From the Martingale Zoo

If you play a succession of fair games, your fortune is a martingale. If the number of games
played has a fixed upper bound, the intuition that “a martingale is fair” works just fine. However, if
it is merely the case that play eventually stops, the expected value of your final fortune may not be
your initial fortune, even though the expected value of your fortune after game n is the same for all
n (Indeed, your final fortune may not even have an expected value.) Thus, to refine one’s intuition,
it is helpful to look at some examples of how martingales can misbehave.

Let Xo be your initial fortune, which in our examples will be a constant. You are allowed to
place bets (of possibly varying amounts) on independent fair games of chance at times 1,2,3,...;
your fortune after game n is X,, . The amount that you bet on game n + 1 is allowed to depend on
the outcomes of the previous games. The martingale property is that, after the game at time n > 1
has taken place (and at time n = 0, when there is no game), the expected value of your fortune after
game n + 1 is your fortune’s current value.

Most of our examples involve coin flipping. For convenience, we allow negative bets: a bet of -1
on heads is the same as a bet of 1 on tails. The amount that we can bet is not restricted by our
fortune: borrowing the amount staked is allowed, and our fortune may be negative.

Our first example is simple yet striking. Start with an initial fortune of 1, and bet your entire
fortune on successive flips of a coin. With probability 1, your final fortune is 0. Note that this
apparent pathology occurs even though your fortune is always nonnegative and there is no borrowing.

Closely related to the above is the so-called “doubling strategy”. Start with 0, bet 2"~ on heads
until heads come up, and then stop. With probability 1, your final fortune is 1. Thus, this strategy
seems to be a sure-fire way to make money.

We can get more dramatic examples using “lottery tickets”. We consider the old-fashioned kind
of lottery, where one ticket always wins the entire pot. We buy one ticket at price 1 for each lottery,
and assume that the lottery at time n has a pot of 2. Using the first Borel-Cantelli lemma, we see
that, with probability 1, every ticket from some point on will be a loser. Thus, in this martingale
our losses will undoubtedly go to infinity. If we sell a “lottery ticket” at each n (that is, play a game
which pays 1 with probability 1 — - and 1 — 2" with probability 2%), then our earnings (winnings)
will undoubtedly grow without bound.

We now consider a general setup, which we shall then specialize to illustrate various types of
martingale behavior, most of which are rather technical. Let ag, a1, as,... be any sequence of real
numbers. Our initial fortune is Xy = ag. Our plan is to bet on heads until heads comes up and
then stop, with the amounts of the bets selected so that if heads comes up for the first time in game
n then our fortune upon winning that game is a,. Thus, we bet a; — a¢ (which may be negative)
on heads in game 1; if tails comes up, our fortune is x1 = 2a¢9 — ay. If tails come up on games
1,...,n, leaving us with a fortune of x,,, then we bet a,+1 — x,, on heads in game n + 1, and have
Tpy1 = 2@, — ap4q if we get tails. We see that x,, = 2"ag — ZZ:1 2n—kg, for n > 1; for later use,
we extend the notation by setting x¢g = ag. For n > 1, our fortune X, is a; with probability 2% for
k=1,...,n, and x, with probability 2% This martingale converges with probability 1 to our final
fortune X, which is a,, with probability 2% for each n > 1.

1. Our first example was the case ag = 1, a,, = 0 for n > 1. The “doubling strategy” is the case
ap=0,a,=1forn>1.

2. According to the Submartingale Convergence Theorem (SCT), a martingale X will converge
if {E[|X,,|]} is bounded ( X is “bounded in L' 7). Taking, for example, a,, = 3", we see that
this boundedness condition is by no means necessary for convergence. However, in this case
X is not integrable, and when the SCT hypotheses apply the limit is integrable. In our
setup, we can show that E[|X,,|] < 2E [|Xo|] + |ao|, so if X is integrable then {E[|X,|]} is
bounded. (After our discussion of this class of examples, we give an example to show that this
implication is not always true.)

3. Our martingale X = {X,,} is uniformly integrable (equivalently, { X, } converges to X, in L)
if and only if X, is integrable and E[X ] = E[Xy] = ag. The conditions are necessary by,



for example, Billingsley, Probability and Measure, Theorem 16.14(i). If the conditions hold,
one can compute that z, = Y~ %5 and from this that the expected value of X, given
the results of games 1,...,n, is X,,. This shows uniform integrability. More concretely, one
can show E[| X, XOOH <23 ‘gk‘. (In our later example, E[X ] = E[X(] but {X,,}
is not uniformly integrable: we emphasize that the equivalence of uniform integrability with
E[X ] = E[Xp] holds for this class of examples but not in general. The equivalence of uniform
integrability with convergence in L' holds for any martingale, via SCT and general convergence

results.)

4. Let a, = 2%" for n > 1, where « is a fixed real number. If o > 1 then X, is not integrable.
We suppose a < 1 We set ag = E[X ], so that the martingale X is uniformly integrable. We
calculate x,, = W for all n > 0. If @ < 0 then 2¢ is a uniform bound for X, and so X
is perfectly well behaved. Let us consider the case 0 < a < 1. For p > 0, we find by explicit
calculation that X is bounded in L? if and only if p < 1/a.

5. Let X* = sup,, | X,|. Let Y have value |z,| if heads occurs for the first time in game n + 1
(in which case Y = |X,|), and Y = 0 if heads never occurs; here we are using our extended
notation g = apg. Then 0 <Y < X* so if X* is integrable then so is Y. Suppose a, > 0
for n > 1 and that the martingale X is uniformly integrable, so that ag = 270;1 e and
T = Yopo, . Then E[Y] = 300 o2y = $3°0°  Ma If we set a, = 25 for n > 1,
we thus have an example in which X is uniformly integrable but X* is not integrable. This
shows that the uniform integrability is not the result of { X,,} being dominated by an integrable
random variable; more technically, the martingale M,, = X,, — X is uniformly integrable but

not in the Hardy space H{.

We can easily give an example (outside our general setup) of a martingale which is not bounded
in L' but converges to an integrable limit. Starting with 0, bet 3" on heads until heads comes up,
and then bet your entire fortune on heads until you lose. This martingale converges to 0, its initial
value, but it is not bounded in L', and thus the convergence does not take place in L'. Note that
E[X.] = E[Xy]; for nonnegative martingales, this condition implies convergence in L!.

Let us now briefly move on to the next level: we use a martingale to define a game sequence. If
Z is a martingale (say, one of the ones we have constructed), then we consider Z,, — Z,,_1 to be the
payoff per unit stake in game n, n > 1; there is no game at n = 0. The amount that we decide to
stake on game n must be “previsible”: that is, dependent only on the information accumulated up
until time n — 1. We note that our games may no longer be independent: in our examples, it was
usually the case that if Z,, — Z,,_1 = 0 for some n, then the same was true for all subsequent n. We
shall consider a single example, using the martingale M defined above to define our game sequence.
We start with a fortune of Xy, = 0. We introduce a second (independent) coin, and flip it at time
n— 1 to decide whether to stake 1 or —1 on game n. Our resulting fortune X, is a martingale. Since
M,, — M,,_; is almost surely eventually zero, X converges with probability 1. We claim that X is
not integrable. Consider the event in which (for the coin defining M) heads occurs for the first time

at time n, so that Xo, = X,,. Then M,, — M,,_1 = a,, — x,—1 is approximately = and we can

n—1
+1 J
show |M,, — M,,_1| > % if n > 3. Half of the time X,, — X,,_; will have the same sign as X, _1,
in which case |Xo| > % We thus see that E[|Xoo|] > > 5 5 27;12 37 = 00. On a technical level,
we have illustrated the fact that the discrete stochastic integral of a bounded previsible process with
respect to a uniformly integrable martingale need not be uniformly integrable (or even bounded in
L'); see the discussion in Williams, Probability with Martingales, pages 151 - 152, which tells where

some of these creatures may be found.




