
NONCOMMUTATIVE GEOMETRY AND NUMBER THEORY

Noncommutative geometry is a modern field of mathematics created by Alain Connes at
the beginning of the eighties. It provides powerful tools to treat spaces that are essentially
of a quantum nature. Unlike the case of ordinary spaces, their algebra of coordinates is
noncommutative, reflecting phenomena like the Heisenberg uncertainty principle in quantum
mechanics.

What is especially interesting is the fact that such quantum spaces are abundant in mathe-
matics. One obtains them easily when one considers equivalence relations which are so drastic
that they tend to collapse most points together, yet one wishes to retain enough information
in the process to be able to do interesting geometry on the resulting space.

In such cases, noncommutative geometry shows that there is a quantum cloud surrounding
the classical space, which retains all the essential geometric information, even when the
underlying classical space becomes extremely degenerate. It is to this quantum aura that all
sophisticated tools of geometry and mathematical analysis, properly reinterpreted, can still
be applied.

It became increasingly evident in recent years that the tools of noncommutative geometry
may find new and important applications to Number Theory, a very different branch of pure
mathematics with an ancient and illustrious history. This happened mostly through a new
approach of Connes to the Riemann hypothesis (at present the most famous unsolved problem
in mathematics).

The first instance of such connections between noncommutative geometry and number
theory emerged earlier, when Bost and Connes discovered a very interesting noncommutative
space with remarkable arithmetic properties. The system it describes consists of quantized
optical phases, discretized at different scales. These are essentially the phasors used in model-
ing quantum computers (cf. Figure 1). A mechanism that accounts for consistency over scale
changes organizes the phasors via a kind of renormalization procedure. This consistency
condition imposes the equivalence relation that makes the resulting space noncommutative.
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Figure 1. Phase operators: Z/6Z discretization.
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Figure 2. Construction of polygons by ruler and compass

The system obtained this way has an intrinsic dynamics which makes it evolve in time and
one can consider corresponding thermodynamical equilibrium states at various temperatures.
Above a certain critical temperature the distribution of phases is essentially chaotic and there
is a unique equilibrium state. At the critical temperature the system undergoes a phase
transition with spontaneous symmetry breaking and below critical temperature the system
exhibits many different equilibrium states parameterized by arithmetic data.

Especially interesting is what happens at zero temperature. There the arithmetic structure
that governs the action of the symmetry group of the system on the extremal ground states
is the same one that answers the famous mathematical problem (solved by Gauss) of which
regular polygons can be constructed using only ruler and compass (cf. Figure 2).

The crucial feature that allows for a solution of this geometric problem is the fact that in
addition to the obvious rotational symmetries of regular polygons there exists another hidden
and much more subtle symmetry coming from the Galois group Gal(Q̄/Q), a very beautiful
and still mysterious object, which in this case manifests itself not through the multiplicative
action of roots of unity (rotations of the vertices of the polygons) but through the operation
of raising them to powers.

Thus, from the example of the Bost Connes noncommutative space, a dictionary emerges
that relates the phenomena of spontaneous symmetry breaking in quantum statistical me-
chanics to the mathematics of Galois theory. Moreover, the partition function of this quantum
statistical mechanical system is an object of central interest in Number Theory, namely the
Riemann zeta function (cf. Figure 3).

More recently, other results that point to deep connections between noncommutative geom-
etry and number theory appeared in the work of Connes and Moscovici on the modular Hecke
algebras which shows that the Rankin–Cohen brackets, an important algebraic structure on
modular forms extensively studied years ago by Zagier (at MPIM), have a natural interpre-
tation in the language of noncommutative geometry. Modular forms are a very important
class of functions that plays a fundamental role in many fields of mathematics, especially in
Number Theory and Arithmetic Geometry. They exhibit very elaborate symmetry patterns
associated to certain tessellations of the hyperbolic plane (cf. Figure 4).
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Figure 3. The Riemann zeta function

Figure 4. The modular curve

When viewed with the eyes of noncommutative geometry the algebraic structures studied
by Zagier appear as a manifestation of a type of symmetry of noncommutative spaces, related
to the transverse geometry of codimension one foliations (Figure 5), which was investigated
extensively in work of Connes and Moscovici.

The special tessellations of the hyperbolic plane mentioned in relation to modular forms
give rise to a family of 2-dimensional surfaces known as the modular curves. Recent work of
Manin and Marcolli (both at MPIM) showed that much of the rich arithmetic structure of the
modular curves is captured by a noncommutative space, which arises from the tessellation
restricted to the infinitely distant horizon of the hyperbolic plane (the bottom horizontal line
in Figure 4). The fact that the infinite horizon of modular curves hides a noncommutative
space was also observed in work of Connes, Douglas and Schwarz in the context of String
Theory.

Ongoing work of Connes and Marcolli (at MPIM) uncovered the remarkable fact that all the
instances listed above of interactions between number theory and noncommutative geometry
(Connes’ work on the Riemann zeta function, the Bost–Connes system, the modular Hecke
algebra, the noncommutative boundary of modular curves) are in fact manifestations of
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Figure 5. An example of codimension one foliations
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Figure 6. Q-lattices

one and the same underlying noncommutative space, namely the space of commensurability
classes of Q-lattices.

A lattice consists of arrays of points in a vector space, disposed like atoms in a crystal. For
example, the set of points with integer coordinates in the plane is a 2-dimensional lattice. A
Q-lattice is one such object where one has a way of labeling the points of rational coordinates
inside the fundamental cell of the lattice. If each rational point is labeled in a unique way
the Q-lattice is said to be invertible, while in general one also allows for labelings that miss
certain arrays of points while assigning multiple labels to others (cf. Figure 6).

When studying the geometric properties of Q-lattices, it is natural to treat as the same ob-
ject all Q-lattices that have the same rational points and where the respective labelings agree
whenever both are defined. This determines an equivalence relation on the set of Q-lattices.
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One observes that the identifications produced by this seemingly harmless equivalence rela-
tion are in fact drastic enough to give rise to a noncommutative space. On the other hand,
if one restricts the attention to just invertible Q-lattices, these are organized in a classical
space. In the case of 2-dimensional lattices, the parameterizing space is the family of all
modular curves.

Since Q-lattices exist in any dimension, there is in any dimension a corresponding non-
commutative space. The Bost–Connes space is just the space of commensurability classes of
1-dimensional Q-lattices considered up to a scaling factor. The noncommutative space intro-
duced by Connes in the spectral realization of the zeros of the Riemann zeta function (whose
position in the plane is the content of the Riemann hypothesis) is the space of commensurabil-
ity classes of 1-dimensional Q-lattices with the scale factor taken into account. The modular
Hecke algebra of Connes and Moscovici is a piece of the algebra of coordinates on the space
of commensurability classes of 2-dimensional Q-lattices and the noncommutative boundary
of modular curves is a stratum in this space that accounts for possible degenerations of the
2-dimensional lattice.

The noncommutative space of commensurability classes of 2-dimensional Q-lattices up to
scale also has a natural time evolution and one can investigate the structure of the corre-
sponding thermodynamical equilibria. At zero temperature this quantum space freezes on the
underlying classical space (the family of modular curves) and all quantum fluctuations cease.
The extremal states at zero temperature correspond to points on a modular curve. When
the temperature rises quantum effects become predominant and the system undergoes a first
phase transition where all the different equilibrium states merge, leaving a unique chaotic
state. There is then a second critical temperature where the system experiences another
phase transition after which no equilibrium state survives.

What acts as group of symmetries of this quantum mechanical system is the group of all
arithmetic symmetries of the modular functions. As in the 1-dimensional case, the induced
action on the extremal states at zero temperature is via Galois theory. In this 2-dimensional
system, however, not all symmetries act directly on the classical space at zero temperature
as they need the more refined structure of the quantum system, hence one obtains the Galois
action at zero temperature by warming up below critical temperature, looking at the full
symmetries of the quantum system, and then cooling down again to zero temperature where
arithmeticity becomes apparent.

The noncommutative space of commensurability classes of Q-lattices with its rich arith-
metic structure provides a valuable tool for investigating many related number theoretic
questions. For instance, in the spectral realization of zeros of the Riemann zeta function an
important question is how to pass consistently to extensions of the field of rational numbers.
Dealing with such questions will involve the noncommutative spaces of higher dimensional
Q-lattices and their interrelations.


