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4. Matrices

4.1. Definitions.

Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with
m rows and n columns is said to have dimension m× n and may be represented as
follows:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 = [aij]

Definition 4.1.2. Matrices A and B are equal, A = B, if A and B have the
same dimensions and each entry of A is equal to the corresponding entry of B.

Discussion

Matrices have many applications in discrete mathematics. You have probably
encountered them in a precalculus course. We present the basic definitions associated
with matrices and matrix operations here as well as a few additional operations with
which you might not be familiar.

We often use capital letters to represent matrices and enclose the array of numbers

with brackets or parenthesis; e.g., A =

a b

c d

 or A =

a b

c d

. We do not use simply

straight lines in place of brackets when writing matrices because the notation

∣∣∣∣∣∣a b

c d

∣∣∣∣∣∣
has a special meaning in linear algebra. A = [aij] is a shorthand notation often used
when one wishes to specify how the elements are to be represented, where the first
subscript i denotes the row number and the subscript j denotes the column number
of the entry aij. Thus, if one writes a34, one is referring to the element in the 3rd
row and 4th column. This notation, however, does not indicate the dimensions of
the matrix. Using this notation, we can say that two m × n matrices A = [aij] and
B = [bij] are equal if and only if aij = bij for all i and j.

Example 4.1.1. The following matrix is a 1 × 3 matrix with a11 = 2, a12 = 3,
and a13 = −2. [

2 3 −2
]
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Example 4.1.2. The following matrix is a 2× 3 matrix. 0 π −2

2 5 0


4.2. Matrix Arithmetic. Let α be a scalar, A = [aij] and B = [bij] be m × n

matrices, and C = [cij] a n× p matrix.

(1) Addition: A+B = [aij + bij]
(2) Subtraction: A−B = [aij − bij]
(3) Scalar Multiplication: αA = [αaij]

(4) Matrix Multiplication: AC =

[
n∑

k=1

aikckj

]

Discussion

Matrices may be added, subtracted, and multiplied, provided their dimensions
satisfy certain restrictions. To add or subtract two matrices, the matrices must have
the same dimensions.

Notice there are two types of multiplication. Scalar multiplication refers to the
product of a matrix times a scalar (real number). A scalar may be multiplied by a
matrix of any size. On the other hand, matrix multiplication refers to taking the
product of two matrices. The definition of matrix multiplication may not seem very
natural at first. It has a great many applications, however, some of which we shall
see. Notice that in order for the product AC to be defined, the number of columns in
A must equal the number of rows of C. Thus, it is possible for the product AC may
be defined, while CA is not. When multiplying two matrices, the order is important.
In general, AC is not necessarily the same as CA, even if both products AC and CA
are defined. In other words, matrix multiplication is not commutative.

4.3. Example 4.3.1.

Example 4.3.1. Suppose

A =

 1 −2 3

0 3 4

 , B =

 0 1 −2

3 −4 5

 , and C =


3 4 −6 0

0 −1 2 2

1 −2 3 4


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Then

A+B =

 1 −1 1

3 −1 9


A−B =

 1 −3 5

−3 7 −1


3A =

 3 −6 9

0 9 12


AC =

 6 0 −1 8

4 −11 18 22


Let us break down the multiplication of A and C in Example 4.3.1 down to smaller

pieces.

[
1 −2 3

]
·


3

0

1

 =
[
3 + 0 + 3

]
= [6]

[
1 −2 3

]
3 4

0 −1

1 −2

 =
[

3 + 0 + 3 4 + 2− 6
]

=
[
6 0

]

[
1 −2 3

]
3 4 −6 0

0 −1 2 2

1 −2 3 4

 =
[

3 + 0 + 3 4 + 2− 6 −6− 4 + 9 0− 4 + 12
]

=
[

6 0 −1 8
]

Now compute the second row to get

AC =

 6 0 −1 8

4 −11 18 22

 .
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4.4. Special Matrices.

1. A square matrix is a matrix with the same number of rows as columns.

2. A diagonal matrix is a square matrix whose entries off the main diagonal are
zero.

3. An upper triangular matrix is a matrix having all the entries below the main
diagonal equal to zero.

4. A lower triangular matrix is a matrix having the entries above the main diagonal
equal to zero.

5. The n × n identity matrix, I, is the n × n matrix with ones down the diagonal
and zeros elsewhere.

6. The inverse of a square matrix, A, is the matrix A−1, if it exists, such that
AA−1 = A−1A = I.

7. The transpose of a matrix A = [aij] is At = [aji].

8. A symmetric matrix is one that is equal to its transpose.

Discussion

Many matrices have special forms and special properties. Notice that, although
a diagonal matrix must be square, no such condition is put on upper and lower
triangular matrices.

The following matrix is a diagonal matrix (it is also upper and lower triangular).


2 0 0

0 −2 0

0 0 6


The following matrix is upper triangular.


−1 0 3 −2

0 1 2 5

0 0 −3 3


The next matrix is the transpose of the previous matrix. Notice that it is lower

triangular.
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
−1 0 0

0 1 0

3 2 −3

−2 5 3


The identity matrix is a special matrix that is the multiplicative identity for any

matrix multiplication. Another way to define the identity matrix is the square matrix
I = [aij] where aij = 0 if i 6= j and aii = 1. The n × n identity I has the property
that IA = A and AI = A, whenever either is defined. For example,

1 0

0 1

 ·
 3 −4 −2

2 7 0

 =

 3 −4 −2

2 7 0


The inverse of a matrix A is a special matrix A−1 such that AA−1 = A−1A = I. A

matrix must be square to define the inverse. Moreover, the inverse of a matrix does
not always exist.

Example 4.4.1.  2 1

1 1

 ·
 1 −1

−1 2

 =

1 0

0 1


so that  2 1

1 1

−1

=

 1 −1

−1 2

 .
The transpose of a matrix is the matrix obtained by interchanging the rows for

the columns. For example, the transpose of

A =

 2 3 −1

−2 5 6

 is At =


2 −2

3 5

−1 6


If the transpose is the same as the original matrix, then the matrix is called

symmetric. Notice a matrix must be square in order to be symmetric.

We will show here that matrix multiplication is distributive over matrix addition.
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Let A = [aij] and B = [bij] be m × n matrices and let C = [cij] be an n × p
matrix. We use the definitions of addition and matrix multiplication and the dis-
tributive properties of the real numbers to show the distributive property of matrix
multiplication. Let i and j be integers with 1 ≤ i ≤ m and 1 ≤ j ≤ p. Then the
element in the i-th row and the j-th column in (A+B)C would be given by

n∑
k=1

(aik + bik)(ckj) =
n∑

k=1

(aikckj + bikckj)

=
n∑

k=1

aikckj +
n∑

k=1

bikckj

=
n∑

k=1

aikckj +
n∑

k=1

bikckj

This last part corresponds to the form the element in the i-th row and j-th column
of AC + BC. Thus the element in the i-th row and j-th column of (A + B)C is the
same as the corresponding element of AC + BC. Since i and j were arbitrary this
shows (A+B)C = AC +BC.

The proof that C(A+B) = CA+CB is similar. Notice that we must be careful,
though, of the order of the multiplication. Matrix multiplication is not commutative.

4.5. Boolean Arithmetic. If a and b are binary digits (0 or 1), then

a ∧ b =

{
1, if a = b = 1

0, otherwise.

a ∨ b =

{
0, if a = b = 0

1, otherwise.

Definitions 4.5.1. Let A and B be n×m matrices.

1. The meet of A and B: A ∧B = [aij ∧ bij]

2. The join of A and B: A ∨B = [aij ∨ bij]

Definition 4.5.1. Let A = [aij] be m× k and B = [bij] be k × n. The Boolean
product of A and B, A�B, is the m× n matrix C = [cij] defined by

cij = (ai1 ∧ b1j) ∨ (ai2 ∧ b2j) ∨ (ai3 ∧ b3j) ∨ · · · ∨ (aik ∧ bkj).
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Discussion

Boolean operations on zero-one matrices is completely analogous to the standard
operations, except we use the Boolean operators ∧ and ∨ on the binary digits instead
of ordinary multiplication and addition, respectively.

4.6. Example 4.6.1.

Example 4.6.1. Let A =

1 1 0 1

0 1 1 0

 , B =

0 1 0 0

1 0 1 0

 , and C =


1 1 0

0 1 0

0 1 1

1 0 0

 .

Then

1. A ∧B =

0 1 0 0

0 0 1 0



2. A ∨B =

1 1 0 1

1 1 1 0



3. A� C =

1 1 0

0 1 1


Here are more details of the Boolean product in Example 4.6.1:

A� C =
[

(1∧1)∨(1∧0)∨(0∧0)∨(1∧1) (1∧1)∨(1∧1)∨(0∧1)∨(1∧0) (1∧0)∨(1∧0)∨(0∧1)∨(1∧0)
(0∧1)∨(1∧0)∨(1∧0)∨(0∧1) (0∧1)∨(1∧1)∨(1∧1)∨(0∧0) (0∧0)∨(1∧0)∨(1∧1)∨(0∧0)

]

=

1 ∨ 0 ∨ 0 ∨ 1 1 ∨ 1 ∨ 0 ∨ 0 0 ∨ 0 ∨ 0 ∨ 0

0 ∨ 0 ∨ 0 ∨ 0 0 ∨ 1 ∨ 1 ∨ 0 0 ∨ 0 ∨ 1 ∨ 0


Exercise 4.6.1.

A =


1 1 0 0

0 0 1 1

0 1 0 1

 B =


1 0 1 0

0 1 0 0

1 1 1 0


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Find

(1) A ∨B
(2) A ∧B

Exercise 4.6.2.

A =


1 1 0

0 0 1

0 1 0


Find

(1) A� A
(2) A� A� A
(3) A� A� A� A

Exercise 4.6.3.

A =


1 1 0

0 0 1

0 1 0


Find �n

k=1A, the Boolean product of A with itself n times. Hint: Do exercise 4.6.2
first.


