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Human Brain Mapping: the setting

Non-invasive scans — PET, MRI, fMRI — are central in studies of brain
anatomy and function

Comparisons, atlases, statistics; various subjects/times/regions

Neural activity is largely in the cortex or grey matter, the roughly 2-4 mm
thick surface of the brain.

That surface is highly (!) convoluted, with roughly 60% buried in sulci/fissures

Cortical hemispheres and cerebellum are topological spheres, hence simply
connected (no handles)

Goal of Flat Mapping: Exploit the 2D surface topology of the cortex by
mapping it to a 2D setting
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Surface Extraction – a brief flyover

Acquisition of target volume (3D voxels):

perform scan — bias field correction, etc.
strip skin, bone, vessels, dura, etc.
determine isosurface level
Perhaps warp, average, template, etc.

Segmentation: distinguish white/gray/CSF.

Extraction: marching cubes/tetrahedra or emerging alternatives to arrive at a
surface mesh.

Parcellation: identify and color lobes/features.

Topological correction: remove handles, walls, holes in the surface mesh.

Our starting point: A topologically correct triangulation of the desired surface,
typically a topological sphere or disc.
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Sample Cerebrum

Left cerebral hemisphere, lateral view, color coded by lobe; the occipital lobe
(visual cortex) has been isolated and is marked by (simulated) functional activity.
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Basics of Flat Mapping

Target: A flat map of a surface or partial surface

�

is a 1-to-1 continuous function

��� � � � �

to one of the standard three geometries

�

: the plane

�

, the unit
sphere

�

, or the unit disc

	

(as the “hyperbolic” plane).

History of methods:

Graph theoretic

Metric — minimize linear/areal distortion (perhaps with ad hoc cuts)

Circle Packing

PDE — Laplace-Beltrami, Cauchy-Riemann

Differential geometric — harmonic maps, holomorphic 1-forms

Two important distinctions for this talk:

full surfaces partial surfaces

visualization analysis
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Flat Maps of a Left Cerebrum

Sphere
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Flat Maps of a Left Cerebrum

Sphere Plane Hyperbolic Plane
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Typical Flat Map Uses

Flat maps represent surface

�

in a new setting. (Note, however, that the
associated 3D data remains available.)

The standard geometries each have notions of:
Length/area/angle
straight lines (geodesics) and circles
transformations: rigid motions, similarities

Sample uses for the resulting flat maps:
New visualization options
2D Warping/registration
Localization/tracking
Interacting with 3D data
Comparisons/statistics
New measures of “shape”

The spherical and euclidean geometries are familiar, but hyperbolic geometry is
new in this scientific setting.
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The Hyperbolic Plane

The unit disc,

	�� ���� � � � �

, with the Poincarè metric

	�
 � � 	� � � �
�� � ��

is one
of the standard models for the hyperbolic plane.

Unit circle = infinitely distant “ideal” boundary
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The Hyperbolic Plane

The unit disc,

	�� ���� � � � �

, with the Poincarè metric is a standard model for the
hyperbolic plane.

Unit circle = infinitely distant “ideal” boundary

Circles = euclidean circles (but with hyperbolic center/radius)

Geodesics = arcs of euclidean circles orthogonal to unit circle

horocycles = circles of infinite hyperbolic radius

Isometries = Möbius transformations of

	

given by � � � �
� �

� � � �
�

� � � �� � .

These preserve circles, geodesics, hyperbolic distance/area
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Surface Geometry

Surface-based brain studies focus on intrinsic surface properties (versus
extrinsic ones associated with its embedding)

Most familiar:
Euclidean lengths, areas
Gaussian curvature

Gauss: There exists no length/area preserving map from a surface with
nonconstant gaussian curvature (e.g., a cortical surface) to a surface of
constant gaussian curvature.

Flat maps preserving lengths/areas never exist!

Less familiar is the “angle” information in the (oriented) surfaces known as
“Riemann surfaces”.

In practice, cortical surfaces and triangulations approximating cortical
surfaces may be treated as Riemann surfaces.
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Riemann Surfaces — Conformal Structures

A Riemann surface is one having a consistent way to measure angle. Its
“conformal structure” is given by an atlas

�� � � �����

� �
� �

of charts, that is,
continuous 1-to-1 maps

� � � �� � � �

from open sets

�� to the plane.
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Conformal Structures — Riemann Surfaces

A Riemann surface

�

is one having a consistent way to measure angle. Its
“conformal structure” is given by an atlas

�� � � �����

� �
� �

of charts, i.e., continuous
1-to-1 maps

� � � �� � � �

from open sets

�� � �

to the plane

�

.
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� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

���
���

	

�� 
 �� ��

Transition maps

� � � � ��� in the plane must be analytic, hence conformal; that is,
they preserve angles (magnitude and orientation) at which curves intersect.
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Conformal Mapping

Def: A 1-to-1 mapping between Riemann surfaces which preserves angles
(orientation and magnitude) between curves is a conformal map.

Riemann Mapping Theorem: (circa 1851, extended by Koebe) Every simply
connected Riemann surface can be mapped conformally onto one of
or and the resulting map is unique up to Möbius transformations.

Conformal flat maps always exist! Moreover, they’re essentially unique!

Riemann surfaces are in the fundamental core of pure mathematics (with
amazingly nuanced theory — e.g. Teichmüller theory).

Conformal mapping has been a standard tool in science/engineering.
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Classical Engineering Example

p

??

Ground

1 volt
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Note: There’s no claim that “angle” has some intrinsic meaning vis-a-vis brain
mapping — it simply has a rich theory to exploit!
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A non-Classical Approach

Seeing the theory is one thing, carrying it out in practice is another. Here is where
“circle packing” enters, with the amazing observations of William Thurston.
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Circle Packing Basics

Koebe-Andreev-Thurston: Given a triangulation

�

of a topological
sphere, there exists a (univalent) circle packing

��� in the round sphere

�

having the pattern prescribed by

�

. This packing is unique up to inversions
and essentially unique (i.e., up to Möbius transformations).

By singling out one vertex, this implies: Given a finite triangulation of a
closed disc, there exists an essentially unique circle packing in
whose boundary circles are horocycles.

D
K

Each vertex has a corresponding circle . if is an edge of ,
then and are tangent. if is an oriented face of , then

is an oriented triple of circles.
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Packing Plasticity

Extensions of the theory give an infinite variety of different circle packings for the
same combinatorics

�

: different boundary radii, boundary angle sums,
geometries, etc.

"Maximal" packing P_K

Disc

Sphere

Specified boundary radii

Specified Boundary angles

Common Combinatorics K
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Genus 0 “Dessin”
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Genus 2 “Dessin”
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Conformal Tiling
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Conformal Welding
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Conformal Flattening

cP

ftn

cQ

mS
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Discrete Conformal Maps (DCM)

Def: A discrete conformal map is one which maps a surface with
triangulation

�

to the carrier underlying a circle packing

�

which has the
combinatorics of

�

.

Mathematical issues remain regarding circle packing methods; I don’t minimize
these, but our interest is in the use of conformal information.
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The Reality

Numerically computed “conformal” maps never preserve angles!

Conformality lies in quantifiable continuum: quasiconformal maps have
dilatations . “Conformal” is equivalent to “ -quasiconformal”. A

-quasiconformal map has maximum local ’distortion’ of roughly 50%.

In practice, ALL computed ’conformal’ maps are ’quasiconformal’.

Quasiconformal theory is itself rich and important in both pure and applied
mathematics

-quasiconformal maps converge to conformal maps as .

“Angle” not preserved?! Does this mean that Elvis has left the building??

NO. There exist non-local, “ensemble” conformal features which are
(quasi)preserved under (quasi)conformal maps. These are legitimate targets for
computation.
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Ensemble Conformal Features

We concentrate first on classical “Extremal Lengths” (EL).

For euclidean rectangle , EL ( distance between ’ends’).

For round annulus , EL .

W

L

R

r

Every region in a Riemann surface which is a conformal rectangle or a
conformal annulus inherits the EL of a euclidean rectangle or “round” annulus.

EL’s are preserved under conformal maps and preserved up to factor at most
for -quasiconformal maps.

EL’s don’t depend on lengths or areas or how the region is embedded — they
reflect conformal information intrinsic to the surface.
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Sample Mapping Experiments
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DCM
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DCM

Proj
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Twin Studies

(Preliminary work by Monica Hurdal and Kelly Botteron with Michael Miller’s lab at
Johns-Hopkins.)

– p.38/48



Imposing Grids
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Maximal Packing

DCM

D
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Maximal Packing

DCM

DCutout

– p.42/48



Maximal Packing

DCM

DCutout

Annular Packing
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Notions of conformal ’Shape’
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Summary

Could the “ensemble conformal features” become a part of the normal processing
pipeline?

“Conformal” is the aim. Circle packing may well be replaced, but is currently
unmatched in flexibility; for some purposes it remains the only numerical
method.

Goal is conformal “information”, not necessarily visualization.

Many mathematical issues — algorithms, speed, robustness, and
manipulations.
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Summary

Many remaining scientific issues — time will tell if surface-based methods
benefit from sophisticated mathematical structures.

Key goal is development of meaningful new ensemble features, and that
requires knocking the mathematics against real data.

The apparent need for multi-resolution processing in cortical and other 3D
studies is a major mathematical challenge as well.

How are we doing?

Science Mathematics

It’s still a stretch!
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Information

web: http://www.math.utk.edu/ kens
e-mail: kens@math.utk.edu

NSF, FRG grant collaboration: Phil Bowers, Monica Hurdal, and De Witt
Sumners (Florida State), Chuck Collins and Ken Stephenson (Tennessee),
David Rottenberg (Minnesota).

Sources:
Ahlfors, “Complex Analysis”
Ahlfors, “Conformal Invariants”
Lehto/Virtanen, “Quasiconformal mapping”
Circle packing surveys: see my web site
Forthcoming book, Cambridge University Press
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