
1.  Introduction"
The mechanisms for the formation of folding patterns of the 
cerebral cortex are still under debate.  In the past ten years, 
with the discovery of intermediate progenitor (IP) cells, new 
hypotheses about how these folding patterns develop have 
been introduced.  Here, we adopt the intermediate progenitor 
cell hypothesis [1] (IPH) and develop a new model of the 
production of IP cells using a Turing reaction-diffusion 
system. The domain for this model is a prolate spheroid based 
on the shape of the lateral ventricle.!

 We begin with the IPH and an example of Turing patterns 
on a one dimensional domain. We then expand Turing theory 
to predict evolving patterns on a prolate spheroidal surface.  
Next, we examine the role that focal distance plays in pattern 
formation and use it to predict the evolutionary development 
of cortical patterns in different species.    
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2.  IPH of Cortical Development"

A founding population of radial glial cells (R) is created in the 
ventricular zone (VZ) which is located in the lateral wall of 
the lateral ventricle [2]. 

Radial glial cells (R) go through cycles of asymmetric cellular 
divisions creating neurons (N) that travel to the cortex 
creating the lower layers of the cortical plate (CP). 

Select radial glial cells (R) switch to cycles of asymmetric 
cellular divisions creating IP cells (I) that travel to the 
subventricular zone (SVZ) and create two neurons (N) per 
cellular division that travel to the cortex. When a subset of 
“non-activated” radial glial cells is surrounded by subsets of  
“activated” radial glial cells a sulcus is formed [1]. 

"Since the patterning of IP cells takes place in the 
VZ, we approximate the lateral ventricle with a 
prolate spheroid and the VZ with a prolate 
spheroidal surface."
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6.  Prolate Spheroidal Surface Patterns!
With a fixed focal distance f, a graph of Amn (the right hand 
side of Equation 2) versus k can be plotted for each (m,n). Fig. 
2 shows two simulations on a prolate spheroidal surface (with 
focal distance f = 1). The top simulation (Figs. 2B and 2C) 
has a domain scaling corresponding to k2 = 30. Notice, k2 = 30 
(lower asterisk in Fig. 2A) corresponds to curve A35 and 
verifies the (3,5) pattern obtained. The bottom simulation 
(Figs. 2C and 2D) corresponds to k2 = 60 (top asterisk in Fig. 
2A) and verifies the pattern predicted of A77.  

     

Fig. 2: Computer Modeling Verification of Prolate Spheroidal Mode 
Equation (Equation 2). A) Graph of Amn for n = 0, …, 7 (different colors) 
and m = 0, ..., n (different linestyles, beginning with m = 0 on the bottom 
and m = n on top) . When k2 = 30 and 60 (bottom and top asterisks 
respectively) the corresponding patterns are A35 and A77 respectively. B) 
Results of discretization of BVM system for δ = 0.013 (corresponding to 
k2 = 30), α  = 0.899, β = -0.91, γ  = -0.899, D = 0.5319, r1 = 3.5, and r2 = 0. 
C) Projection of Fig. B onto a prolate spheroidal surface (f = 1)  such that 
top (bottom) edge maps to the north (south) pole of the spheroid.  D & E)  
Same as Figs. B & C except δ = 0.0065 (corresponding to k2 = 60).  
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8.  Conclusions"
Our model incorporates shape information of the lateral 
ventricle with the focal distance parameter of a prolate 
spheroid. Our model illustrates how sulcal placement and 
directionality are affected by changes in lateral ventricular 
eccentricity and predicts the development of the initial sulcal 
folds. The beauty of our model is that it provides an 
uncomplicated approach that relates to a biologically 
plausible mechanism of pattern formation. "

4.  Turing Patterns on a 1-D Domain"
In one dimension, where 0 < x < P with a periodic boundary 

condition, the solution to   is       and 

  where n is an integer. 

" "!

           

Diffusion driven instability, which leads to pattern 
formation, is accomplished when Re(λ(k2)) > 0. The 
associated k2-values predict which pattern forms. Fig. 1 
demonstrates the effect of domain scaling on pattern 
formation. !

Fig. 1: Pattern Formation in 1D. Left (A, C): Pattern formation occurs 
when Re(λ(k2)) > 0. Right (B, D): Simulations of the distribution of u on 
the domain illustrate the observed pattern. Any x-value where u > 0 will be 
activated. A) The asterisks indicate the values for  k2 when n = 1, 2 and 3. 
The k2 value in red (corresponding to n = 2) determines the pattern 
formed. B) Simulations reveal one region is activated (shaded blue). C & 
D) An increase in domain scaling (corresponding to a decrease in δ) 
results in a shift of the Re(λ(k2)) parabola. Now a larger k2 value (indicated 
by red asterisk, corresponding to n = 4) is responsible for the resulting 
pattern (shaded blue). Parameter values: D = 0.516, r1 = 3.5, r2 = 0, α = 
0.899,  β = –0.91, γ = -0.899,  P = 1. 
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3.  Turing Systems"
A Turing system is a reaction-diffusion system containing two 
morphogens, an activator u(x,t) and an inhibitor v(x,t) at 
position x and time t [3]. Turing systems have been used to 
describe pattern formation in a variety of biological and 
chemical systems.  

 The BVM (Barrio, Varea, and Maini) Turing System Model 
[4] is: 

where D is the ratio of diffusion coefficients, δ is inversely 
proportional to the domain scaling, and α, β, γ, r1 and  r2 are 
kinetics parameters. Solutions to System 1 are of the form    
u = T(t)X(x) where  and λ(k2) is the temporal 
eigenvalue and where X(x) is a solution of       [5].!
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5.  Prolate Spheroidal Surface Model!
     

A prolate spheroid is obtained by rotating an ellipse on its 
major axis and has coordinates (ξ, η, φ) where ξ is the radial 
term, η = cos(θ) with θ the polar angle, and φ is the angle of 
rotation. As above, X(x) forms part of the solution to System 
1. Since X(x) is separable in prolate spheroidal coordinates 
[6], we can rewrite X in terms of  

where c = ½kf, f = focal distance, (m,n) are the prolate 
spheroidal harmonic indices, and R, S and Φ satisfy 

 Since the domain is a prolate spheroidal surface, the 

solution is radially invariant, i.e.     and we obtain 

Equation 2 to relate k2 with the (m,n) pattern obtained [7], 

              (2) 

where ξ0 conserves a surface area of 4π and ρmn is a separation 

constant.  Equation 2 will be denoted as Amn , i.e.  
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"Mutations of a number of genes in mice have been 
shown to increase the production of IP cells [8]. 
Thus it is not unreasonable to assume that there is 
an activator located in the VZ that controls the 
creation of IP cells, leading to sulcus formation.!

7.  Evolutionary Development"
Evolutionarily the cerebral cortex and lateral ventricle have 
expanded greatly.  The expansion of the lateral ventricle is 
captured with the focal distance, f, of the prolate spheroid.  
Figure 3 shows plots of the curves A11, A02, and A04. The 
pattern A11 corresponds to the pattern needed to create one 
sectorial sulcus (following along the major axis of the lateral  
ventricle). Curve A02 corresponds to one transverse sulcus 
forming a ring around the lateral ventricle and curve A04 
corresponds to two  transverse sulcal rings. 

  Notice in Fig. 3A that as k2 increases, the first pattern it 
intersects is A11. If f is increased (Fig. 3B), the curves shift and 
now as k2 increases it intersects A02 before A11; therefore one 
transverse sulcus could form before a sectorial sulcus. If f is 
increased further (Fig. 3C), as k2 increases it intersects A04 
before A11, meaning two transverse sulci could form before 
the first sectorial sulcus.  These scenarios are similar to what 
occurs in the cat, lemur, and human (see Figs. 3D-3E). 
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Fig. 3: Predicted Development of Folds in Cortices of Three Species. 
Top (A - C): As focal distance, f, increases, the order in which sulci form 
is predicted to change. A) When f = 3, an A11 pattern (one sectoral sulcus) 
is predicted to occur first. B) When f = 4, an A02 pattern forms before an 
A11 pattern, meaning one transverse sulcus could form before a sectorial 
sulcus. C) When f = 6, an A04 pattern forms before A11 meaning two 
transverse sulci could form before the first sectorial sulcus. Bottom (D –
F): The top row shows the formation of transverse sulcal rings. The 
bottom row shows the subsequent creation of a certain number of sectorial 
sulci for D) Cat (modified from [9]), E) Lemur (modified from [10]),      
F) Human (modified from [10]). 
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