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Abstract

This paper presents a new and sharper bound for denomina-
tors of rational solutions of linear difference and ¢-difference
equations. This can be used to compute rational solutions
more efficiently.

1 Introduction

Let 7 be the C-automorphism of C(z) defined by 7(z) = z+
1. In this paper we will consider the following homogeneous
difference equations

r(Y) =AY with A€ GLn(C(z)) (1)

and
ant™"(Y)+ -+ a17(y) +aoy =0 (2)

where a; € C(z) with a, # 0, ag # 0. Inhomogeneous
equations can be reduced to homogeneous equations (cf. sec-
tion 2.2), so treating the homogeneous case is sufficient.

Computing a bound for the denominator is a key step in
the algorithm (cf. [1, 3, 2]) for computing rational solutions,
i.e. solutions Y € C(z)" or y € C(z). The purpose of this
paper is to give a sharper bound for the denominator of ra-
tional solutions of equation (1). A consequence of having
a smaller denominator is that the numerator one needs to
compute is also smaller, and this significantly speeds up the
computation of the rational solutions. One of the applica-
tions of computing rational solutions is a generalization of
Gosper’s algorithm, given in [4].

Note that equation (2) can be reduced to equation (1) by
taking Y = (y,7(y),...,7" " (y))7 (this results in a com-
panion matrix). Hence our method can also be used to
bound the denominator of solutions of equation (2). Ex-
amples show that our bound can be much smaller than the
currently used bound. In particular, if all solutions are ra-
tional (i.e. if there are n linearly independent rational solu-
tions) then our bound is exact. The idea in this paper is
related to of finite singularities, which were introduced re-
cently in [6]. Except for the points 0 and oo, the method
in this paper can also be used to bound the valuations of
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rational solutions of g-difference equations, if ¢ is not a root
of unity.

Acknowledgments: I would like to thank Michael Singer
who pointed out me that this material can be explained more
easily with matrix equations instead of scalar equations.

2 The bound

Definition 1 Consider equation (2). A rational function
D € C(z) is a bound for the denominator if each rational
solution y € C(z) can be written as y = N/D for some
N € C[z]. A bound for the numerator s an upper bound
for the degree of N.

Note that one could allow only polynomials D instead of
rational functions (replace D by the numerator of D). We
will not do so because that can increase the bound for the
numerator.

Definition 2 Consider equation (1). A wvector D =
(Dy1,...,D,)T € C(z)" is a bound for the denominator if
for each rational solution Y = (Y1,...,Y,)T € C(z)™ one
has Y; = N;/D; for some N; € C[z].

So such bound is a separate bound D; for each entry of the
vector Y.

Definition 3 Let y € C(x) and p € P'(C) = CJ{cc}.
Let tp be a local parameter at p; take t, = x —p ifpe C
and t, = 1/z if p = c0. Then y € C(z) C C((tp)) can be
written as ZZ yit; where y; € C. Now the valuation of y at
p is defined as vp(y) = inf{ily; # 0}.

The valuation is the lowest power of ¢, with a non-zero co-
efficient. The valuation of 0 is co.

If a is a polynomial and p is finite then v,(a) is the order
of a at p, i.e. the highest power of x —p that divides a. And
Voo (@) = —degree(a). If y € C(z), y = a/b where a and b
are polynomials then v, (y) = vp(a) —vp(b). Furthermore the
sum of v, (y) taken over all p € P*(C) is zero. The following
statements can easily be verified:

e If y=N/D with N € C[z] then
degree(IN) = —vo0 (D) — oo (¥). (3)

Hence, given D, computing a bound for the numerator
of y is equivalent with computing a lower bound for

Voo (¥)-



e Let N, be an integer for every p € P!(C), and N, # 0
for only finitely many p. Let N be the sum of the N,
taken over all p € P'(C). Then

V ={y € C(z)|vp(y) + Ny >0 for all p}

is a C-vector space of dimension max{0, N + 1}. Note:
this is a special case of the Riemann-Roch theorem, the
case that the curve is P'(C). The N, for finite points
p € C correspond to a bound for the denominator D
for elements of V.

So computing a bound for the denominator of y is equiva-
lent with computing a lower bound for the valuations vp(y)
at every p € C (assuming that this lower bound is non-
zero for only finitely many p € C). To compute a bound
for the numerator of y one needs to find a lower bound for
the valuation at infinity and use equation (3). To find such
lower bound for v () for solutions y of equation (2) we can
use the same approach as in [1, 2]. Bounds at infinity for
equation (1) can be obtained from [2], similar to the differ-
ential case [5]. In the rest of this paper we will only consider
the problem of bounding the denominator, in other words
finding lower bounds for the valuations at finite points.
If fi,..., fm € C[z] then

UP(ng(fla LR fm)) = min{vp(fl)a . 'aUP(fm)} (4)

for all p € C. The same formula is also true for rational func-
tions, if one defines the ged g € C(z) of fi1,..., fm € C(z)
in such a way that f;/g € C[z] and the degrees of f;/g are
minimal with this property. With formula (4) several prop-
erties of valuations can be translated to gcd’s, and so one
could consider using gcd’s to give the bound in the next sec-
tion. However, in this paper we will use valuations, because
that makes the bound easier to define.

2.1 Bounding the valuation at a finite point

Consider the matrix A € GL,(C(z)) in equation (1). Let
S C C be the set of points p € C for which A has a pole at
p, or det(A(p)) = 0. So for all p € C \ S we can substitute
p for z, and obtain a matrix A(p) € GL,(C). Let

S = {p € C|3p, pres p—p1 —1EN,ps —p €N}

where N is the set of nonnegative integers. The sets S and
S are finite. Note that if S is not empty then S is not a
subset of S.

If p ¢ S then A and A~! do not have a pole at p. So if
p & S then Y has a pole at p if and only if Y has a pole at
p + 1 because of

Y(p+1)=A@)Y(p) and Y(p) = A7 (@)Y (p+1).

So if a rational solution Y of equation (1) would have a pole
at some p € C \ S then Y would have infinitely many poles,
which is impossible for rational functions. Hence Y can not
have any poles in C \ S, in other words 0 is a lower bound
for the valuation at all p € C\ 'S, for each entry of the vector
Y € C(z)".

Let p € §. Take N € N such that p— N ¢ S. Then
Y(p)=Ap-1)Y@p-1)=Ap-DA@P-2)Y(p-2)=--,

SO
Y(p) = An(®)Y(p— N) (5)

and
Y = Ay 7 N(Y) (6)

where Ay € GL,(C(z)) is defined as
Ay =17 (AT (A) -V (A). (7)

Define B!(p) as the minimum of the valuations at p of the
entries in the ¢’th row of Ay. The entries of Y have no poles
at p— N because p— N ¢ S, so the entries of 7=~ (V) have
no pole at p. By equations (5,6) we have that Y; (the ¢’th
entry of Y') is the inner product of the #’th row of Ay with
a vector 777V (Y) that has no poles (i.e. valuation > 0) at
p. Hence v,(Yi) > Bl(p), i.e. Bl(p) is a lower bound for
vp(Y;) for any rational solution Y. For each entry Y; of Y
one obtains a separate bound. The bound Bf-(p) forpe S
is called the left-hand bound. .

Instead of taking N € N such that p — N ¢ S one can
also take N € IN such that p + N ¢ S. Then instead of
equation (5) we can use

Y(0) = An@Y(p+N) where Ay =1"(43"). (8)

Now we can compute the smallest valuation at p in the ¢’th
row of A_n. This way another bound B; (p) for p € S is ob-
tained, which will be called the right-hand bound. Note that
in case of a companion matrix system (if one started with
equation (2) and reduced it to equation (1)) the computation
of A™! is easy so in this case computing right-hand bounds
is not significantly harder than computing left-hand bounds.
One can take the maximum B;(p) = max{B!(p), B} (p)} of
these two bounds as a (possibly better) lower bound for the
valuations v, (Y;) of the rational solutions V" at points p € S.

Computing the product in equation (7) is the most time
consuming part in the computation of the bounds. To speed
this up, one can first multiply each of these factors 7 *(A)
by some power of z — p (in order to remove all poles at
x = p) and then compute this product modulo a suitable
power of x — p. This way one can obtain lower bounds
for the valuation without having to completely evaluate the
product in equation (7).

Theorem 1 Let p € S. If all solutions of equation (1) are

rational then the left-hand bound B.(p) and right-hand bound
B} (p) are sharp. So these two bounds coincide in this case.

Proof: Let p€ S and g =p+ N & S where N € N. There
exists a unique n by n matrix Z = (Z;;) such that each Z;
is a function from ¢ + N to C, that each column of Z is a
solution of equation (1) and that Z(q) is the identity matrix.
Equation (1) lets one find the values of Z;; successively at
the points ¢ + 1,9 + 2,.... The columns of Z form a basis
of the solution space. Such a matrix is called a fundamental
solution matriz.

If all solutions are rational then Z;; : ¢ + N — C are ra-
tional functions, Z;; € C(z). Now Z = A_n7"(Z) because
of equation (8), so

Z—A n=AyNTN(2Z)-1) (9)

The matrix 7V (Z) is the identity at the point p, or equiva-
lently: the valuations of the entries of 77V (Z) — I are > 0 at
the point p. Hence the minimum valuation at p in the ¢’th
row of equation (9) is greater than the minimum valuation
in the ’th row of A_x (which equals the right-hand bound



B} (p)). This is only possible if the minimum valuation at
p in the i'th row of Z equals B](p) as well. So the 7’th
entry of at least one of the columns of Z (each column is a
rational solution of equation (1)) has valuation Bj(p) at p.
Hence the right-hand bound is sharp, and in the same way
it can be shown that the left-hand bound is sharp as well,
which completes the proof.

A second way to speed up the computation of bounds
is illustrated by the following example. Suppose S =
{-7/3,-1,1,47,50,101/2}, so S = {0,1,...,50}. Suppose
we have computed the bounds Bl(p) for p € {0,1,2}. TLet
m = min{B(2)[i = 1,...,n}. Then Y(3) = A(2)Y(2)
where A(2) € GL,(C) so min{vs(V;)[i = 1,...,n} =
min{vz(Y;)|¢ = 1,...,n}. The right-hand side of this equa-
tion is > m. Similarly, for p € {2,3,...,46} the vector
Y (p+1) is the product of a matrix A(p) (A has no poles at
p) with the vector Y (p), and so m is a lower bound for v, (Y3)
for p € {3,4,...,47}. In fact m = min{Bl(p)|i = 1,...,n}
for all p € {3,4,...,47}. So Bl(p) need not be computed
for p € {3,4,...,47}. This way we do not need to com-
pute products of large numbers of matrices (although some
of these B!(p) might possibly be better, i.e. higher, than
m). To bound the valuations at p € {48,49,50} we can use
the right-hand bound B (p).

2.2 The inhomogeneous case

Consider the equation
TY)=AY +Z (10)

where A € GL,,(C(x)), Z € C(x)™ and where we search for
solutions ¥ € C(z)". Let Y be a new difference variable
that is interpreted as a constant. The difference equation
for this is B -

Y)=Y. (11)
Combining equations (10,11) and replacing Z by Y Z results
in the homogeneous equation

(v)=(3 1) (7))

The solutions of the inhomogeneous n by n equation (10) can
be obtained from the solutions of this homogeneous n + 1
by n + 1 equation.

3 Example

Consider the following difference equation

)

(z+101) (z — 92) )+

T (4102) (-9

(z—100) (@ +100) _
(z+102) (z—98) ¢/~

(y)

A basis for the rational solutions y € C(z) is 1/(z — 100),
1/(z + 100). In the current algorithm (cf. [1]) in Maple
the bound D will be a polynomial of degree 201, D = (z —
100)(z —99)(z—98) - - - (£+100). Our bound in this example
is D = (x —100)(x + 100), which is sharp. With this smaller
denominator, the numerator N that needs to be computed
(N = co + c1z where co,c;1 are arbitrary constants) is also
much smaller and hence the computation will be faster.

To find the bound (z —100)(z+100) for the denominator
of y, we first consider

Y = ( T(yy) ), 7(Y) = AY where A = ( —(zlo _21 )

Here ao is the coefficient of y in the equation and a; is
the coefficient of 7(y). The set S is {—102,-100,98,100}
and S = {-101,-100,...,99,100}. To find the left-hand
bounds at p = —101, p = —100 and p = —99 we need
the valuations of A; at p = —101, the valuations of Ay at
p = —100 and the valuations of Az at p = —99.

0 1
Ay = (2-101) (2499) o (£=100) (z4100) |
~ (2+101) (z—99) (z+101) (z—99)

_ (@=102) (@498) o (z=101) (2409)
( (z+100) (z—100) (z+100) (z—100) >
b)

Ax = L9 (2=102) (2498) 5 (#=101) (a-99)
(2+101) (z—99) (=+101) (z—99)

_o (2-103) @497) g (2-102) (x+98)
(@+100) (@—100) (@+100) (z—100)
Az = .
-3 (z—103) (z+97) 4 (x—102) (z+98)
(@+101) (z—99) (@+101) (z—99)
The valuations of the entries of these matrices at resp. p =
—101, p = —100 and p = —99 are

(53) () = (53)

Taking the minimum in each row results in the following
left-hand bounds

() (3) = (3)

The exponents of (z + 101), (z + 100), and (x + 99) in the
vector D below are —1 times these left-hand bounds. Using
the same argument as at the end of section 2.1 we find 0
as a lower bound for the valuation at p € {—98,...,97,98}.
For p € {99,100} we can compute the right-hand bounds.
Combining all these lower bounds for the valuations gives
the bound for the denominator

D - (z 4 101)°(z + 100) (z — 99)°(z — 100)"
- (z +101)*(z + 100)°(z — 99)* (z — 100)°
B ( (z + 100)(z — 100) )
- (z +101)(z — 99)

The bound for y is the first entry, and the bound for 7(y) is
the second entry of this vector.

3.1 Equations of order 1

For an equation 7(y) + ay = 0 of order 1 with a € C(x),
a # 0, the dimension of the solution space is 1. So if there is
a non-zero rational solution y € C(z), then all solutions are
rational and our bound is sharp. Hence in this case v,(y)
is equal to both the left-hand and the right-hand bound
at every p € C, so vy(y) = B'(p) = B"(p). Note that a
non-zero rational function y € C(z) is determined up to a
constant factor by its valuations v,(y), p € C.

So in order to compute the rational solutions of 7(y) +
ay = 0 all we need to do is compute the B'(p) and/or the
B’ (p) (if B'(p) # B"(p) then there is no non-zero rational



solution). Then construct y € C(x) such that v,(y) = B'(p)
for every p € C. Then verify whether y is a solution (ei-
ther by substituting it in the equation, or by computing the
gp(L), see below). If it is not, then there are no rational
solutions.

Note that finding the bounds B! (p) and B" (p) is a com-
putation very similar to computing the sets g, (L) from [6].
If L is an operator of order 1, corresponding to a difference
equation 7(y) + ay = 0 of order 1, then L has a non-zero
rational solution if and only if all g,(L) are trivial, where p
runs through the set of finite singularities and the point at
infinity.

So for equations of order 1, we do not need to solve a
system of linear equations (like in Gosper’s algorithm) for
finding the numerator of the solutions. This is possible be-
cause the bounds B'(p) and B"(p) equal the valuation of
every non-zero rational solution in this case.
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