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1. Introduction

This paper summarizes the main aspects of our joint work [4] on quantum statis-
tical mechanics of Q-lattices, with a view towards its relations to class field theory
investigated in our joint work with Ramachandran [5].

The noncommutative geometry of the space of Q-lattices modulo the equivalence
relation of commensurability provides a setting that unifies several phenomena in-
volving the interaction of noncommutative geometry and number theory. These
include, in the 1-dimensional case, the Bost–Connes (BC) system [1] with arith-
metic spontaneous symmetry breaking and its dual space under the duality given
by taking the crossed product with the time evolution. The latter is the noncom-
mutative space underlying the construction of the spectral realization of the zeros
of the Riemann zeta function in [3]. The corresponding space in the 2-dimensional
case contains in its algebra of coordinates the modular Hecke algebras of [6] [7].
The noncommutative compactifications of modular curves of [14] also appear here
as a stratum in the compactification of the space of commensurability classes of
2-dimensional Q-lattices.

Moreover, an interesting and difficult problem is the generalization of the results
of [1] to other number fields. (For an overview of existing results in this direction
we refer the reader to the “further developments” section of [4] and the references
quoted therein.)

The space of commensurability classes of 2-dimensional Q-lattices up to scaling,
which is the main object of this paper, provides a new approach to the problem, for
the case of quadratic fields. In fact, while the BC system is closely related to the
Kronecker–Weber construction of the maximal abelian extension of Q, we shall see
that the 2-dimensional system introduced in [4] is naturally related to the Galois
theory of the modular field, which in turn lies at the heart of the explicit class field
theory problem for imaginary quadratic fields. A generalization of the results of [1]
to imaginary quadratic fields is being investigated in [5]. Moreover, the fact that
the noncommutative modular curves of [14] appear in the compactification suggests
the possible existence of a path towards the case of real quadratic fields, along the
lines of Manin’s real multiplication program [13].

The fundamental notions in all that follows are those of Q-lattices and commensu-
rability.

Definition 1.1. A Q-lattice in Rn consists of a pair (Λ, φ) of a lattice Λ ⊂ Rn (a
cocompact free abelian subgroup of Rn of rank n) together with a system of labels of
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Figure 1. Generic and invertible 2-dimensional Q-lattices

its torsion points given by a homomorphism of abelian groups

φ : Qn/Zn −→ QΛ/Λ.

Two Q-lattices are commensurable,

(Λ1, φ1) ∼ (Λ2, φ2),

iff QΛ1 = QΛ2 and
φ1 = φ2 mod Λ1 + Λ2

Commensurability defines an equivalence relation among Q-lattices. By definition
a Q-lattice is invertible when φ is an isomorphism. Two invertible Q-lattices are
commensurable if and only if they are equal. While most Q-lattices are not com-
mensurable to an invertible one, the set of invertible Q-lattices gives a cross-section
of the equivalence relation on the subset of Q-lattices that have this property.

The equivalence relation of commensurability on the space of Q-lattices is subtle
enough an operation that the resulting quotient can only be described efficiently
through noncommutative geometry (it is crucial for this that one does not restrict
to the invertible ones). In particular, when viewed as a set in the classical sense, the
space Ln of commensurabilty classes of Q-lattices in Rn has the typical property
of noncommutative spaces: it has the cardinality of the continuum but one cannot
construct a countable collection of measurable functions that separate points of Ln.
If, instead of taking the quotient as a set, one encodes the equivalence relation
in a “dynamical” manner, i.e. one builds a convolution algebra from the various
identifications, one obtains very interesting algebras, playing the role of coordinate
algebras on the spaces Ln.
In particular the topology of the space Ln is encoded by a C∗-algebra C∗(Ln).
These C∗-algebras and the dynamical systems obtained from the natural time evo-
lution on the C∗-algebras C∗(L1/R∗

+) and C∗(L2/C∗) of Q-lattices up to scaling,
are the central objects of this paper.
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2. Quantum Statistical Mechanics

In quantum statistical mechanics, the algebra of observables is a C∗-algebra A.
Expectation values are assigned to observables through states. A state is a linear
functional ϕ : A → C satisfying normalization and positivity,

ϕ(1) = 1, ϕ(a∗a) ≥ 0.

On can think of a state as a probability measure on the NC space X related to A
by A = “C(X)”.

The time evolution of a quantum statistical mechanical system is given as a 1-
parameter family of automorphisms σt ∈ Aut(A) of the C∗-algebra of observables.

Given a representation of the C∗-algebra A as a concrete algebra of operators on a
Hilbert spaceH, one can consider the Hamiltonian implementing the time evolution
in the representation. This is the operator

H =
d

dt
σt|t=0.

One then looks for equilibrium states, depending on a thermodynamical parameter,
the inverse temperature β = 1/kT (where for simplicity we can put the Boltzmann
constant k equal to one).

The analog of integrating against the Gibbs measure on the phase space for a
classical Hamiltonian system is given in this quantum mechanical setting by states
of the form

(2.1) ϕ(a) =
1

Z(β)
Tr

(

a e−βH
)

with the partition function given by

(2.2) Z(β) = Tr
(

e−βH
)

.

The expression (2.1), however, makes sense only under the assumption that the
operator exp(−βH) is of trace class. Often, this is the case only in a certain range
(low temperature). Thus, one needs a better notion of “equilibrium states”, which
makes sense more generally and is satisfied in particular by states of the form (2.1).

The correct notion is provided by the Kubo–Martin–Schwinger condition (KMS)
(cf. [2], [8], [9]). Given a C∗-dynamical system (A, σt) – that is, a C∗-algebra with a
1-parameter group of automorphisms – a state ϕ on A satisfies the KMS condition
at inverse temperature 0 < β <∞ iff for all a, b ∈ A there exists a function Fa,b(z)
holomorphic on the strip 0 < =(z) < β continuous to the boundary and bounded,
such that for all t ∈ R

(2.3) Fa,b(t) = ϕ(aσt(b)) and Fa,b(t + iβ) = ϕ(σt(b)a).

The analogous notion at zero temperature (β = ∞) is more subtle. In fact, one
may use the the same notion of KMS states, that is, the existence for each a, b ∈
A of a bounded holomorphic function Fa,b(z) on the upper half plane such that
Fa,b(t) = ϕ(aσt(b)). This definition of KMS∞ states is often used in the literature.
However, it is well known that this condition is considerably weaker than (2.3). For
instance, the set KMSβ of KMS states at β < ∞ is a Choquet simplex (for which
we call Eβ the set of extremal points). In general, this simplicial structure is lost
at β =∞, if one adopts this notion of KMS states. In the simple case of the trivial
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Im z = β

Im z = 0
F(t) = ϕ(aσt(b))

F(t + iβ) = ϕ(σt(b)a)

0

iβ

Figure 2. The KMS condition

time evolution, for instance, all states satisfy such weaker definition of KMS∞ while
only tracial states satisfy (2.3) at β <∞.

Thus, a better notion of KMS∞ condition is obtained by considering states that
are weak limits of KMSβ states as β →∞,

(2.4) ϕ∞(a) = lim
β→∞

ϕβ(a) ∀a ∈ A.

This restores the property that the set KMS∞ is a simplex and one can regard
the set E∞ of its extreme points as an analog of the set of classical points on the
noncommutative space A.

In particular, in the cases of arithmetic interest, one can think of the set E∞ as
the “classical points” of a noncommutative arithmetic variety. For instance for the
GL(2)-system with C∗-algebra A = C∗(L2/C∗), the set E∞ is the classical Shimura
variety

E∞ ∼= GL2(Q)\GL2(A)/C∗,

while the noncommutative space L2/C∗ is a noncommutative arithmetic variety
containing E∞ as its set of “classical points”.

As we shall see below, the arithmetic structure will be specified by an arithmetic
subalgebraAQ ofA. This will play a key role in the relation between the symmetries
of the system and the action of the Galois group on states ϕ ∈ E∞ evaluated on
AQ.

2.1. Symmetries. An important role in quantum statistical mechanics is played
by symmetries. Typically, symmetries of the algebra A compatible with the time
evolution induce symmetries of the equilibrium states Eβ at different temperatures.
Especially important are the phenomena of symmetry breaking. In such cases, there
is a global underlying group G of symmetries of the algebra A but in certain ranges
of temperature the choice of an equilibrium state ϕ breaks the symmetry to a
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smaller subgroup Gϕ = {g ∈ G : g∗ϕ = ϕ}, where g∗ denotes the induced action
on states. Various systems can exhibit one or more phase transitions, or none at
all. A typical situation in physical systems sees a unique KMS state for all values
of the parameter above a certain critical temperature (β < βc). This corresponds
to a chaotic phase such as randomly distributed spins in a ferromagnet. When the
system cools down and reaches the critical temperature, the unique equilibrium
state branches off into a larger set KMSβ and the symmetry is broken by the choice
of an extremal state in Eβ. We will see in detail one such case and a case with
multiple phase transitions.

A very important point is that we need to consider both symmetries by automor-
phisms and by endomorphisms.

Automorphisms: A subgroup G ⊂ Aut(A) is compatible with σt if for all g ∈ G
and for all t ∈ R we have gσt = σtg. There is then an induced action of G on KMS
states and in particular on the set Eβ . If u is a unitary, acting on A by

Adu : a 7→ uau∗

and satisfying σt(u) = u, then we say that Adu is an inner automorphism of (A, σt).
Inner automorphisms act trivially on KMS states.

Endomorphisms: Let ρσt = σtρ be a ∗-homomorphism. Consider the idempotent
e = ρ(1). If ϕ ∈ Eβ is a state such that ϕ(e) 6= 0, then there is a well defined
pullback ρ∗ϕ,

(2.5) ρ∗(ϕ) =
1

ϕ(e)
ϕ ◦ ρ.

Let u be an isometry compatible with the time evolution by

(2.6) σt(u) = λitu λ > 0.

One has u∗u = 1 and uu∗ = e. We say that Adu defined by a 7→ uau∗ is an inner
endomorphism of (A, σt). The condition (2.6) ensures that (Adu)∗ϕ is well defined
according to (2.5) and the KMS condition shows that the induced action of an inner
endomorphism on KMS states is trivial.

One needs to be especially careful in defining the action of endomorphisms by (2.5).
In fact, there are cases where for KMS∞ states one finds only ϕ(e) = 0, yet it is
still possible to define an interesting action of endomorphisms by a procedure of
“warming up and cooling down”. For this to work one needs sufficiently favorable
conditions, namely that the “warming up” map

(2.7) Wβ(ϕ)(a) =
Tr(πϕ(a) e−β H)

Tr( e−β H)

gives a homeomorphism Wβ : E∞ → Eβ for all β sufficiently large. One can then
define the action by

(2.8) (ρ∗ϕ)(a) = lim
β→∞

(ρ∗Wβ(ϕ)) (a),

for all ϕ ∈ E∞ and all a ∈ A.
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3. The Bost–Connes system

In [1] Bost and Connes constructed a C∗-dynamical system (A, σt) with sponta-
neous symmetry breaking, which encodes the arithmetic of the cyclotomic field
Qcycl, that is, of the maximal abelian extension of Q by the Kronecker–Weber
theorem.

The algebra A of the Bost–Connes system is generated by two types of operators.
The first type consists of phase operators e(r), parameterized by elements r ∈ Q/Z.
These can be represented on the Fock space generated by occupation numbers |n〉
as the operators

(3.1) e(r)|n〉 = α(ζn
r )|n〉.

Here we denote by ζa/b = ζa
b the abstract roots of unity generating Qcycl and by

α : Qcycl ↪→ C an embedding that identifies Qcycl with the subfield of C generated
by the concrete roots of unity.

The operators (3.1) are familiar in the theory of quantum optics, where they are
used to define the quantized optical phase as a state

|θm,N 〉 = e

(

m

N + 1

)

· vN ,

where vN is a superposition of occupation states

vN =
1

(N + 1)1/2

N
∑

n=0

|n〉.

In such quantization of the phase, N is chosen as a scale at which the phase is
discretized. One needs then to ensure that the results are consistent over changes
of scale.

The other operators that generate the Bost–Connes algebra can be thought of as
implementing the changes of scales in the optical phases in a consistent way. These
operators are isometries µn parameterized by positive integers n ∈ N× = Z>0. The
changes of scale are described by the action of the µn on the e(r) by

(3.2) µne(r)µ∗
n =

1

n

∑

ns=r

e(s).

In addition to this compatibility condition, the operators e(r) and µn satisfy other
simple relations. These give a presentation of the algebra A of the form ([1], [10]):

• µ∗
nµn = 1, for all n ∈ N×,

• µkµn = µkn, for all k, n ∈ N×,
• e(0) = 1, e(r)∗ = e(−r), and e(r)e(s) = e(r + s), for all r, s ∈ Q/Z,
• For all n ∈ N× and all r ∈ Q/Z, the relation (3.2) holds.

One considers on the algebra A the time evolution given by

(3.3) σt(µn) = nitµn, σt(e(r)) = e(r).

3.1. Hecke algebra. The fact that (3.3) defines a natural time evolution is best
understood by describing the algebra A as a Hecke algebra for the pair of groups
(Γ0, Γ) = (PZ, PQ), where P is the ax+ b group. This is the way the algebra A was
introduced in [1].
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Whenever the inclusion Γ0 ⊂ Γ has the property that the left Γ0 orbits of any
γ ∈ Γ/Γ0 are finite (same for right orbits on the left coset), one can consider the
Hecke algebra of the pair (Γ0, Γ) given by functions on Γ0\Γ/Γ0 with the convolution
product

(3.4) (f1 ∗ f2)(γ) =
∑

Γ0\Γ

f1(γγ−1
1 )f2(γ1)

and the involution f∗(γ) := f(γ−1).

The Hecke algebra defined this way has a regular representation on the Hilbert
space `2(Γ0\Γ)

(π(f)ξ)(γ) =
∑

Γ0\Γ

f(γγ−1
1 )ξ(γ1).

The canonical time evolution on the corresponding von Neumann algebra is deter-
mined by the ratio of the length of left and right Γ0 orbits,

(3.5) σt(f)(γ) =

(

L(γ)

R(γ)

)−it

f(γ),

where, for γ ∈ Γ/Γ0 we set L(γ) = #Γ0γ and R(γ) = L(γ−1).

In the case of the pair (Γ0, Γ) of parabolic subgroups (P +
Z , P+

Q ) of GL+
2 (Q), the

Hecke algebra (3.4) gives the Bost–Connes algebra and the time evolution (3.5) is
given by (3.3).

3.2. 1-dimensional Q-lattices. We now return to the point of view of Q-lattices.
As showed in [4], the algebra A of the Bost–Connes system has a natural inter-
pretation as the noncommutative algebra of coordinates of the space L1/R∗

+ of
1-dimensional Q-lattices (up to scaling) modulo commensurability.

In fact, a 1-dimensional Q-lattice can always be written in the form

(3.6) (Λ, φ) = (λ Z, λ ρ)

for some λ > 0 and some

(3.7) ρ ∈ Hom(Q/Z, Q/Z) = lim←−Z/nZ = Ẑ.

By considering lattices up to scaling, we eliminate the factor λ > 0 so that 1-
dimensional Q-lattices up to scale are completely specified by the choice of the
element ρ ∈ Ẑ. Thus, the algebra of coordinates of the space of 1-dimensional
Q-lattices up to scale is the commutative C∗-algebra

(3.8) C(Ẑ) ' C∗(Q/Z).

The identification in (3.8) results from the fact that Ẑ is the Pontrjagin dual of
Q/Z.

The equivalence relation of commensurability is implemented by the action of the
semigroup N× on Q-lattices. The corresponding action on the algebra (3.8) is by

(3.9) αn(f)(ρ) =

{

f(n−1ρ) ρ ∈ nẐ

0 otherwise.
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Thus, the quotient of the space of 1-dimensional Q-lattices up to scale by the com-
mensurability relation and its algebra of coordinates of is given by the semigroup
crossed product

(3.10) C∗(Q/Z) o N×.

This is another description of the Bost–Connes algebra, as (3.10) has the right set
of generators and relations, with (3.2) implementing the semigroup action (3.9)

3.3. Structure of KMS states. The Bost–Connes algebra has irreducible repre-
sentations on the Hilbert space H = `2(N×). These are parameterized by elements

α ∈ Ẑ∗ = GL1(Ẑ). Any such element defines an embedding α : Qcycl ↪→ C and the
corresponding representation is of the form

(3.11)
πα(e(r)) εk = α(ζk

r ) εk

πα(µn) εk = εnk

The Hamiltonian implementing the time evolution (3.9) on H is

(3.12) H εk = log k εk

Thus, the partition function of the Bost–Connes system is the Riemann zeta func-
tion

(3.13) Z(β) = Tr
(

e−βH
)

=

∞
∑

k=1

k−β = ζ(β).

Bost and Connes showed in [1] that KMS states have the following structure, with
a phase transition at β = 1.

• In the range β ≤ 1 there is a unique KMSβ state. Its restriction to Q[Q/Z]
is of the form

ϕβ(e(a/b)) = b−β
∏

p prime, p|b

1− pβ−1

1− p−1
.

• For 1 < β ≤ ∞ the set of extremal KMS states Eβ can be identified with

Ẑ∗. It has a free and transitive action of this group induced by an action on

A by automorphisms. The extremal KMSβ state corresponding to α ∈ Ẑ∗

is of the form

(3.14) ϕβ,α(x) =
1

ζ(β)
Tr

(

πα(x) e−βH
)

.

• At β = ∞ the Galois group Gal(Qcycl/Q) acts on the values of states
ϕ ∈ E∞ on an arithmetic subalgebraAQ ⊂ A. These have the property that
ϕ(AQ) ⊂ Qcycl and that the isomorphism (class field theory isomorphism)

θ : Gal(Qcycl/Q)
∼=→ Ẑ∗ intertwines the Galois action on values with the

action of Ẑ∗ by symmetries, namely,

(3.15) γ ϕ(x) = ϕ(θ(γ) x),

for all ϕ ∈ E∞, for all γ ∈ Gal(Qcycl/Q) and for all x ∈ AQ
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Here the arithmetic subalgebra can be taken as the algebra over Q generated by
the e(r) and µn, µ∗

n, or equivalently as the Hecke algebra of compactly supported
Q-valued functions on Γ0\Γ with the convolution product (3.4). As we shall see, a
different description of the arithmetic subalgebra is given in [4] in terms of homo-
geneous weight zero functions of Q-lattices.

The choice of an “arithmetic subalgebra” corresponds to endowing the noncommu-
tative space A with an arithmetic structure. The subalgebra corresponds to the
rational functions and the values of KMS∞ states at elements of this subalgebra
should be thought of as “values of rational functions at classical points” (cf. [5]).

What is remarkable about the ground states of this system is that, when evaluated
on the rational observables of the system, they only affect values that are algebraic
numbers. Moreover, these span the maximal abelian extension of Q and the class
field theory isomorphism intertwines the two actions of the idèles class group, as
symmetry group of the system, and of the Galois group, as permutations of the
expectation values of the rational observables.

In general, the fact that the Galois action on the values of states would preserve
positivity (i.e. would give values of other states) is a very unusual property. We
refer to such states as “fabulous states”.

3.4. Noncommutative Geometry and Class Field Theory. The main result
of Bost–Connes [1] on the structure of KMS states for the system described above
suggests the possibility of a connection between noncommutative geometry and
class field theory.

If K is a number field with [K : Q] = n, and K̄ is an algebraic closure of K, then
one has the Galois group Gal(K̄/K). This group of symmetries is a very beautiful
object, and quite mysterious even in the case of K = Q. On the other hand, one
can consider a smaller field than K̄, namely the maximal abelian extension Kab of
K. This has the property that

Gal(Kab/K) = Gal(K̄/K)ab.

The Kronecker–Weber theorem shows that for K = Q

Qab = Qcycl and Gal(Qab/Q) ' Ẑ∗.

Finding an analogous result for more general number fields is the content of Hilbert’s
12th problem, the problem of explicit class field theory. For a number field K one
knows that there is an identification (the class field theory isomorphism)

(3.16) θ : CK/DK
'−→ Gal(Kab/K),

where CK = A∗
K/K∗ is the group of idèle classes and DK the connected component

of the identity in CK. In the explicit class field theory problem one wants to obtain
an explicit set of generators for Kab and an explicit description of the action of
Gal(Kab/K).

Remarkably, a complete solution to Hilbert’s 12th problem exists only for Q and
for the imaginary quadratic fields Q(

√
−d). The first challenge is posed by the

case of real quadratic fields Q(
√

d). It is natural to ask whether noncommutative
geometry can provide some new insight on the Hilbert 12th problem, at least for
the case of real quadratic fields. A series of beautiful reflections on this theme is
given in Manin’s real multiplication project [13].
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The Bost–Connes system has also an adèlic description [1], where the algebra A is
Morita equivalent to the crossed product

(3.17) C0(Af ) o Q∗
+

(cf. [11]) with Af = Ẑ⊗Q the finite adèles of Q. The set of extremal KMS states
below critical temperature can also be described as the adèlic quotient

(3.18) E∞ ' GL1(Q)\GL1(A)/R∗
+,

with A = Af × R the full adèles of Q.

Given a number field K with [K : Q] = n, there is an embedding K∗ ↪→ GLn(Q)
of its multiplicative group in GLn(Q). Such embedding induces an embedding of
GL1(AK,f ) where AK,f = Af ⊗K are the finite adèles of K into GLn(Af ).

This suggests a possible strategy to develop an approach to explicit class field
theory via the construction of “fabulous states” for quantum statistical mechanical
systems associated to other number fields, by studying GLn analogs of the Bost–
Connes system. This was done (especially in the case of GL2) in [4]. In the case
of GL2, one sees that the geometry of modular curves and the algebra of modular
forms appear naturally. These are the main ingredients also in the solution of the
explicit class field theory problem for imaginary quadratic fields (cf. [16]).

4. The GL2 system

In this section we will describe the main features of the GL2 analog of the Bost–
Connes system, according to the results of [4].

In the following, to avoid confusion, we use the notation A1 and A1,Q for the C∗-
algebra of the Bost–Connes system and its arithmetic subalgebra and A2 and A2,Q

for the analogs in the GL2 case.

Any 2-dimensional Q-lattice can be written in the form

(Λ, φ) = (λ(Z + Zτ), λρ),

for some λ ∈ C∗, some τ ∈ H, and some ρ ∈M2(Ẑ) = Hom(Q2/Z2, Q2/Z2). Thus,
the space of 2-dimensional Q-lattices up to the scale factor λ ∈ C∗ and up to
isomorphisms, is given by

(4.1) M2(Ẑ)×H mod Γ = SL(2, Z).

The commensurability relation giving the space L2/C∗ is implemented by the par-
tially defined action of GL+

2 (Q).

More precisely, we proceed as follows. We choose a basis {e1 = 1, e2 = −i} of C as
a vector space over R, with respect to which we define the action of GL+

2 (R) on C.

If we set Λ0 = Ze1 +Ze2 = Z+ iZ, an element ρ ∈M2(Ẑ) defines a homomorphism

ρ : Q2/Z2 → QΛ0/Λ0, ρ(a) = ρ1(a)e1 + ρ2(e)e2.

Consider the quotient of the space

(4.2) Ũ := {(g, ρ, α) ∈ GL+
2 (Q)×M2(Ẑ)×GL+

2 (R) : gρ ∈M2(Ẑ)}
by the action of Γ× Γ given by

(4.3) (γ1, γ2) (g, ρ, α) = (γ1gγ−1
2 , γ2ρ, γ2α).

The groupoid R2 of the equivalence relation of commensurability on 2-dimensional
Q-lattices (not considered up to scaling for the moment) is a locally compact
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groupoid, which can be parameterized by the quotient of (4.2) by Γ × Γ via the

map r : Ũ → R2,

(4.4) r(g, ρ, α) =
(

(α−1g−1Λ0, α
−1ρ), (α−1Λ0, α

−1ρ)
)

.

We then consider the quotient by scaling. Upon identifying C∗ ⊂ GL+
2 (R) by

a + ib ∈ C∗ 7→
(

a b
−b a

)

∈ GL+
2 (R),

the quotient GL+
2 (R)/C∗ can be identified with the hyperbolic plane H in the usual

way

α =

(

a b
c d

)

∈ GL+
2 (R) 7→ ai + b

ci + d
∈ H.

If (Λk, φk) k = 1, 2 are a pair of commensurable 2-dimensional Q-lattices, then for
any λ ∈ C∗, the Q-lattices (λΛk, λφk) are also commensurable, with

r(g, ρ, αλ−1) = λr(g, ρ, α).

However, the action of C∗ on Q-lattices is not free due to the presence of lattices
(such as Λ0) with nontrivial automorphisms. Thus, the quotient Z = R2/C∗ is no
longer a groupoid. Still, one can define a convolution algebra for Z by restricting
the convolution product of R2 to homogeneous functions of weight zero, where a
function f has weight k if it satisfies

f(g, ρ, αλ) = λkf(g, ρ, α), ∀λ ∈ C∗.

The space Z is the quotient of the space

(4.5) U := {(g, ρ, z) ∈ GL+
2 (Q)×M2(Ẑ)×H|gρ ∈M2(Ẑ)}

by the action of Γ× Γ. Here the space M2(Ẑ)×H has a partially defined action of
GL+

2 (Q) given by
g(ρ, z) = (gρ, g(z)),

where g(z) denotes action as fractional linear transformation.

Thus, the quotient L2/C∗ of the space of 2-dimensional Q-lattices up to scale by
the relation of commensurability is a noncommutative space whose algebra of co-
ordinates is a Hecke algebra obtained as follows.

Consider the space Cc(Z) of continuous compactly supported functions on Z. These
can be seen, equivalently, as functions on U as in (4.5) invariant under the Γ × Γ
action (g, ρ, z) 7→ (γ1gγ−1

2 , γ2z).

One endows Cc(Z) with the convolution product

(4.6) (f1 ∗ f2)(g, ρ, z) =
∑

s∈Γ\GL+

2
(Q):sρ∈M2(Ẑ)

f1(gs−1, sρ, s(z))f2(s, ρ, z)

and the involution f∗(g, ρ, z) = f(g−1, gρ, g(z)).

The time evolution is given by

(4.7) σt(f)(g, ρ, z) = det(g)it f(g, ρ, z).

For ρ ∈M2(Ẑ) let

(4.8) Gρ := {g ∈ GL+
2 (Q) : gρ ∈M2(Ẑ)}

and consider the Hilbert space Hρ = `2(Γ\Gρ).
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A 2-dimensional Q-lattice L = (Λ, φ) = (ρ, z) determines a representation of the
Hecke algebra by bounded operators on Hρ, setting

(4.9) (πL(f)ξ) (g) =
∑

s∈Γ\Gρ

f(gs−1, sρ, s(z)) ξ(s).

In particular, when the Q-lattice L = (Λ, φ) is invertible one obtains

Hρ
∼= `2(Γ\M+

2 (Z)).

In this case, the Hamiltonian implementing the time evolution (4.7) is given by the
operator

(4.10) H εm = log det(m) εm.

Thus, in the special case of invertible Q-lattices (4.9) yields a positive energy rep-
resentation. In general for Q-lattices which are not commensurable to an invertible
one, the corresponding Hamiltonian H is not bounded below.

The Hecke algebra (4.6) admits a C∗-algebra completion A2, where the norm is the
sup over all representations πL.

The partition function for this GL2 system is given by

(4.11) Z(β) =
∑

m∈Γ\M+

2
(Z)

det(m)−β =

∞
∑

k=1

σ(k) k−β = ζ(β)ζ(β − 1),

where σ(k) =
∑

d|k d.

This already hints to the fact that the system might have more than one phase
transition. In fact, the form of the partition function suggests the possibility that
two distinct phase transitions might happen at β = 1 and β = 2.

5. KMS states and symmetries

The structure of KMS states for the GL2-system is analysed in [4]. The main result
is the following.

Theorem 5.1. The KMSβ states of the GL2-system have the following properties:

(1) In the range β ≤ 1 there are no KMS states.
(2) In the range β > 2 the set of extremal KMS states is given by the classical

Shimura variety

(5.1) Eβ ∼= GL2(Q)\GL2(A)/C∗.

This shows that the extremal KMS states at sufficiently low temperature are pa-
rameterized by the invertible Q-lattices. The explicit expression for these extremal
KMSβ states is obtained as

(5.2) ϕβ,L(f) =
1

Z(β)

∑

m∈Γ\M+

2
(Z)

f(1, mρ, m(z)) det(m)−β

where L = (ρ, z) is an invertible Q-lattice.

The difficult part of the proof is to show that indeed all extremal KMSβ states
are of this form. When β → 1 from above, the different pure phases merge, so it
is reasonable to expect that in the intermediate range 1 < β < 2 there will be a
unique KMSβ state. Thus, the system exhibits two distinct phase transitions at
β = 2 and β = 1.
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The main step in the proof of Theorem 5.1 is the construction of a subalgebra
generated by projections πp(k, l), where p is a prime number and k, l are integers
with k ≤ l, with the following properties

• If ϕ is a KMSβ state for the GL2 system, then it satisfies

ϕ(πp(k, l)) = p−(k+l)βpl−k(1 + p−1)(1− p−β)(1− p1−β), k < l

ϕ(πp(l, l)) = p−2lβ(1− p−β)(1− p1−β) k = l.

• If pj are distinct prime numbers, then

ϕ





∏

j

πpj
(kj , lj)



 =
∏

j

ϕ(πpj
(kj , lj)).

In particular these properties show that there cannot be any KMS state in the
range 0 < β < 1.

5.1. Symmetries. In the range 2 < β ≤ ∞, there is a very interesting action of
symmetries on the KMS states of the GL2-system.

The symmetry group of A2 (including both automorphisms and endomorphisms)
can be identified with the group

(5.3) GL2(Af ) = GL+
2 (Q)GL2(Ẑ).

Here the group GL2(Ẑ) acts by automorphisms,

(5.4) θγ(f)(g, ρ, z) = f(g, ργ, z).

Geometrically, this is the group of deck transformations of coverings of modular
curves. In fact, when we consider the (compact) modular curve X(n) over the
cyclotomic field Q(ζn), these form a tower over the base X(1) = P1 over Q, and
the group GL2(Z/nZ)/±1 is the group of automorphisms of the projection X(n)→
X(1), (cf. [15], [5]) so that one obtains the automorphism group

(5.5) GL2(Ẑ)/±1 = lim←−
n

GL2(Z/nZ)/{±1}.

On the other hand, the group GL+
2 (Q) in (5.3) acts by endomorphisms,

(5.6) θm(f)(g, ρ, z) =

{

f(g, ρm̃−1, z) ρ ∈ m M2(Ẑ)

0 otherwise

where m̃ = det(m)m−1.

The subgroup Q∗ ↪→ GL2(Af ) acts by inner, hence the group of symmetries of the
set of extremal states Eβ is of the form

(5.7) S = Q∗\GL2(Af ).

In the case of E∞ states (defined as weak limits) the action of GL+
2 (Q) is more subtle

to define. In fact, (5.6) does not directly induce a nontrivial action on E∞. However,
there is a nontrivial action induced by the action on Eβ states for sufficiently large
β. The action on the KMS∞ states is obtained by a “warming up and cooling down
procedure”, as in (2.7) and (2.8).
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5.2. Lattice functions. In the case of the BC system, the arithmetic subalgebra
A1,Q can be regarded as the algebra generated by the µn, µ∗

n and by homogeneous
functions of weight zero on 1-dim Q-lattices obtained as a normalization of the
functions

(5.8) εk,a(Λ, φ) =
∑

y∈Λ+φ(a)

y−k

by covolume, namely, by the functions ek,a := ck εk,a, where c(Λ) is proportional to
the covolume |Λ| and satisfies

(2π
√
−1) c(Z) = 1.

It is natural therefore to expect that the analogous A2,Q of the GL2 system will
involve Eisenstein series

(5.9) E2k,a(Λ, φ) =
∑

y∈Λ+φ(a)

y−2k

and

(5.10) Xa(Λ, φ) =
∑

y∈Λ+φ(a)

y−2 −
∑′

y∈Λ

y−2

normalized to weight zero, in a similar fashion.

This points to the fact that modular functions should appear naturally as the
rational subalgebra of the GL2 system. This can also be noticed from the fact that
the group of symmetries S described in (5.7) is in fact the Galois group of the field
of modular functions, by a deep arithmetic result of Shimura [16].

As we shall see below, in fact A2,Q will turn out to be a subalgebra of unbounded
multipliers of A2. Modular functions will appear naturally from a simple set of
conditions specifying the arithmetic nature of these multipliers.

5.3. The modular field. We recall briefly some basic facts and results about the
modular field. Let F denote the field of modular functions over Qab, namely the
union of the fields FN of modular functions of level N rational over the cyclotomic
field Q(ζn), that is, such that the q-expansion in powers of q1/N = exp(2πiτ/N)
has all coefficients in Q(e2πi/N ).

The action of the Galois group Ẑ∗ ' Gal(Qab/Q) on the coefficients determines a
homomorphism

(5.11) cycl : Ẑ∗ → Aut(F ).

The modular field has an explicit set of generators given by the Fricke functions
([16], [12]). If ℘ is the Weierstrass ℘-function, which gives the parameterization

w 7→ (1, ℘(w; τ, 1), ℘′(w; τ, 1))

of the elliptic curve
y2 = 4x3 − g2(τ)x − g3(τ)

by the quotient C/(Z + Zτ), then the Fricke functions are homogeneous functions
of 1-dimensional lattices of weight zero, parameterized by v ∈ Q2/Z2, of the form

(5.12) fv(z) = −2735 g2(z)g3(z)

∆(z)
℘(λz(v); z, 1),

where ∆(z) = g3
2 − 27g2

3 is the discriminant and λz(v) := v1z + v2.
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The following important result of Shimura completely determines the Galois group
of the modular field:

Aut(F ) ∼= Q∗\GL2(Af ).

If τ ∈ H is a generic point, then the evaluation map f 7→ f(τ) is an embedding
F ↪→ C. We denote by Fτ the image in C. This yields an identification

(5.13) θτ : Gal(Fτ/Q)
'→ Q∗\GL2(Af ).

5.4. Arithmetic subalgebra. We determine a natural arithmetic subalgebraA2,Q

of unbounded multipliers of A2. Unbounded multipliers on A2 are endowed with
the same convolution product (4.6).

Elements of A2,Q are continuous functions on Z (cf. (4.5)), with finite support in

the variable g ∈ Γ\GL+
2 (Q). For convenience we adopt the notation

f(g,ρ)(z) = f(g, ρ, z)

so that f(g,ρ) ∈ C(H). Let pN : M2(Ẑ) → M2(Z/NZ) be the canonical projection.
We say that f is of level N if

f(g,ρ) = f(g,pN (ρ)) ∀(g, ρ).

Then f is completely determined by the functions

f(g,m) ∈ C(H), for m ∈M2(Z/NZ).

Notice that the invariance

f(gγ, ρ, z) = f(g, γρ, γ(z)),

for all γ ∈ Γ and for all (g, ρ, z) ∈ U , implies that we have

(5.14) f(g,m)|γ = f(g,m), ∀γ ∈ Γ(N) ∩ g−1Γg.

so that f is invariant under a congruence subgroup.

Thus, we define the arithmetic A2,Q as follows.

Definition 5.1. A continuous function on Z is in the arithmetic subalgebra A2,Q

if it satisfies the following properties:

(1) The support of f in Γ\GL+
2 (Q) is finite.

(2) The function f is of finite level with

f(g,m) ∈ F ∀(g, m).

(3) The function f satisfies the cyclotomic condition:

f(g,α(u)m) = cycl(u) f(g,m),

for all g ∈ GL+
2 (Q) diagonal and all u ∈ Ẑ∗, with

α(u) =

(

u 0
0 1

)

and cycl as in (5.11).
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If we took all but the last condition, this would allow the algebra A2,Q to contain
the cyclotomic field Qab ⊂ C, but this would prevent the existence of “fabulous
states”, because the “fabulous” property would not be compatible with C-linearity.
The cyclotomic condition forces the spectrum of the corresponding elements of A2,Q

to contain all Galois conjugates of any such root, so that these elements cannot be
scalar. This is achieved via a simple an natural consistency condition on the roots
of unity that appear in the coefficients of the q-series.

The algebra A2,Q defined by the properties above is a subalgebra of unbounded
multipliers of A2, which is globally invariant under the group of symmetries S.

5.5. Galois action on E∞. Consider a state ϕ = ϕ∞,L ∈ E∞, where the invertible
Q-lattice L = (ρ, τ) is generic, in the sense that τ ∈ H is generic so that one has
the identification (5.13).

Theorem 5.2. For ϕ∞,L ∈ E∞ with L = (ρ, τ) generic, the values of the state on
elements of the arithmetic subalgebra lie in the image in C of the modular field,

(5.15) ϕ(A2,Q) ⊂ Fτ ,

and the isomorphism

(5.16) θϕ : Gal(Fτ/Q)
'−→ Q∗\GL2(Af ),

given by

(5.17) θϕ(γ) = ρ−1 θτ (γ) ρ,

for θτ as in (5.13), intertwines the Galois action on the values of the state with the
action of symmetries,

(5.18) γ ϕ(f) = ϕ(θϕ(γ)f), ∀f ∈ A2,Q, ∀γ ∈ Gal(Fτ/Q).

6. Noncommutative Shimura varieties

This point of view is stressed in our joint work with Ramachandran [5].

With the notation Sh(G, X) := G(Q)\G(Af ) ×X , the Shimura variety associated
to the tower of modular curves is described by the adèlic quotient

(6.1)
Sh(GL2, H

±) = GL2(Q)\GL2(Af )×H±

= GL+
2 (Q)\GL2(Af )×H = GL+

2 (Q)\GL2(A)/C∗.

The inverse limit lim←−Γ\H over congruence subgroups Γ ⊂ SL(2, Z) gives a connected

component, while by taking congruence subgroups in SL(2, Q) one obtains the adèlic
version Sh(GL2, H

±).

The set of components of Sh(GL2, H
±) is given by

(6.2) π0(Sh(GL2, H
±)) = Sh(GL1, {±1}),

where

(6.3) Sh(GL1, {±1}) = GL1(Q)\GL1(Af )× {±1} = Q∗
+\A∗

f

is the Shimura variety associated to the cyclotomic tower (cf. [5] [15]).

As we shall see below, (6.3) can be thought of as the “set of classical points” of the
noncommutative space of the BC system, where the algebraA1 is Morita equivalent
to C0(Af )oQ∗

+. The result of [1] shows in particular that, at zero temperature, the
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BC system settles onto its “commutative points” (extremal KMS∞ states) which
form the classical Shimura variety (6.3).

Similarly, the results of Theorem 5.1 and 5.2 show the analogous behavior in the
GL2 system. At zero temperature, the system settles onto its “commutative points”
given by the Shimura variety (6.1).

This leads us naturally to think of the algebras of the BC system and of the GL2

system as noncommutative Shimura varieties. The first is associated to the adèlic
quotient

(6.4) Sh(nc)({±1}, GL1) := GL1(Q)\(Af × {±1}) = GL1(Q)\A·/R∗
+

with A· := Af × R∗.

This has a compactification, obtained by replacing A· by A, as in [3],

(6.5) Sh(nc)({±1}, GL1) = GL1(Q)\A/R∗
+.

The compactification consists of adding the trivial lattice (with a possibly nontrivial
Q-structure).

The dual space (namely the principal R∗
+-bundle obtained by taking the crossed

product by time evolution σt) is the space of adèle classes

(6.6) L1 = GL1(Q)\A→ GL1(Q)\A/R∗
+

that gives the spectral realization of zeros of the Riemann ζ function in [3]. This
dual space corresponds to considering commensurability classes of 1-dimensional
Q-lattices (not up to scaling).

In the case of the GL2-system, similarly, we have a noncommutative Shimura variety

(6.7) Sh(nc)(H±, GL2) := GL2(Q)\(M2(Af )×H±).

This also admits a compactification, now given by adding the boundary P1(R) to
H±, as in the noncommutative compactification of modular curves of [14],

(6.8) Sh(nc)(H±, GL2) := GL2(Q)\(M2(Af )× P1(C)) = GL2(Q)\M2(A)/C∗,

where P1(C) = H±∪P1(R). This corresponds to adding to the space of commensu-
rability classes of 2-dimensional Q-lattices the pseudolattices (in the sense of [13]),
here considered together with a Q-structure.

In this case we can also consider the dual system. This is a C∗-bundle

(6.9) L2 = GL2(Q)\M2(A).

On this dual space modular forms appear naturally instead of modular functions
and the algebra of coordinates contains the modular Hecke algebra of Connes–
Moscovici ([6], [7]) as arithmetic subalgebra.

The identification (6.2) then gives the compatibility between the GL1 and the GL2

system. At the level of the classical commutative spaces, this is given by the map

(6.10) det× sign : Sh(H±, GL2)→ Sh({±1}, GL1),

which corresponds in fact to passing to the set π0 of connected components.
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7. Class Field Theory

In our joint work with Ramachandran [5], we use the GL2 system to extend the
relation between noncommutative geometry and class field theory illustrated in the
BC system for the case of Q to the next important case, that of imaginary quadratic
fields.

Thus, we assume that K = Q(
√
−d). A point τ ∈ H is a CM (complex multiplica-

tion) point for K if we have K = Q(τ). This is a non-generic case, in the sense of
the properties of the modular field under the evaluation map. In fact, in this case,
the evaluation F → Fτ ⊂ C does not give an embedding.

The image in C of the modular field can be characterized ([16]) and is the maximal
abelian extension of K,

(7.1) Fτ ' Kab.

The values {f(τ), f ∈ F} give a set of generators of Kab and the Galois action is
described explicitly in the following way ([16])

1 // K∗ // GL1(AK,f )

��

'
// Gal(Kab/K) // 1

1 // Q∗ // GL2(Af )
'

// Aut(F ) // 1,

where AK,f = Af ⊗ K. This gives a complete solution to the problem of explicit
class field theory for imaginary quadratic fields.

As in the BC system one sees the explicit class field theory of Qab appear in the
symmetries of E∞ states, the class field theory for imaginary quadratic fields ap-
pears naturally in relation to the GL2 system. In fact, one can consider a special
class of 2-dimensional Q-lattices, given by those that also have the similarly defined
structure of a 1-dimensional K-lattice. The commensurability relation (compatible
with the K-structure) gives a system AK which is closely related to both the origi-
nal BC system and the GL2-system and has properties in common with both. The
arithmetic structure of the GL2-system induces a corresponding arithmetic struc-
ture AK,Q on the AK system, which also inherits a natural time evolution. The
Galois theory of KMS∞ states of the GL2-system has a parallel result for the AK

system, which mirrors the relation between the explicit class field theory of imag-
inary quadratic fields and the Galois theory of the modular field described above.
(See [5] for details.)

The next fundamental question in the direction of generalizations of the BC system
to other number fields is how to approach the more complicated case of real qua-
dratic fields, Q(

√
d), for which there is not yet a complete solution to the explicit

class field theory problem. Manin’s real multiplication program [13] suggests that
the right geometric setup may still be found within the GL2-system, by looking at

the boundary strata of Sh(nc)(H±, GL2).
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