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2. Integers and Algorithms

2.1. Euclidean Algorithm. Euclidean Algorithm. Suppose a and b are in-
tegers with a ≥ b > 0.

(1) Apply the division algorithm: a = bq + r, 0 ≤ r < b.
(2) Rename b as a and r as b and repeat until r = 0.

The last nonzero remainder is the greatest common divisor of a and b.

The Euclidean Algorithm depends upon the following lemma.

Lemma 2.1.1. If a = bq + r, then GCD(a, b) = GCD(b, r).

Proof. We will show that if a = bq + r, then an integer d is a common divisor
of a and b if, and only if, d is a common divisor of b and r.

Let d be a common divisor of a and b. Then d|a and d|b. Thus d|(a− bq), which
means d|r, since r = a− bq. Thus d is a common divisor of b and r.

Now suppose d is a common divisor of b and r. Then d|b and d|r. Thus d|(bq+ r),
so d|a. Therefore, d must be a common divisor of a and b.

Thus, the set of common divisors of a and b are the same as the set of common
divisors of b and r. It follows that d is the greatest common divisor of a and b if and
only if d is the greatest common divisor of b and r. �

Discussion

The fact that the Euclidean algorithm actually gives the greatest common divi-
sor of two integers follows from the division algorithm and the equality in Lemma
2.1.1. Applying the division algorithm repeatedly as indicated yields a sequence of
remainders r1 > r2 > · · · > rn > 0 = rn+1, where r1 < b. Lemma 2.1.1 says that

GCD(a, b) = GCD(b, r1) = GCD(r1, r2) = · · · = GCD(rn−1, rn).

But, since rn+1 = 0, rn divides rn−1, so that

GCD(rn−1, rn) = rn.

Thus, the last nonzero remainder is the greatest common divisor of a and b.

Example 2.1.1. Find GCD (1317, 56).
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1317 = 56(23) + 29

56 = 29(1) + 27

29 = 27(1) + 2

27 = 2(13) + 1

2 = 1(2) + 0

GCD (1317,56)=1

Example 2.1.1 shows how to apply the Euclidean algorithm. Notice that when
you proceed from one step to the next you make the new dividend the old divisor
(replace a with b) and the new divisor becomes the old remainder (replace b with
r). Recall that you can find the quotient q by dividing b into a on your calculator
and rounding down to the nearest integer. (That is, q = ba/bc.) You can then solve
for r. Alternatively, if your calculator has a mod operation, then r = mod(a, b)
and q = (a − r)/b. Since you only need to know the remainders to find the greatest
common divisor, you can proceed to find them recursively as follows:

Basis. r1 = amod b, r2 = bmod r1.

Recursion. rk+1 = rk−1 mod rk, for k ≥ 2. (Continue until rn+1 = 0 for some n. )

2.2. GCD’s and Linear Combinations.

Theorem 2.2.1. If d = GCD(a, b), then there are integers s and t such that

d = as+ bt.

Moreover, d is the smallest positive integer that can be expressed this way.

Discussion

Theorem 2.2.1 gives one of the most useful characterizations of the greatest com-
mon divisor of two integers. Given integers a and b, the expression as + bt, where s
and t are also integers, is called a linear combination of a and b.

Exercise 2.2.1. Prove that if a, b, s, t, and d are integers such that d|a and d|b,
then d|(as+ bt).

The Euclidean Algorithm can, in fact, be used to provide the representation of
the greatest common divisor of a and b as a linear combination of a and b. Here is
how it would work for the example in Example 2.1.1.



2. INTEGERS AND ALGORITHMS 157

Example 2.2.1. Express 1 = GCD(1317, 56) as a linear combination of 1317 and
56.

Solution: We work backwards using the equations derived by applying the Euclidean
algorithm in example 2.1.1, expressing each remainder as a linear combination of the
associated divisor and dividend:

1 = 27− 13 · 2 linear combination of 2 and 27

1 = 27− 13(29− 27 · 1) substitute 2 = 29− 27(1)

1 = 14 · 27− 13 · 29 linear combination of 27 and 29

1 = 14(56− 1 · 29)− 13 · 29 substitute 27 = 56− 1 · 29

1 = 14 · 56− 27 · 29 linear combination of 29 and 56

1 = 14 · 56− 27(1317− 23 · 56) substitute 29 = 1317− 23 · 56

1 = 635 · 56− 27 · 1317 linear combination of 56 and 1317

(The dividends, divisors, and remainders have been underlined.)

So GCD(1317, 56) = 1 = 1317(−27) + 56(635).

Theorem 2.2.1 can be proved by mathematical induction following the idea in the
preceding example.

Proof of Theorem 2.2.1. Suppose a and b are integers. We may assume a and
b are positive, since GCD(a, b) = GCD(±a,±b). The Euclidean algorithm uses the
division algorithm to produce a sequence of quotients and remainders as follows:

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3
...

rn−2 = rn−1qn + rn

rn−1 = rnqn+1 + 0

where rn is the last nonzero remainder. We will use the second principle of mathe-
matical induction to prove that rk is a linear combination of a and b for 1 ≤ k ≤ n.

1. Basis Step (k = 1). r1 = a− bq1 = a(1) + b(−q1).
2. Induction Step. Suppose ri is a linear combination of a and b for 1 ≤ i ≤ k. For

1 ≤ k ≤ n we have
rk+1 = rk−1 − rkqk+1
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(where r0 = b when k = 1). By the inductive hypothesis rk−1 and rk are linear
combinations of a and b. (This works for k = 1, since r0 = b is trivially a linear
combination of a and b.) Write

rk−1 = as1 + bt1

and

rk = as2 + bt2

for integers s1, t1, s2, t2, and substitute into the equation above:

rk+1 = (as1 + bt1)− (as2 + bt2)qk+1 = a(s1 − s2qk+1) + b(t1 − t2qk+1).

Thus, rk+1 is a linear combination of a and b. By the second principle of math-
ematical induction, rn is a linear combination of a and b. But rn is the greatest
common divisor of a and b. This proves the first part of the theorem.

Next, we show that d is the smallest positive integer expressible as a linear combi-
nation of a and b. Suppose a positive integer c can be expressed as a linear combination
of a and b:

c = ax+ by

for integers x and y. Since d|a and d|b, then d|c, which implies d ≤ c. �

Here is an alternative proof of Theorem 2.2.1 that does not use the Euclidean
algorithm.

Second proof of Theorem 2.2.1. Let S be the set of all positive integers that
can be expressed as a linear combination of the positive integers a and b. Clearly
S 6= ∅, since a, b ∈ S. By the well-ordering principle S has a least element d. We will
prove by contradiction that d|a and d|b.

If d 6 | a, then use the division algorithm to get integers q and r such that

a = dq + r,

where 0 < r < d. Since both a and d are linear combinations of a and b, then
r = a − dq is also. But this means that r ∈ S, contradicting the fact that d is the
smallest member of S.

Similarly, one shows that d|b.

If c is a divisor of a and b, then c divides any linear combination of a and b; hence,
c|d. Thus, d = GCD(a, b). �

Exercise 2.2.2. Prove that if p is a prime number and n is an integer that is not
divisible by p, then there are integers s and t such that ps+ nt = 1. [First show that
GCD(p, n) = 1.]
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Exercise 2.2.3. Prove that if 1 is a linear combination of a and b, then GCD(a, b) =
1.

2.3. Uniqueness of Prime Factorization.

Lemma 2.3.1. If GCD(a, b) = 1 and a|bc, then a|c.

Proof. Assume GCD(a, b) = 1 and a|bc. Write 1 = as + bt for integers s and t.
Multiply both sides by c:

c = acs+ bct.

Since a|bc, a divides this linear combination

a(cs) + (bc)t = c

of a and bc.

�

Theorem 2.3.1. Suppose a and b are integers and p is a prime number. If p|ab,
then p|a or p|b.

Proof. We will prove the equivalent statement: if p|ab and p 6 | a, then p|b. (You
should convince yourself that the two propositional forms P → (Q ∨ R) and (P ∧
¬Q)→ R are equivalent.)

Suppose p|ab and p 6 | a. Then GCD(p, a) = 1. By the Lemma 1, p|b. �

Discussion

Theorem 2.3.1 is very useful in deciding how prime factors are distributed in a
product of two integers. For example, we gave an indirect proof in Module 3.2 that
if the product of two integers x and y is even, then either x is even or y is even. As
we hinted there, a direct proof is possible, and Theorem 2.3.1 provides just the right
information to make it work.

Exercise 2.3.1. Use Theorem 2.3.1 to give a direct proof that if the product of
two integers x and y is even, then either x is even or y is even.

Exercise 2.3.2. Use mathematical induction to prove the following generalization
of Theorem 2.3.1. Suppose a1, a2, ..., an are integers and p is a prime number. If
p|a1a2 · · · an, then p|ai for some i = 1, 2, ..., n. [Hint: The induction step has two
cases.]

Exercise 2.3.3. Use Lemma 2.3.1 to prove that if k, `, and m are positive integers
such that k|m, `|m, and k and ` are relatively prime, then the product k`|m.
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Exercise 2.3.4. Suppose a and b are positive integers, d = GCD(a, b), a = dk,
and b = d`. Prove that k and ` are relatively prime. [Hint: Show that 1 can be
expressed as a linear combination of k and `.]

We can now give a proof of Theorem 6 of Module 5.1 Integers and Division: If a
and b are positive integers, then ab = GCD(a, b) · LCM(a, b).

Proof of Theorem 6, Module 5.1. Let d = GCD(a, b). Write a = dk, b = d`,
where k and ` are positive integers, which, by Exercise 2.3.4, are relatively prime.
Then

ab = (dk)(d`) = d · (k`d) = GCD(a, b) · (k`d).

We will succeed once we show that k`d = LCM(a, b). We will prove this by contra-
diction.

Suppose m = LCM(a, b) and m < k`d. Observe that k`d = (dk)` = a` and
k`d = (d`)k = bk. That is, both a and b divide k`d; hence, their least common
multiple m does also.

Since k|a and `|b, k and ` both divide m; hence, by Exercise 2.3.3, the product
k`|m.

[Aside: We also know that d divides m, so it is tempting to assert
that k`d also divides m. But we can’t use Exercise 2.3.3 to conclude
this, since d may not be relatively prime to either k or `. Can you
give an example where d divides both k and `?]

Thus m = k`x for some positive integer x, and x < d, by hypothesis. Since m|k`d,
x|d. Write d = xy, where y is an integer > 1. Now:

a = dk = xyk|m = k`x, so y|`.

b = d` = xy`|m = k`x, so y|k.

This implies that k and ` are not relatively prime, since y > 1. Thus, the assump-
tion m < k`d is false, and so m = k`d. �

This generalization of Theorem 2.3.1 can be used to prove the uniqueness of prime
factorizations asserted in the Fundamental Theorem of Arithmetic (Module 5.1): If
n is a positive integer greater than 1, then n can be written uniquely as a product of
prime numbers where the factors appear in nondecreasing order.
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Proof of uniqueness of prime factorization. We have already shown that we
can write any integer n > 1 as a product

n = p1p2 · · · pk,

where each pi is prime. By reordering the factors, if necessary, we can always assume
that

p1 ≤ p2 ≤ · · · ≤ pk.

We will prove by induction on k that if an integer n > 1 has a factorization into k
primes, k ≥ 1, then the factorization is unique.

1. Basis Step (k = 1). In this case n = p1 is prime, and so it has no other factorization
into primes.

2. Induction Step. Assume that every integer that can be factored into k primes has
a unique factorization. Suppose

n = p1p2 · · · pkpk+1,

where each pi is prime and

p1 ≤ p2 ≤ · · · ≤ pk ≤ pk+1.

Suppose n has another prime factorization

n = q1q2 · · · q`,
where each qj is prime (possibly, ` 6= k + 1) and

q1 ≤ q2 ≤ · · · ≤ q`.

By the generalization of Theorem 2.3.1 in Exercise 2.3.2, since p1|n = q1q2 · · · q`,
then p1|qj for some j. But qj is also prime, so

p1 = qj ≥ q1.

On the other hand, since q1|p1p2 · · · pkpk+1, then q1|pi for some i, and since pi is
prime,

q1 = pi ≥ p1.

But if p1 ≥ q1 and q1 ≥ p1, then p1 = q1. Thus we can cancel the first factor from
both sides of the equation

p1p2 · · · pkpk+1 = q1q2 · · · q`
to get

p2 · · · pkpk+1 = q2 · · · q`.
The integer on the left-hand side of this equation has a prime factorization using
k primes. By the induction hypothesis, this factorization is unique. This means
that ` = k + 1 and

p2 = q2, p3 = q3, ... , pk+1 = qk+1.

Thus, pi = qi for 1 ≤ i ≤ k + 1, and the factorization of n is unique.
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By the first principle of mathematical induction, every integer greater than one
has a unique prime factorization. �


