Conformal Mapping of Brain Surfaces: Circle Packing and the Riemann Mapping Theorem

IPAM — Mathematics in Brain Imaging

Ken Stephenson

kens@math.utk.edu

University of Tennessee, Knoxville

Acknowledgments

This talk represents joint work with Monica Hurdal.

Support by NSF through a collaborative Focused Research Group Grant: Phil Bowers, Monica Hurdal, and De Witt Sumners (Florida State); Chuck Collins and Ken Stephenson (Tennessee); David Rottenberg (Minnesota).

Data curtesy of David Rottenberg, Michael Miller, and Kelly Botteron.

Thanks to Bernhard Riemann.

All the errors, mathematical and scientific, are mine.

The Brain Mapping Setting

- The Brain Mapping Setting
- Surface Extraction a Flyover

- The Brain Mapping Setting
- Surface Extraction a Flyover
- Flat Mapping Mechanics

- The Brain Mapping Setting
- Surface Extraction a Flyover
- Flat Mapping Mechanics
- The Mathematics of Conformality

- The Brain Mapping Setting
- Surface Extraction a Flyover
- Flat Mapping Mechanics
- The Mathematics of Conformality
- Circle Packing a Flyover

- The Brain Mapping Setting
- Surface Extraction a Flyover
- Flat Mapping Mechanics
- The Mathematics of Conformality
- Circle Packing a Flyover
- Ensemble Conformal Features (ECF's)

- The Brain Mapping Setting
- Surface Extraction a Flyover
- Flat Mapping Mechanics
- The Mathematics of Conformality
- Circle Packing a Flyover
- Ensemble Conformal Features (ECF's)
- Example Maps/Manipulations

Non-invasive scans — PET, MRI, fMRI — are central in studies of brain anatomy and function

- Non-invasive scans PET, MRI, fMRI are central in studies of brain anatomy and function
- Comparisons, atlases, statistics; various subjects/times/regions

- Non-invasive scans PET, MRI, fMRI are central in studies of brain anatomy and function
- Comparisons, atlases, statistics; various subjects/times/regions
- Neural activity is largely in the cortex or grey matter, the roughly 2-4 mm thick surface of the brain.

- Non-invasive scans PET, MRI, fMRI are central in studies of brain anatomy and function
- Comparisons, atlases, statistics; various subjects/times/regions
- Neural activity is largely in the cortex or grey matter, the roughly 2-4 mm thick surface of the brain.
- That surface is highly (!) convoluted, with roughly 60% buried in sulci/fissures

- Non-invasive scans PET, MRI, fMRI are central in studies of brain anatomy and function
- Comparisons, atlases, statistics; various subjects/times/regions
- Neural activity is largely in the cortex or grey matter, the roughly 2-4 mm thick surface of the brain.
- That surface is highly (!) convoluted, with roughly 60% buried in sulci/fissures
- Cortical hemispheres and cerebellum are topological spheres, hence simply connected (no handles)

- Non-invasive scans PET, MRI, fMRI are central in studies of brain anatomy and function
- Comparisons, atlases, statistics; various subjects/times/regions
- Neural activity is largely in the cortex or grey matter, the roughly 2-4 mm thick surface of the brain.
- That surface is highly (!) convoluted, with roughly 60% buried in sulci/fissures
- Cortical hemispheres and cerebellum are topological spheres, hence simply connected (no handles)

Goal of Flat Mapping: Exploit the 2D surface topology of the cortex by mapping it to a 2D setting

- Non-invasive scans PET, MRI, fMRI are central in studies of brain anatomy and function
- Comparisons, atlases, statistics; various subjects/times/regions
- Neural activity is largely in the cortex or grey matter, the roughly 2-4 mm thick surface of the brain.
- That surface is highly (!) convoluted, with roughly 60% buried in sulci/fissures
- Cortical hemispheres and cerebellum are topological spheres, hence simply connected (no handles)

Goal of Flat Mapping: Exploit the 2D surface topology of the cortex by mapping it to a 2D setting

THE ECONOMIST JANUARY 27TH 2001

Acquisition of target volume (3D voxels):

- Acquisition of target volume (3D voxels):
 - perform scan bias field correction, etc.
 - strip skin, bone, vessels, dura, etc.
 - determine isosurface level
 - Perhaps warp, average, template, etc.

- Acquisition of target volume (3D voxels):
 - perform scan bias field correction, etc.
 - strip skin, bone, vessels, dura, etc.
 - determine isosurface level
 - Perhaps warp, average, template, etc.
- Segmentation: distinguish white/gray/CSF.

- Acquisition of target volume (3D voxels):
 - perform scan bias field correction, etc.
 - strip skin, bone, vessels, dura, etc.
 - determine isosurface level
 - Perhaps warp, average, template, etc.
- Segmentation: distinguish white/gray/CSF.
- Extraction: marching cubes/tetrahedra or emerging alternatives to arrive at a surface mesh.

- Acquisition of target volume (3D voxels):
 - perform scan bias field correction, etc.
 - strip skin, bone, vessels, dura, etc.
 - determine isosurface level
 - Perhaps warp, average, template, etc.
- Segmentation: distinguish white/gray/CSF.
- Extraction: marching cubes/tetrahedra or emerging alternatives to arrive at a surface mesh.
- Parcellation: identify and color lobes/features.

- Acquisition of target volume (3D voxels):
 - perform scan bias field correction, etc.
 - strip skin, bone, vessels, dura, etc.
 - determine isosurface level
 - Perhaps warp, average, template, etc.
- Segmentation: distinguish white/gray/CSF.
- Extraction: marching cubes/tetrahedra or emerging alternatives to arrive at a surface mesh.
- Parcellation: identify and color lobes/features.
- Topological correction: remove handles, walls, holes in the surface mesh.

- Acquisition of target volume (3D voxels):
 - perform scan bias field correction, etc.
 - strip skin, bone, vessels, dura, etc.
 - determine isosurface level
 - Perhaps warp, average, template, etc.
- Segmentation: distinguish white/gray/CSF.
- Extraction: marching cubes/tetrahedra or emerging alternatives to arrive at a surface mesh.
- Parcellation: identify and color lobes/features.
- Topological correction: remove handles, walls, holes in the surface mesh.

Our starting point: A topologically correct triangulation of the desired surface, typically a topological sphere or disc.

Sample Cerebrum

Left cerebral hemisphere, lateral view, color coded by lobe; the occipital lobe (visual cortex) has been isolated and is marked by (simulated) functional activity.

Target: A **flat map** of a surface or partial surface S is a 1-to-1 continuous function $f : S \longrightarrow \mathbb{G}$ to one of the standard three geometries \mathbb{G} : the plane \mathbb{C} , the unit sphere \mathbb{P} , or the unit disc \mathbb{D} (as the "hyperbolic" plane).

Target: A **flat map** of a surface or partial surface S is a 1-to-1 continuous function $f : S \longrightarrow \mathbb{G}$ to one of the standard three geometries \mathbb{G} : the plane \mathbb{C} , the unit sphere \mathbb{P} , or the unit disc \mathbb{D} (as the "hyperbolic" plane). History of methods:

Target: A **flat map** of a surface or partial surface S is a 1-to-1 continuous function $f: S \longrightarrow \mathbb{G}$ to one of the standard three geometries \mathbb{G} : the plane \mathbb{C} , the unit sphere \mathbb{P} , or the unit disc \mathbb{D} (as the "hyperbolic" plane). History of methods:

- Graph theoretic
- Metric minimize linear/areal distortion (perhaps with ad hoc cuts)
- Circle Packing
- PDE Laplace-Beltrami, Cauchy-Riemann
- Differential geometric harmonic maps, holomorphic 1-forms

Target: A **flat map** of a surface or partial surface S is a 1-to-1 continuous function $f: S \longrightarrow \mathbb{G}$ to one of the standard three geometries \mathbb{G} : the plane \mathbb{C} , the unit sphere \mathbb{P} , or the unit disc \mathbb{D} (as the "hyperbolic" plane). History of methods:

- Graph theoretic
- Metric minimize linear/areal distortion (perhaps with ad hoc cuts)
- Circle Packing
- PDE Laplace-Beltrami, Cauchy-Riemann
- Differential geometric harmonic maps, holomorphic 1-forms

Two important distinctions for this talk:

- **9** full surfaces \leftrightarrow partial surfaces
- visualization \leftrightarrow analysis

Flat Maps of a Left Cerebrum

Flat Maps of a Left Cerebrum

Sphere

Plane

Hyperbolic Plane

Flat maps represent surface S in a new setting. (Note, however, that the associated 3D data remains available.)

- Flat maps represent surface S in a new setting. (Note, however, that the associated 3D data remains available.)
- The standard geometries each have notions of:
 - Length/area/angle
 - straight lines (geodesics) and circles
 - transformations: rigid motions, similarities

- Flat maps represent surface S in a new setting. (Note, however, that the associated 3D data remains available.)
- The standard geometries each have notions of:
 - Length/area/angle
 - straight lines (geodesics) and circles
 - transformations: rigid motions, similarities
- Sample uses for the resulting flat maps:
 - New visualization options
 - 2D Warping/registration
 - Localization/tracking
 - Interacting with 3D data
 - Comparisons/statistics
 - New measures of "shape"

- Flat maps represent surface S in a new setting. (Note, however, that the associated 3D data remains available.)
- The standard geometries each have notions of:
 - Length/area/angle
 - straight lines (geodesics) and circles
 - transformations: rigid motions, similarities
- Sample uses for the resulting flat maps:
 - New visualization options
 - 2D Warping/registration
 - Localization/tracking
 - Interacting with 3D data
 - Comparisons/statistics
 - New measures of "shape"

The spherical and euclidean geometries are familiar, but hyperbolic geometry is new in this scientific setting.

The Hyperbolic Plane

The unit disc, $\mathbb{D} = \{|z| < 1\}$, with the Poincarè metric $ds = 2 dz/(1 - |z|^2)$ is one of the standard models for the hyperbolic plane.

The Hyperbolic Plane

The unit disc, $\mathbb{D} = \{|z| < 1\}$, with the Poincarè metric $ds = 2 dz/(1 - |z|^2)$ is one of the standard models for the hyperbolic plane.

Unit circle = infinitely distant "ideal" boundary

- **Unit circle** = infinitely distant "ideal" boundary
- Circles = euclidean circles (differ in center/radius)

- Unit circle = infinitely distant "ideal" boundary
- Circles = euclidean circles (differ in center/radius)
- Geodesics = arcs of euclidean circles orthogonal to unit circle

- Unit circle = infinitely distant "ideal" boundary
- Circles = euclidean circles (differ in center/radius)
- Geodesics = arcs of euclidean circles orthogonal to unit circle
- horocycles = circles of infinite hyperbolic radius

- **Unit circle** = infinitely distant "ideal" boundary
- Circles = euclidean circles (but with hyperbolic center/radius)
- Geodesics = arcs of euclidean circles orthogonal to unit circle
- horocycles = circles of infinite hyperbolic radius
- Isometries = Möbius transformations of \mathbb{D} given by $z \mapsto e^{i\theta} \frac{(z-\alpha)}{(1-\overline{\alpha}z)}$.
 These preserve circles, geodesics, hyperbolic distance/area

Surface-based brain studies focus on **intrinsic** surface properties (versus extrinsic ones associated with its embedding)

- Surface-based brain studies focus on **intrinsic** surface properties (versus extrinsic ones associated with its embedding)
- Most familiar:
 - Euclidean lengths, areas
 - Gaussian curvature

- Surface-based brain studies focus on **intrinsic** surface properties (versus extrinsic ones associated with its embedding)
- Most familiar:
 - Euclidean lengths, areas
 - Gaussian curvature

Gauss: There exists no length/area preserving map from a surface with nonconstant gaussian curvature (e.g., a cortical surface) to a surface of constant gaussian curvature.

• Flat maps preserving lengths/areas never exist!

- Surface-based brain studies focus on **intrinsic** surface properties (versus extrinsic ones associated with its embedding)
- Most familiar:
 - Euclidean lengths, areas
 - Gaussian curvature

Gauss: There exists no length/area preserving map from a surface with nonconstant gaussian curvature (e.g., a cortical surface) to a surface of constant gaussian curvature.

- Flat maps preserving lengths/areas never exist!
 - Less familiar is the "angle" information in the (oriented) surfaces known as "Riemann surfaces".

- Surface-based brain studies focus on intrinsic surface properties (versus extrinsic ones associated with its embedding)
- Most familiar:
 - Euclidean lengths, areas
 - Gaussian curvature

Gauss: There exists no length/area preserving map from a surface with nonconstant gaussian curvature (e.g., a cortical surface) to a surface of constant gaussian curvature.

- Flat maps preserving lengths/areas never exist!
 - Less familiar is the "angle" information in the (oriented) surfaces known as "Riemann surfaces".
 - In practice, cortical surfaces and triangulations approximating cortical surfaces may be treated as Riemann surfaces.

Riemann Surfaces — Conformal Structures

A **Riemann surface** is one having a consistent way to measure angle. Its "conformal structure" is given by an atlas $\mathcal{A} = \{(U_j, \phi_j)\}$ of charts, that is, continuous 1-to-1 maps $\phi_j : U_j \longrightarrow \mathbb{C}$ from open sets U_j to the plane.

Riemann Surfaces — Conformal Structures

A **Riemann surface** is one having a consistent way to measure angle. Its "conformal structure" is given by an atlas $\mathcal{A} = \{(U_j, \phi_j)\}$ of charts, that is, continuous 1-to-1 maps $\phi_j : U_j \longrightarrow \mathbb{C}$ from open sets U_j to the plane.

Conformal Structures — Riemann Surfaces

A **Riemann surface** S is one having a consistent way to measure angle. Its "conformal structure" is given by an atlas $\mathcal{A} = \{(U_j, \phi_j)\}$ of charts, i.e., continuous 1-to-1 maps $\phi_j : U_j \longrightarrow \mathbb{C}$ from open sets $U_j \subset S$ to the plane \mathbb{C} .

Transition maps $\phi_j \circ \phi_k^{-1}$ in the plane must be analytic, hence **conformal**; that is, they preserve angles (magnitude and orientation) at which curves intersect.

Def: A 1-to-1 mapping between Riemann surfaces which preserves angles (orientation and magnitude) between curves is a conformal map.

Def: A 1-to-1 mapping between Riemann surfaces which preserves angles (orientation and magnitude) between curves is a conformal map.

Riemann Mapping Theorem: (circa 1851, extended by Koebe) *Every simply* connected Riemann surface can be mapped conformally onto one of \mathbb{P}, \mathbb{C} , or \mathbb{D} and the resulting map is unique up to Möbius transformations.

• <u>Conformal</u> flat maps always exist! Moreover, they're essentially unique!

Def: A 1-to-1 mapping between Riemann surfaces which preserves angles (orientation and magnitude) between curves is a conformal map.

- <u>Conformal</u> flat maps **always exist**! Moreover, they're essentially unique!
 - Riemann surfaces are in the fundamental core of pure mathematics (with amazingly nuanced theory e.g. Teichmüller theory).

Def: A 1-to-1 mapping between Riemann surfaces which preserves angles (orientation and magnitude) between curves is a conformal map.

- <u>Conformal</u> flat maps **always exist**! Moreover, they're essentially unique!
 - Riemann surfaces are in the fundamental core of pure mathematics (with amazingly nuanced theory e.g. Teichmüller theory).
 - Conformal mapping has been a standard tool in science/engineering.

Def: A 1-to-1 mapping between Riemann surfaces which preserves angles (orientation and magnitude) between curves is a conformal map.

- <u>Conformal</u> flat maps **always exist**! Moreover, they're essentially unique!
 - Riemann surfaces are in the fundamental core of pure mathematics (with amazingly nuanced theory e.g. Teichmüller theory).
 - Conformal mapping has been a standard tool in science/engineering.
 - There are thousands of papers and books on the theory and computation of conformal maps of plane regions.

Def: A 1-to-1 mapping between Riemann surfaces which preserves angles (orientation and magnitude) between curves is a conformal map.

- <u>Conformal</u> flat maps **always exist**! Moreover, they're essentially unique!
 - Riemann surfaces are in the fundamental core of pure mathematics (with amazingly nuanced theory e.g. Teichmüller theory).
 - Conformal mapping has been a standard tool in science/engineering.
 - There are thousands of papers and books on the theory and computation of conformal maps of plane regions.
 - However, only in the last decade have methods been developed to approximate conformal maps for general **non-planar** surfaces.

Classical Engineering Example

Classical Engineering Example

Classical Engineering Example

Note: There's no claim that "angle" has some intrinsic **meaning** vis-a-vis brain mapping — it simply has a rich theory to exploit!

Circle Packing Basics

Koebe-Andreev-Thurston: Given a triangulation T of a topological sphere, there exists a (univalent) circle packing P_T in the round sphere \mathbb{P} having the pattern prescribed by T. This packing is unique up to inversions and essentially unique (i.e., up to Möbius transformations).

Circle Packing Basics

Koebe-Andreev-Thurston: Given a triangulation T of a topological sphere, there exists a (univalent) circle packing P_T in the round sphere \mathbb{P} having the pattern prescribed by T. This packing is unique up to inversions and essentially unique (i.e., up to Möbius transformations).

By singling out one vertex, this implies: Given a finite triangulation K of a closed disc, there exists an essentially unique circle packing P_K in \mathbb{D} whose boundary circles are horocycles.

Circle Packing Basics

Koebe-Andreev-Thurston: Given a triangulation T of a topological sphere, there exists a (univalent) circle packing P_T in the round sphere \mathbb{P} having the pattern prescribed by T. This packing is unique up to inversions and essentially unique (i.e., up to Möbius transformations).

By singling out one vertex, this implies: Given a finite triangulation K of a closed disc, there exists an essentially unique circle packing P_K in \mathbb{D} whose boundary circles are horocycles.

• Each vertex $v \in K$ has a corresponding circle C_v . • if $\langle u, v \rangle$ is an edge of K, then C_u and C_v are tangent. • if $\langle u, v, w \rangle$ is an oriented face of K, then $\langle C_u, C_v, C_w \rangle$ is an oriented triple of circles.

Packing Plasticity

Extensions of the theory give an infinite variety of different circle packings for the same combinatorics K: different boundary radii, boundary angle sums, geometries, etc.

Common Combinatorics K

Specified boundary radii

"Maximal" packing P_K

Specified Boundary angles

Genus 0 "Dessin"

Genus 2 "Dessin"

Conformal Tiling

Conformal Welding

Conformal Flattening

Discrete Conformal Maps (DCM)

Def: A discrete conformal map is one which maps a surface with triangulation K to the carrier underlying a circle packing P which has the combinatorics of K.

Discrete Conformal Maps (DCM)

Def: A discrete conformal map is one which maps a surface with triangulation K to the carrier underlying a circle packing P which has the combinatorics of K.

Mathematical issues remain regarding circle packing methods; I don't minimize these, but our interest is in the use of conformal information.

Numerically computed "conformal" maps never preserve angles!

Conformality lies in quantifiable continuum: **quasiconformal** maps have **dilatations** $\kappa \ge 1$. "Conformal" is equivalent to "1-quasiconformal". A 1.5-quasiconformal map has maximum local 'distortion' of roughly 50%.

- Conformality lies in quantifiable continuum: **quasiconformal** maps have **dilatations** $\kappa \ge 1$. "Conformal" is equivalent to "1-quasiconformal". A 1.5-quasiconformal map has maximum local 'distortion' of roughly 50%.
- In practice, ALL computed 'conformal' maps are 'quasiconformal'.

- Conformality lies in quantifiable continuum: **quasiconformal** maps have **dilatations** $\kappa \ge 1$. "Conformal" is equivalent to "1-quasiconformal". A 1.5-quasiconformal map has maximum local 'distortion' of roughly 50%.
- In practice, ALL computed 'conformal' maps are 'quasiconformal'.
- Quasiconformal theory is itself rich and important in both pure and applied mathematics

- Conformality lies in quantifiable continuum: **quasiconformal** maps have **dilatations** $\kappa \ge 1$. "Conformal" is equivalent to "1-quasiconformal". A 1.5-quasiconformal map has maximum local 'distortion' of roughly 50%.
- In practice, ALL computed 'conformal' maps are 'quasiconformal'.
- Quasiconformal theory is itself rich and important in both pure and applied mathematics
- κ -quasiconformal maps converge to conformal maps as $\kappa \longrightarrow 1$.

Numerically computed "conformal" maps never preserve angles!

- Conformality lies in quantifiable continuum: **quasiconformal** maps have **dilatations** $\kappa \ge 1$. "Conformal" is equivalent to "1-quasiconformal". A 1.5-quasiconformal map has maximum local 'distortion' of roughly 50%.
- In practice, ALL computed 'conformal' maps are 'quasiconformal'.
- Quasiconformal theory is itself rich and important in both pure and applied mathematics
- \checkmark κ -quasiconformal maps converge to conformal maps as $\kappa \longrightarrow 1$.

"Angle" not preserved?! Does this mean that Elvis has left the building??

Numerically computed "conformal" maps never preserve angles!

- Conformality lies in quantifiable continuum: **quasiconformal** maps have **dilatations** $\kappa \ge 1$. "Conformal" is equivalent to "1-quasiconformal". A 1.5-quasiconformal map has maximum local 'distortion' of roughly 50%.
- In practice, ALL computed 'conformal' maps are 'quasiconformal'.
- Quasiconformal theory is itself rich and important in both pure and applied mathematics
- \checkmark κ -quasiconformal maps converge to conformal maps as $\kappa \longrightarrow 1$.

"Angle" not preserved?! Does this mean that Elvis has left the building??

NO. There exist non-local, "ensemble" conformal features which are (quasi)preserved under (quasi)conformal maps. These are legitimate targets for computation.

We concentrate first on classical "Extremal Lengths" (EL).

We concentrate first on classical "Extremal Lengths" (EL).

Solution For euclidean rectangle R, EL(R) = L/W (L = distance between 'ends').

We concentrate first on classical "Extremal Lengths" (EL).

- For euclidean rectangle R, EL(R) = L/W (L = distance between 'ends').
- For round annulus $A = \{r < |z| < R\}$, $\mathsf{EL}(A) = \log(R/r)/(2\pi)$.

We concentrate first on classical "Extremal Lengths" (EL).

- For euclidean rectangle R, EL(R) = L/W (L = distance between 'ends').
- For round annulus $A = \{r < |z| < R\}$, $\mathsf{EL}(A) = \log(R/r)/(2\pi)$.

 Every region in a Riemann surface which is a conformal rectangle or a conformal annulus inherits the EL of a euclidean rectangle or "round" annulus.

We concentrate first on classical "Extremal Lengths" (EL).

- For euclidean rectangle R, EL(R) = L/W (L = distance between 'ends').
- For round annulus $A = \{r < |z| < R\}$, $EL(A) = log(R/r)/(2\pi)$.

- Every region in a Riemann surface which is a conformal rectangle or a conformal annulus inherits the EL of a euclidean rectangle or "round" annulus.
- EL's are preserved under conformal maps and preserved up to factor at most κ for κ -quasiconformal maps.

We concentrate first on classical "Extremal Lengths" (EL).

- For euclidean rectangle R, EL(R) = L/W (L = distance between 'ends').
- For round annulus $A = \{r < |z| < R\}$, $\mathsf{EL}(A) = \log(R/r)/(2\pi)$.

- Every region in a Riemann surface which is a conformal rectangle or a conformal annulus inherits the EL of a euclidean rectangle or "round" annulus.
- EL's are preserved under conformal maps and preserved up to factor at most κ for κ -quasiconformal maps.
- EL's don't depend on lengths or areas or how the region is embedded they reflect **conformal** information intrinsic to the surface.

Sample Mapping Experiments

Twin Studies

(Preliminary work by Monica Hurdal and Kelly Botteron with Michael Miller's lab at Johns-Hopkins.)

Imposing Grids

Notions of conformal 'Shape'

– p.45/4

Could the "ensemble conformal features" become a part of the normal processing pipeline?

Could the "ensemble conformal features" become a part of the normal processing pipeline?

"Conformal" is the aim. Circle packing may well be replaced, but is currently unmatched in flexibility; for some purposes it remains the only numerical method.

Could the "ensemble conformal features" become a part of the normal processing pipeline?

- "Conformal" is the aim. Circle packing may well be replaced, but is currently unmatched in flexibility; for some purposes it remains the only numerical method.
- Goal is conformal "information", not necessarily visualization.

Could the "ensemble conformal features" become a part of the normal processing pipeline?

- "Conformal" is the aim. Circle packing may well be replaced, but is currently unmatched in flexibility; for some purposes it remains the only numerical method.
- Goal is conformal "information", not necessarily visualization.
- Many mathematical issues algorithms, speed, robustness, and manipulations.

Many remaining scientific issues — time will tell if surface-based methods benefit from sophisticated mathematical structures.

- Many remaining scientific issues time will tell if surface-based methods benefit from sophisticated mathematical structures.
- Key goal is development of meaningful new ensemble features, and that requires knocking the mathematics against real data.

- Many remaining scientific issues time will tell if surface-based methods benefit from sophisticated mathematical structures.
- Key goal is development of meaningful new ensemble features, and that requires knocking the mathematics against real data.
- The apparent need for multi-resolution processing in cortical and other 3D studies is a major mathematical challenge as well.

- Many remaining scientific issues time will tell if surface-based methods benefit from sophisticated mathematical structures.
- Key goal is development of meaningful new ensemble features, and that requires knocking the mathematics against real data.
- The apparent need for multi-resolution processing in cortical and other 3D studies is a major mathematical challenge as well.

How are we doing?
Summary

- Many remaining scientific issues time will tell if surface-based methods benefit from sophisticated mathematical structures.
- Key goal is development of meaningful new ensemble features, and that requires knocking the mathematics against real data.
- The apparent need for multi-resolution processing in cortical and other 3D studies is a major mathematical challenge as well.

How are we doing?

It's still a stretch!

Information

- web: http://www.math.utk.edu/ kens e-mail: kens@math.utk.edu
- NSF, FRG grant collaboration: Phil Bowers, Monica Hurdal, and De Witt Sumners (Florida State), Chuck Collins and Ken Stephenson (Tennessee), David Rottenberg (Minnesota).
- Sources:
 - Ahlfors, "Complex Analysis"
 - Ahlfors, "Conformal Invariants"
 - Lehto/Virtanen, "Quasiconformal mapping"
 - Circle packing surveys: see my web site
 - Forthcoming book, Cambridge University Press