↔ bi is only made if it
decreases li−1 and increases li by at least 0.1.

lold
i−1 > lnew

i−1 > lold
i

lold
i−1 > lnew

i > lold
i

The new li−1, li are between the old ones.

Properties of the LLL output in our application:

li := log2(||b∗i ||). Our algorithm calls LLL with two types of inputs.

Type I. l1 = 3r and 0 6 li 6 r for i > 1.
Type II. 0 6 li 6 2r for all i .

New li ’s are between the old li ’s, so the output for Type I resp. II
has 0 6 li 6 {3r resp. 2r} for all i .

Moreover, an li can only increase if a larger li−1 decreases by the
same amount. This implies that for an input of Type I, there can
be at most one i at any time with li > 2r .

Whenever the last vector has G.S.-length >
√

r + 1, we remove it.
So if b1, . . . , bs are the remaining vectors, then

||b∗i || 6 (1.28)s−i ·
√

r + 1 6 2r .

Using LLL to solve (or partially solve!) a problem

LLL solves many problems. Suppose a vector v encodes the
solution of a problem, and we construct b1, . . . , br with

v ∈ Zb1 + · · ·+ Zbr

Solving a problem with a single call to LLL: If every vector
outside of Zv is much longer than v , then the first vector in the
LLL output is ±v . The original LLL paper factors f ∈ Z[x] by
constructing the coefficient vector v of a factor in this way.

Partial reduction in the combinatorial problem: If ||b∗r || > ||v ||
then

v ∈ Zb1 + · · ·+ Zbr−1.

The initial basis is usually bad, i.e. ||b∗r || is small: We need LLL to
make ||b∗r || > an upper bound for ||v ||.

Applications of LLL, partial progress

Suppose v is a solution of a combinatorial problem, and
ṽ = (v , ∗, . . . , ∗), and

ṽ ∈ Zb1 + · · ·+ Zbr .

LLL-with-removals: If LLL raises ||b∗r || above a bound for ||ṽ ||,
then we can throw away br and reduce the combinatorial problem:

ṽ ∈ Zb1 + · · ·+ Zbr−1.

Progress towards finding ṽ (and hence v) is measured in terms of

the number of vectors removed so far, and

P :=
∑

i · log2(||b∗i ||), which increases when a swap moves
G.S. length forward (bringing us closer to dropping another
vector).

A combinatorial problem; a knapsack-type example

Example: Find every subset of {D1, . . . ,Dr} whose sum has
length 6 B := 105. We search for (v1, . . . , vr) ∈ {0, 1}r with

||
r∑

i=1

viDi || 6 105 (1)

D1 = (−36889212101797250620,−22737989603767043201)

D2 = (−82337116560524044572, 43871517504375968929)

D3 = (−63648979330387017417, 46494032336381907992)

D4 = (80783265740877340475,−82224881966280428459)

D5 = (59670233391033552058, 43834427064580452994)

D6 = (−94891672615737917758,−23462356344342994743)

The last digits are completely irrelevant for problem (1). We can
throw them away (divide by B and then round).

A combinatorial problem, continued

D ′1 = (−36889212101797250620///////,−22737989603767043201///////)

D ′2 = (−82337116560524044572///////, 43871517504375968929///////)

D ′3 = (−63648979330387017417///////, 46494032336381907992///////)

D ′4 = (80783265740877340475///////,−82224881966280428459///////)

D ′5 = (59670233391033552058///////, 43834427064580452994///////)

D ′6 = (−94891672615737917758///////,−23462356344342994743///////)

We can throw the last 5 digits away, or equivalently, divide by
B = 105 and round. The condition

||
∑

viDi || 6 B

implies

||
∑

viD
′
i || 6 r .

A combinatorial problem, continued

We search for (v1, . . . , vr) ∈ {0, 1}r for which
∑

viDi is short.

D1 = (−36889212101797250620,−22737989603767043201)

We divide by B = 105 and round. Next, we turn D1 into:

D̃1 = (1, 0, 0, 0, 0, 0,−368892121017973,−227379896037670)

The first r entries are called combinatorial entries, those are used
to recover v1, . . . , vr .

The last two entries are called the data entries.

A combinatorial problem, continued

D̃1 = (1, 0, 0, 0, 0, 0,−368892121017972,−227379896037670)

D̃2 = (0, 1, 0, 0, 0, 0,−823371165605240, 438715175043759)

D̃3 = (0, 0, 1, 0, 0, 0,−636489793303870, 464940323363819)

D̃4 = (0, 0, 0, 1, 0, 0, 807832657408773,−822248819662804)

D̃5 = (0, 0, 0, 0, 1, 0, 596702333910335, 438344270645804)

D̃6 = (0, 0, 0, 0, 0, 1,−948916726157379,−234623563443429)

We can solve

||
r∑

i=1

viDi || 6 B, vi ∈ {0, 1}

by computing all vectors ṽ in

L := ZD̃1 + · · ·+ ZD̃r

of length 6
√

r · 12 + 2 · r2 and then looking at the first r entries.

A combinatorial problem, solving with LLL

Let b1, . . . , br be an LLL reduced basis of L := ZD̃1 + · · ·+ ZD̃r .

As long as the last vector has G.S.-length >
√

r + 2r2, we can
throw it away. Say b1, . . . , bs are the remaining vectors.
(If we did not LLL reduce, then the last vector would have
G.S.-length ≈ 1 even though its actual length is large).

Now any ṽ ∈ L of length 6
√

r + 2r2 will be in Zb1 + · · ·+ Zbs .
So the combinatorial problem has been reduced from dimension r
to dimension s.

In our example, s is now 0, so there is no non-zero solution. The
same could have been done with less CPU time.

A combinatorial problem, scaling down more

We searched for (v1, . . . , vr) ∈ {0, 1}r for which ||
∑

viDi || 6 B.
We divided every Di by B and then rounded.

But we could have divided by S ·B where S is an additional scaling
factor. The reason for doing so is because each vector had 30
data-digits, but we’re only looking for 6-bit vectors in {0, 1}r . So
we probably did not need 30 data-digits. Lets take S = 1010.
Dividing by S · B instead of B produces

D̃1 = (1, 0, 0, 0, 0, 0,−36889,−22738) (5 + 5 data-digits)
D̃2 = (0, 1, 0, 0, 0, 0,−82337, 43872)

. . .

Applying LLL-with-removals to this lattice suffices to prove that
there is no non-zero solution.

A combinatorial problem, scaling down and back up

We scaled down by an additional factor S . What happens if we
scaled down too much? Then the lattice does not contain enough
data to solve the combinatorial problem. However, any removals
we might have made are still correct! (if the scaled down vector
has G.S.-length > bound, then so does the original one).

So if we scale down “too much”, then LLL may not solve the
problem, but it can still make partial progress, at a low cost.
Scaling down “too much” is a good idea!

In the example, scale down a factor S = 1010, apply
LLL-with-removals, and check if the problem is solved. If not,
partially scale the data entries back up (reduce S to say 105), and
apply LLL-with-removals again. Repeat until either S = 1 or the
problem is solved.

Solving a combinatorial problem, gradual feeding

Suppose that

the amount of data available is large, while

the (v1, . . . , vr) we want are small.

With N available data-entries, we can start by using just 1
data-entry,

D ′1 = (−368892121017972,−227379896037670///////////////////////)

scale down, and apply LLL-with-removals. As long as the problem
is not solved, partially scale a data-entry back up, or insert another
data-entry.

The advantage is that we never insert large vectors into LLL,
leading to faster LLL reductions, and, that we may solve the
problem with a small subset of the data.

Solving a combinatorial problem, gradual feeding

To get a complexity bound we need to

Make sure that a non-trivial amount of new data is inserted in
each step.

For example, if you scale a data entry back up, scale it up
enough so that log(det(L)) increases at least O(r).

Quantify progress so a bound can be derived.

This strategy was originally analyzed for factoring, but turned out
to be useful for other LLL applications as well.

Why do we need gradual feeding for factoring?

Combinatorial problem: For which v = (v1, . . . , vr) ∈ {0, 1}r will∏
f vi
i produce a factor of f in Q[x].

The paper [BHKS] gives gives sufficient data (CLD’s, more details
later) that can be appended to the vectors v .

Problem 1: The amount of data in [BHKS] is very large. A small
subset should suffice.
Problem 2: But we do not know a priori which subset.

Strategy: Gradually add data, selected in such a way that a
bounded progress counter is guaranteed to increase.

A practical advantage, early termination

Strategy: Gradually add data, selected in such a way that a
bounded progress counter is guaranteed to increase.

This strategy was designed to prove a sharp complexity O(r3) for
the total number of LLL swaps. But it is useful in practice as well!

Early Termination Strategy: Suppose MaxCoeff(f) ≈ 101000.
Lifting to say pa ≈ 1080 often (depends on the Newton polygon)
suffices to solve the combinatorial problem.
If f = g1g2, each with MaxCoeff > pa then we’ll need to lift more.
But if MaxCoeff(g1) is small then we’ve lifted enough (g2 := f /g1).

Problem: What about the LLL work done when pa ≈ 1080 did not
solve the combinatorial problem?
Answer: Our progress counter shows that no LLL work is wasted.

The data entries from [BHKS]

f ≡ f1 · · · fr mod pa, N = degree(f).

The vector e1 = (1, 0, . . . , 0) ∈ {0, 1}r represents f1. The paper
[BHKS] appends N − 1 data entries to e1:

ẽ1 = (1, 0, . . . , 0,
CLD0(f1)

B0
, . . . ,

CLDN−2(f1)

BN−2
) ∈ Zr ×QN−1

where

CLDi (f1) = Coefficientx i

(
f · f ′1

f1

)
and Bi is an upper bound for

√
N · CLDi (g) for any g ∈ Z[x]

dividing f . (see [ISSAC’2011] for computing Bi)

Similarly, it computes ẽ1, . . . , ẽr ∈ Zr ×QN−1, one vector ẽj for
each p-adic factor fj of f .

The data entries from [BHKS], continued

Let L be the Z-span of ẽ1, . . . , ẽr ∈ Zr ×QN−1 and the following
vectors:

(0, . . . , 0, 0, . . . ,
pa

Bi
, . . . , 0) ∈ Zr ×QN−1 (i = 0 . . .N − 2)

(these additional vectors are needed since CLDi (fj) is only
computed mod pa).

If v ∈ {0, 1}r is a solution to the combinatorial problem then the
corresponding ṽ ∈ Zr ×QN−1 has length 6

√
r + 1.

Thus, we can apply LLL-with-removals. The last vector is removed
whenever its G.S. length is >

√
r + 1 + ε.

For efficiency, we round the data entries in 1
Bi

Z to say 1
2r Z.

Gradually feeding the CLD data

Problem 1: [BHKS] gives many data-entries
Problem 2: and they contain large numbers.

Gradual feeding: Insert only 1 data entry at a time, say CLDi ,
and process that CLDi gradually, inserting only O(r) bits at a time
before calling LLL-with-removals again.

This strategy ensures that LLL will never encounter vectors of
(G.S.) length > 23r . However, there could be dozens of LLL calls
to process just one CLDi . And we do not know in advance how
many CLDi ’s are needed to solve the combinatorial problem.

Gradual feeding, continued

Initially, b1, . . . , br is the standard basis of Zr . Clearly, any solution
to the combinatorial problem is then in L := Zb1 + · · ·+ Zbr . We
want to decrease dim(L), but initially, we have to increase it a
small amount.

Suppose we have already added d data entries (using
CLDN−2,CLDN−3, . . . or CLD0,CLD1, . . .), and we have also
added/removed some vectors, and now have

L = Zb1 + · · ·+ Zbs ⊂ Zr × (
1

2r
Z)d

To prove the main complexity result, we design the algorithm in
such a way that s 6 5

4 r + 1 at all times.

Suppose we now decide to insert data from say CLD2.

Gradual feeding, inserting CLD2

L = Zb1 + · · ·+ Zbs where b1 looks like b1 = (a1, . . . , ar , ∗, . . . , ∗).
Let

b0 := (0, . . . , 0,
pa

S · B2
) rounded to

1

2r
Z

where scaling factor S makes ||b0|| ≈ 23r .
Compute (for i = 1, . . . , r)

Ri :=
CLD2(fi)

S · B2
rounded to

1

2r
Z

and

bnew
1 := (a1, . . . , ar , ∗, . . . , ∗,

∑
aiRi) ∈ Zr × (

1

2r
Z)d+1.

New basis: b0, b
new
1 . . . , bnew

s

(Or: bnew
1 . . . , bnew

s ,///b0 if max length ≈ 22r).

Gradual feeding, gradually scaling back up

Due to scaling, every bi now has G.S. length 6 23r and, due to
rounding, every entry has bitsize bounded by O(r).

After LLL-with-removals, the last vector will have G.S. length
6
√

r + 1 + ε and from this one can show that every vector will
have G.S. length 6 2r .

The recently added entry was scaled down by a (potentially large)
factor S . Now reduce S (scaling back up) so that
(a) the largest length becomes ≈ 22r , or (b) S becomes 1.

Apply again LLL-with-removals (then the largest G.S. length is
again 6 2r). Then scale back up again. Repeat until:

The combinatorial problem is solved, or

S becomes 1 (then move on to the next CLDi).

Gradual feeding, practical observations

We ensure that LLL never encounters vectors of length > 2O(r) by
inserting only O(r) new bits of data at a time. That results in
excellent practical performance.

1 We insert little data at a time, so there could be many LLL
calls (say ncalls).

2 Even if ncalls is large, the majority of the CPU time could be
concentrated in just 2 or 3 calls! (example in [Belabas 2004]).

So if BL is the bound for 1 LLL call, then ncalls · BL will be a
bad bound, it could be almost ncalls times higher than
observed behavior. A good bound must have:

Key property: The bound for all LLL calls combined should have
the same O(. . .) as the bound for a single call! (= a great hint!)

Combinatorial problem; properties of b1, . . . , bs

v ∈ {0, 1}r is a good vector if
∏

f vi
i gives a factor of f in Q[x].

At any stage we have b1, . . . , bs ∈ Zr × (1
2r Z)d with:

For every good vector v , there exists ṽ ∈ Zb1 + · · ·+ Zbs

whose Zr -component is v , and length is 6
√

r + 1.

s 6 5
4 r + 1

At most one i has 22r < ||b∗i || 6 23r (the large vector).

1 6 ||b∗i || 6 22r for all other i

Actual lengths are bounded by 2O(r) as well.

d is bounded by O(r2) (Note: if we store the Gram-matrix
then we need not store the (1

2r Z)d -components of b1, . . . , bs).

One stage in the Combinatorial problem

Each stage in solving the combinatorial problem consists of

1 Adding CLD-data, either

Scale up a data-entry, or
Add a data-entry (increases d by 1), or
Add a data-entry and a new vector (0, . . . , 0, pa/(S · Bi)) of
length 23r (increases s and d by 1).

2 LLL-reduce b1, . . . , bs

3 While ||b∗s || >
√

r + 1 + ε decrease s by 1.

4 Test if solved (if so, return the factorization f = g1 · · · gs)

vH, Novocin:

Using Progress Counter: The total number of LLL swaps in
all stages combined is O(r3) (= bound for one LLL call).

Using Active Determinant: #stages 6 O(r2).

LLL Cost: O(r3) · Õ(r3) +O(r2) · Õ(r4) = Õ(r6).

Progress counter, overview

b1, . . . , bs = current vectors.

P :=
s∑

i=1

(2r + (i − 1)
4

5
) · log2(||b∗i ||) + (r − s) · 3r · 2r .

The last term counts the progress that occurs when s decreases
(when vectors are removed).

The (i − 1)4
5 · log2(||b∗i ||) counts progress that occurs when an

LLL-swap moves G.S.-length forward (bringing us closer to
removing more vectors).

The 2r · log2(||b∗i ||) is new here, so we can prove #stages 6 O(r2)
without having to introduce the “Active Determinant”.

Progress counter over time

P :=
s∑

i=1

(2r + (i − 1)
4

5
) · log2(||b∗i ||) + (r − s) · 3r · 2r .

The properties of b1, . . . , bs imply that P can not be larger than
O(r3). The initial value is 0.

With some simple tests, we can avoid adding data with little
impact on the G.S.-lengths of b1, . . . , bs . This way, every stage
increases P by at least O(r).

Inserting a vector decreases r − s by 1, but the inserted vector has
G.S.-length = actual length = 23r . So P does not decrease.

Every LLL swap increases P by at least 4
5 · 0.1.

If a vector is removed, then r − s increases by 1, and since
2r + (i − 1)4

5 6 3r , vector-removal does not decrease P except if
the removed vector has G.S.-length > 22r . This case is analyzed
separately.

The only time that P can decrease

P0 := P. Now insert b0 := (0, . . . , 0, pa/(S · Bi) rounded)
of size 23r and insert the CLDi -data into b1, . . . , bs .

P1 := P. Now call LLL, say output is b1, . . . , bs+1.

P2 := P. If ||b∗s+1|| >
√

r + 1 + ε then remove bs+1.

P3 := P. Now P3 could be < P2 but only if ||b∗s+1|| was > 22r .
We can still show

P3 − P0 > const · (r + #swaps)

if at least one of b1, . . . , bs received a data-entry > 22r .

Recipe: If the minimal amount of scaling, S = 1, produces no
data-entry > 22r then our vectors already had small CLDi . Then
move on to the next CLD (increase pa if no suitable CLD remains).
Termination: [BHKS] proved a quadratic bound for log(pa).
Observations indicate it should be linear.

Complexity

f ∈ Z[x], degree N, largest coefficient has h digits, and f has r
factors mod p.

Even if we can not prove a linear bound for log(pa), we still get an
improved complexity:

Õ(r6) + Poldeg<6(N, h)

[Schönhage] also had degree 6, but our degree-6 term depends
solely on r (which is almost always � N, h).

The costs of Hensel lifting and preparing the LLL input (computing
CLDi (fj)’s, scaling, rounding, taking linear combinations) have
degree < 6 so theorists may consider them unimportant. However:

Difficult Open Problem: Hensel lifting dominates the CPU time
for most inputs, so proving a linear bound for log(pa) is important
for accurately describing the behavior of the algorithm.

