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Introduction
Folding patterns of the cerebral cortex have fascinated many generations of scientists.  In the past ten 
years, with the discovery of intermediate progenitor (IP) cells, new hypotheses about how these 
patterns develop have been introduced.  Here, we adopt the intermediate progenitor cell hypothesis 
[1] (IPH) and developed a new model of the production of IP cells using a Turing reaction-diffusion 
system.  The domain for this model is a prolate spheroid based on the shape of the lateral ventricle.

Here, we start with the development of the cortex and  an example of Turing patterns on a one 
dimensional domain.  We then expand the theory to be able to predict evolving patterns on a prolate 
spheroidal surface.  Next, we examine the role that focal distance plays in pattern formation and use 
it to predict the evolutionary development of cortical patterns in different species.

1. Cortical Development

Since the patterning of IP cells is takes place in the VZ, we are approximating the lateral 
ventricle with a prolate spheroid and the VZ with a prolate spheroidal surface.

D. A. Smith, M. K. Hurdal
dsmith@math.fsu.edu

Department of Mathematics, Florida State University, Tallahassee, Florida  32306-4510

Literature cited
1.  A. Kriegstein, S. Noctor, V. Martinez-Cerdeno, Nature Reviews Neuroscience, 7(11), 883-890 (2006).
2. P. Rakic, Science 241, 170-176, (1988).
3. R.A. Barrio, C. Varea, J. L. Aragon, P. K. Maini, Bulletin of Mathematical Biology, 61(3), 483-505 (1999).
4. A.M. Turing,  Philosophical Transactions of the Royal Society of London B, 237, 37-72 (1952).
5. J. D. Murray, Mathematical Biology (Springer, New York, ed. 2, 1989).
6. C. Flammer, Spheroidal Wave Functions (Stanford Univ. Press, Palo Alto, 1957).  
7. J Reighard, H. S. Jennings, Anatomy of the Cat (Holt, Rinehart and Winston, ed. 3, 1935).
8. K. Brodmann, Brodmann's Localisation in the cerebral cortex (Springer, New York, 2006).

Characterizing Cortical Folding Patterns Across Species using Prolate Spheroidal Harmonics

R R R

CP
IZ

SVZ

VZ
Lateral Ventricle

R R R

CP

IZ
SVZ

VZ

N

R R R

CP

IZ
SVZ
VZ

I I

A founding population of 
radial glial cells (R) is 
created in the ventricular 
zone (VZ) located in the  
lateral wall of lateral 
ventricle [2].

Radial glial cells (R) go 
through cycles of 
asymmetric cellular 
divisions creating 
neurons (N) that travel 
to the cortex creating 
the lower layers of the 
cortical plate (CP).

Select radial glial cells (R) switch to 
cycles of asymmetric cellular 
divisions creating IP cells (I) that 
travel to the subventricular zone 
(SVZ) and create two neurons (N) 
per cellular division that travel to the 
cortex.  When a subset of “non-
activated” radial glial cells is 
surrounded by subsets of  
“activated” radial glial cells a sulcus 
is formed [1].

4.  Simulations on a Prolate Spheroidal Surface
With a fixed focal distance, Amn (the right hand side of (1)) can be plotted versus k for each (m,n). 
Below are two simulations on a prolate spheroid with focal distance of one and parameters given 
below.  The top simulation has a domain scaling corresponding to k2 = 30.  Notice, k2 = 30 (lower 
star) corresponds to A35 and verifies the pattern obtained.  The bottom simulation corresponds to k2 = 
60 (top star) and verifies the pattern predicted of A77. 

Computer modeling verification of spheroidal mode equation (Equation (1)). A.)  Graph of Amn for n = 0, .., 7 
(different colors) and m = 0, .., n (different linestyles, beginning with m = 0 on the bottom and m = n on top) . When 
k2=30 and 60 the corresponding patterns are A35 and A77, respectively. B.)  Results of discretization of BVM system for 
δ = 0.013 (corresponding to k2=30), α = 0.899, β = -0.91, γ = -0.899, D = 0.5319, r1 = 3.5, and r2 = 0.  C.)  Projection 
of B onto a prolate spheroid (d = 1)  such that top (bottom) edge maps to the north (south) pole of the spheroid.   D. & 
E.)  Same as B & C except δ = 0.0065 (corresponding to k2 = 60). 
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5.  Evolutionary Development
Evolutionarily the cerebral cortex and lateral ventricle have expanded greatly.  The expansion of the 
lateral ventricle is captured with the focal distance (d) of the prolate spheroid.  Here we are plotting the 
curves A11, A02, and A04. The pattern A11 corresponds to the pattern  needed to create one sulcus sectorially 
(following along the major axis of the lateral  ventricle).  A02 corresponds to one sulcus forming a ring 
around the lateral ventricle and A04 corresponds to 2 sulcal rings.

Notice in Graph A as k2 increases the first pattern it will intersect is A11.  If d is increased (B), the 
curves shift and now as k2 increases it will intersect A02 before A11,, therefore a one sulcal ring could form 
before a sectorial sulcus.  If d is increased further (C), as k2 increases it will intersect A04 before A11 
meaning 2 ring sulci could form before the first sectorial sulcus.  These scenarios are similar to what 
occurs in the cat, lemur, and human.

B CA

Predicted development of folds in cortices of 3 species. In the bottom figure, the top row shows the formation of sulcal rings.  
The bottom row shows the subsequent creation of a certain number of sectorial sulci for A. cat (modified from [7]) B.  Lemur 
(modified from [8])  C.  Human (modified from [8]).
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2. Turing patterns on a one-dimensional domain
BVM Model [3] (Barrio, Varea, and Maini)

Solutions to u are of the form where and  X(x) is a solution of
[5].

In one dimension, where 0 < x < P, with a periodic boundary condition the solution to 

is and where n is an integer.

Diffusion driven instability will 
be accomplished when      
Re(λ(k2)) > 0.  Notice, in the top 
graph only one k2 value 
(corresponding to n = 2) will do 
this.   In the second graph, the 
domain scaling is increased 
resulting in a shift of the Re(λ(k2)) 
parabola.  Now a larger k2 value 
(corresponding to n = 4) will be 
responsible for the pattern.

* **

*** *

d = 0.516, r1 = 3.5, r2 = 0, α = 0.899,  
β = –0.91, γ = -0.899,  P = 1
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3. Turing Patterns on Prolate Spheroidal Surfaces

Since X(x) is separable in prolate spheroidal coordinates (ξ, η, φ) [6], we can rewrite X in terms of 
where , d = focal distance, (m,n) are the spheroidal indices, 

and  R and S satisfy

Since the domain is a prolate spheroidal surface, the solution is radially invariant, i.e. , and 
we obtain an equation (1) that relates k2 with the (m,n) pattern obtained.

(1) where ξ0 conserves a surface area   
of 4π.  
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