1. The Scalar Conservation Law

1.1 Introduction and smooth solution

In this text we consider the initial value problem

— o< r<oo 0<t

u+ flu)e ::1;0) (1.1)

u(0,2) = uo(

where the function u(t, ) is the unknown and f(u) and ug(x) are given functions.
It is a generalization of the hyperbolic problem

urtau, =0 —oco<ax<oo 0<t

u(0,2) = ug(x) (12)

with which the reader is supposed to be familiar. Problem (1.2) is usually analyzed
using Fourier series. Since problem (1.1) is in general non linear, Fourier methods can
not be used.

The choice f(u) = u*/2 yields the inviscid Burger’s equation, an equation interest-
ing because of its resemblance to the equations of fluid dynamics. It is widely used as
a model problem.

The equation u; + f(u), = 0 is called a conservation law. By integrating over
—o0 < z < 00 one gets
d >0
— u(z,t)de =0
dt J_

assuming that f(u) vanishes as |x| — co. Thus the name derives from the fact that the
integral of u is conserved in time.
The function f(u) is called fluz function. By integrating over a < @ < b one gets

b

G [ utende = st - s ) (1.3)

which can be given the interpretation that the integral of u over a finite interval can
change due to in- or outflow at the boundaries + = ¢ and = = b.
If we carry out the = differentiation we get

ur +a(u)uy, =0
where a(u) = f'(u). In the same way as for problem (1.2), we can make the definition

Definition 1.1. The characteristics are the curves in the x-t plane defined by
dx(t)/dt = a(u(t,z(t))) (1.4)

We have a theorem similar to the one for the linear case.



Theorem 1.2. If the solution u(t,x) is differentiable, it is constant along the charac-
teristics.

Proof: The chain rule is used to evaluate the derivative of u along a characteristic
curve

du(t,z(t)) dx(t)
o "

using (1.4). The derivative is zero and the solution constant.

Uy = ug + alu)uy, =0

The theorem and (1.4) implies that the characteristics are straight lines. The
following theorem further shows that there are many similarities between (1.1) and

(1.2).
Theorem 1.3. The solution, u, to problem (1.1) satisfies

u = ug(x — a(u)t) (1.5)
if 1t 1s differentiable.

Proof: Insert (1.5) into the PDE and use the chain rule. The result from doing this
18
(1 +up(z — alu)t)a' (u)t)(us + a(u)uy ) =0
We differentiate (1.5) with respect to time and obtain

ur = ug(x — a(u)t)(—a' (u)tuy — a(u))

Solve for u;
upa
1+ uga't

Uy =

Since we assume that u has continous derivative, the denominator 1 4+ uja't must be
different from zero, and thus the factor multiplying u; + a(u)u, can be divided out and
the proof is complete.

If the above non linear algebraic equation has a unique solution, a very efficient
solution procedure for problem (1.1) is to solve (1.5) by Newton’s method.



1.2 Non smoothness, Jump condition

The major difference between the linear and the non linear equations is that for the
latter, the solution in the class of continuous functions may fail to exist after a finite
time, no matter how smooth the initial data are. We give three examples to show how
this failure occurs.

Example 1.1 (Geometric description of smoothness failure)
ug+(u?)2), =0 —oco<z<oo 0<t
u(0,2) =sinx

By differentiation a(u) = u and thus the slope of the characteristics are u. Initially
in the point © = 7/2, the slope and the solution are 1 and in the point = 37/2 the
slope and function are -1.

u=1 u=-1 X

Figure 1.1. Values are transported along the characteristics

The value 1 is transported to the right and the value -1 to the left, at some time
they will meet, thereby causing a failure of smoothness in the solution.

Example 1.2 (Algebraic description of smoothness failure) Consider (1.5). By
implicit differentiation with respect to t we get

ur = ug(z — a(u)t)(—a (u)tuy — a(u))

Solve for u;
upa

___"e® 1.6
1+ uja't (1.6)

Uy =

if a'ug is < 0 at some point, we see from (1.6) that there will be a blow up of the
derivative at t = —1/(uga').
Example 1.2 shows that under certain conditions, such as e.g. a'(u) > 0 and
ug(x) > 0, a smooth solution does exist.

Example 1.3 (Dynamic description of smoothness failure) The same problem as
in example 1.1 is considered

ug+(u?)2), =0 —oco<z<oo 0<t

u(0,2) =sinx



The differential equation can be written
Uy +uu, =0

and v can, in analogy with the linear hyperbolic equation, be interpreted as the speed
with which the initial data propagates. For the sine wave below, the maxima travels
to the right with speed 1 and the minima to the left with speed -1. This causes a
gradual sharpening of the gradients with time,
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Fig. 1.2. A solution to Burgers’ equation.

and finally the waves break into discontinuities.
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The examples shows the necessity to extend the solutions into the class of func-
tions with discontinuities. The partial differential equation does not make sense for
non differentiable functions. We can however interpret the derivatives in the sense of
distributions. More specifically this means that the equation is multiplied by a smooth
test function, ¢ € CS°(R*T x R), and then integrated in time and space. Integration by
parts afterwards moves the derivatives to the smooth test functions. Doing this yields

/0°° /_Z oru + @p f(u)de dt + /_O:o ©(0,2)ug(0,z)dr =0 (1.7)

The boundary terms at t,|x| = oo does not contribute, since ¢ is assumed to have
compact support. We define



J

Definition 1.4. A weak solution to (1.1) is a function u(t,x) satisfying (1.7) for all
smooth test functions ¢ € C§°.

In the specific case of one discontinuity, separating two smooth parts of the solution
we can use the conservation property of the original problem (1.1) to obtain the following
theorem.

Theorem 1.5. (Rankine-Hugoniot) Assume that a discontinuity is moving with speed
s and that the value of u to the left of the jump is vy and to the right wp. The the
following holds

s(ur, —ug) = f(ur) — f(ur)
Proof: Use the integrated form (1.3)
d b

% ] udr = f(u(tv a)) - f(u(tv b)) (1'8)

assume there is one discontinuity moving on the curve x(#) and that the solution is
smooth otherwise. Separate (1.8) into smooth parts

z(t) b
%(/a wdz + /I(t)udx) = f(u(t,a)) = f(u(t,b))

The differentiation can now be carried out, giving

b

z(t)
/ wp dx + u(t, z(t)—)2'(t) + /(t) up de — u(t, z(t)+)2' (t) = flu(t,a)) — f(u(t, b))

Now use uy = —f, in the integrals. Performing the integration gives
flu(t,a)) = flu(t,o(t)=)) + u(t, w(t)=)x" (1) + flult, 2(t)+))—
Flu(t, ) —ult, 2(t)+)2' (1) = flu(t,a)) — flu(t, b))

The desired result is obtained by rearranging this expression, and using the notations
u(t,x(t)—) =ur, u(t,x(t)—l—) = UR, xl(t) = s.



1.3. Uniqueness, Entropy condition

When we extend the class of admissible solution from the differentiable functions to
non differentiable functions, we unfortunately loose uniqueness. The extended class of
functions is too large.

We therefore impose an extra condition the so called entropy condition which tells
us, in case of multiple solutions, which solution is the correct one. The name derives
from application to gas dynamics, in which case there is only one solution satisfying the
physically correct condition of entropy decrease.

As we will see later, entropy conditions are important when we study numerical
methods, since some convergent numerical methods does not converge to the solution
singled out by the entropy condition.

The theory is considerably simplified if the flux function is convex (f"(u) > 0).
Therefore we start with that case. The typical example of non uniqueness is the following

Example 1.4 Two possible solutions to the problem

ug+(u?)2), =0 —oco<z<oo 0<t
0 z<0
u(O,:z;):{l x>0

are
0 x<t/2

it e) = { 1 o >1/2

The jump is moving with the speed s = 1/2 obtained from the Rankine-Hugoniot
condition, and

0 xz <0
uz(t,x):{x/t 0< <t
1 T >t

The second solution is a so called expansion wave (or rarefaction wave). It is easy
to see that these functions solves the problem, by inserting them into the differential
equation. By looking at the characteristics in the = — ¢ plane, we get the following
picture of the solution 1 in the example above

X

Fig. 1.3. Diverging characteristics.

This solution is not a good one for the following reasons
1. Sensitivity to perturbations. A small disturbance in the discontinuity will propagate
out into the solution and affect the smooth parts.



2. There are characteristics emanating from the discontinuity. We would like the
solution to be determined by the initial data. Consequently, if at some time ¢ we
trace a characteristics backwards we should end at some point at the time zero.
This is not true for this solution.

For the following example point one and two are resolved in a satisfactory way.

Example 1.5 The problem

ug+(u?)2), =0 —oco<z<oo 0<t
1 <0
u(O,:L'):{O x>0

has a solution

1 x<t/2
u(t,:z;):{o v >t/

The jump is moving with the speed s = 1/2 obtained from the Rankine-Hugoniot
condition. The characteristics are pointing into the jump

X

Fig. 1.4. Converging characteristics.

Here a small disturbance in the jump will immediately disappear into the discon-
tinuity, and at a given time, we can always follow a characteristic backwards to time
ZeTo.

Example 1.5 gives a motivation for the following definition.

Definition 1.6. A discontinuity with left state uy and right state ugr, moving with
speed s for a conservation law with convex flux function is entropy satisfying if

fl(ur) > s> f'(ur) (1.9)

This means that the characteristics are going towards the discontinuity as time increases.

An entropy satisfying discontinuity is also called a shock. The significance of the
above definition can be seen in the following theorem

Theorem 1.7. The initial value problem (1.1) with convex flux function and arbitrary
integrable initial data has a unique weak solution in the class of functions satisfying
(1.9) across all jumps.

Proof: The proof of existence uses the exact solution formula which we describe in
the next section. We refer to [17] for the details, and the uniqueness.



o

For the non convex conservation law the condition (1.9) has to be satisfied for all
u between uy and upr. The flux function could look like in fig. 1.5.

(u)

Ur L|| u

Fig. 1.5. Non convex flux function.

Here a jump between vy, and u g, satisfies condition (1.9), but is still not the correct
solution. It has turned out that it is necessary to require the following entropy condition
for a general non convex conservation law

flur) — f(u) < flur) — flur)

UL — U - UR — Uy,

all v € [ur,ur] or [ug,ur] (1.10)

It is important that all values u between uj and upr are involved. Intuitively we can
understand (1.10) as requiring the characteristics to go into the shock for the entire
family of shocks between vy, and u, u € [ur,ur]. Geometrically (1.10) can be interpreted
as the graph v — f(u) must lie below the chord between (ur, f(ur)) and (ug, f(ugr)) if
ur > up, and above if uy, < ug. (1.10) can be derived from the inviscid limit of the
problem

U+ fu)y = €ugy (1.11)

where € is a positive parameter. (1.11) has a unique smooth solution. The physically
relevant solution of (1.1) is defined as the solution of (1.11) as ¢ — 0. We give a
derivation of (1.10) later in this section.

There is a result similar to theorem 1.7 for the entropy condition (1.10).

Theorem 1.8. The initial value problem (1.1) with arbitrary integrable initial data
has a unique weak solution in the class of functions satisfying (1.10) across all jumps.

Proof: Not given here. We refer to [16].

An example of a conservation law with non convex flux function is the so called
Buckley-Leverett equation

u2

u? + (1 —u)?/4

ug + ( )e =0

which occurs in the theory of flow through porous media.
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There is an alternative way of getting entropy conditions which we now describe.
First the equation

Uy + f(u)w = €Ugyg

and E'(u) are multiplied. E(u) is a strictly convex (E"(u) > 0), differentiable function,
which we will call the entropy function.

't B f(u)y = B/ ()
Define F'(u) = E'(u)f'(u), the equation takes a form similar to the original one
E(u)i+ F(u), = eE' (u)ug,.
Using the identity
E(u)ee = E"(u)(ue)® + E'(W)uss

we rewrite the viscosity term and get
Blu)i + F(u)s = el E(u)ss — E"(w)()?) < eE(u)as

where the last inequality follows from the fact that E(u) is convex. Let now ¢ — 0 and
we arrive at

BE(u)e + F(u), <0 (1.12)

where the inequality should be understood to be valid in the sense of distributions.

Thus we have showed that if u(t, ) is a solution to the original conservation law,
obtained as the vanishing viscosity limit solution of (1.11), the additional inequality
(1.12) is valid. As previously mentioned, the vanishing viscosity solution is the physically
relevant one which we want an entropy condition to choose for us. As an entropy
condition we take (1.12), or across jump discontinuities

S(B(ur) — Blur)) — (F(ug) - F(ur)) = 0 (1.13)

which follows from (1.12) by calculations similar to the proof of theorem 1.5. We have
now three different entropy conditions, (1.9), (1.10) and (1.13), we finish by investigating
the relationship between them. By using the definition E'f' = F' it is easy to prove
the identity

uUR

s(E(ur) — E(ur)) = (F(ur) = Flur)) = / E"(u)(sur, — flur) = (su— f(u))) du

ur

The function inside the integral is familiar, using the definition of s, the shock speed,
we can rewrite entropy condition (1.10) as

su— f(u) <sup — f(ur) up <ug
su— f(u) > sup — f(ur) wup >ug

thus we immediately get (1.10)= (1.13) from

/ ) E"(u)(sug, — flug) — (su— f(u)))du > 0.

L



and E"(u) > 0. For the implication in other direction it is necessary to assume that
(1.13) is valid for all convex E(u), or at least a class sufficiently large to assure that

/E”(u)g(u) du > 0= g(u) > 0.

One example of such a class is given in exercise 5. In the special case f(u) convex the
sign of sur, — f(ur) — (su — f(u)) does not change over the interval [ur,upr], and one
convex entropy function is sufficient. Summary:

(1.10) = (1.13) for any convex entropy function.
(1.13) for a “large” class of entropy functions=-(1.10).
(1.13) with one entropy function < (1.9).

(110)= (L9),

(1.9) = (1.10) if f(u) convex.

Here the last two implications are easily shown and left as an exercise

1.3 Exact solution formulas

For reference we here give some analytic solution formulas without proving them. The
equation

uy + (uz/Z)I = €Uy

can be solved exactly [15], the formula is not given here. A similar result has been
obtained for the problem

ur+ flu)y =0 —oco<a<oo 0<t
u(0,2) = up(x)

with f(u) convex. The solution at a fixed point (¢, ) is obtained from

(1.14)

Theorem 1.9. The solution to (1.14) is given by

u(t,x) =b((x —y)/t) (1.15)

where b(u) is the inverse function of f'(u), (which exists since f(u) is convex) and y is
the value which minimizes ((t,x) are still kept fixed )

Gz, y,t) = /?J uo(s)ds +th((x —y)/t).

Here h(u) is a function determined from h'(u) = b(u), and h(f'(0)) = 0.

We refer to [17] for a derivation of the formulas.

The problem with piecewise constant initial data, will be of importance to some of
the numerical methods encountered later on. In the scalar case it is possible to solve
the problem

ur +(f(u))e, =0 —oco<ax<oo 0<t

up, =<0
u(O’x):{uR x>0



analytically for any differentiable flux function f(u). wy and ug are constants. First
one proves that the solution only depends on x/t. Let the solution be u(t,z) = u(x/t) =
u(¢). The following formulas then give a closed expression for u(().

d .
~ et Jmin (flw) —Cw)) v <ug

d
_d_C weﬁifm](f(w) - Cw)) uyp > UR

u(¢) =
(1.16)

u(¢) =

The differentiation is made in the sense of distributions. We refer to [20] for a derivation
of these formulas.

Exercises

1. In [17] the following entropy condition is given
flaup + (1 —a)ur) < af(urp)+ (1 —a)f(ur) wur <ug
flaup + (1 —a)ur) > af(ur) + (1 —a)f(ur) wur > ug

all « € [0,1]. Show that this entropy condition is equivalent to (1.10). What is
geometrical interpretation of the above entropy condition 7

2. The formula (1.5) can not be used to solve the problems

ug+(u)2), =0 —oco<z<oo 0<t
(1 <0
u(O,:L')—{O x>0
and
ur+(u?/2), =0 —co<z<oo 0<t
(0 =<0
u(O,:z;)—{l x>0

Try to use it anyway, to investigate how the formula fails. Use then formula (1.15)
in the last section to obtain a correct solution.

3. Consider the problem

ur+ (f(u))e, =0 —oco<ax<oo 0<t

(1 <0
u(O,:L')—{O x>0

with f(u) = 1.1u* — 2u® + u?. One possible solution is

1 z<0.1¢
ta) = .
u(t, ) {0 ¢ > 0.1t

Show that this solution satisfies the entropy condition (1.9) but not (1.10).



4. Solve the problem

ut—l—(u3/3)x:0 —o <z <o 0<t

1 x <0
u(O’x)_{—l x>0

using the exact formula (1.16).

5. Show that the entropy condition
E(u)i+ F(u), <0

for all <
En={ Lz
o= -5

with ¢ a real constant, implies the entropy condition (1.10). Thus instead of re-
quiring (1.13) for all convex E(u), the subclass above can be used.



2. Numerical Methods for the Scalar Conservation Law

2.1 Notations

We will describe some numerical methods applied to a one dimensional problem using
a uniform grid. This is for clarity of exposition, the changes required for more space
dimensions and curvilinear grids are straightforward.

We consider a discretization of the = axis

r; j=...,—2,-1,0,1,2,...
The uniform spacing is Az = z;41 — x;. We divide the time into time levels ¢y =
0,t1,t2,.... The time step At =t,41 — t, will be constant.

We here avoid boundaries by considering the problem on the entire domain —oo <
x < 00. The analysis below could have been done, using periodicity instead, as is usually
done in the linear case. In practical computations it is, of course, not possible to use an
infinite number of grid points. Thus, in order to verify numerically the results below, it
is necessary to use a periodic problem.

The following notations will be used

u? = The numerical solution at the point (t,,z;)

Dyuj = (ujrr —uj)/Aw
Ajuj =ujp1 —uj
D_uj=Dyiu;_

A_u; = Ajuj

1
Douj = 5(D+ + D-)u,

1
Aouj = S(At +A-)u;

The operators Dy and D_ approximates d/0z to first order accuracy, Dy gives second
order accuracy. We write this as

Diu; = uz(x;)+ O(Ax)
Douj = uz(x;) + O(Az?)

Thus e=O(Az?) denotes a quantity which goes to zero with the same rate as Az? when

Az goes to zero i.e.
0<C; < Alim le]/Ax? < Oy
z—0

with | and C5 positive constants.



2.2 Definitions and General Results

We now consider the method

ugl) =uj — AtD_f(u])
u;z) = ugl) — AtD+f(u§1))

J

which approximates the scalar conservation law

ur+ flu)y, =0

uttt = (ugz) + uy)/Q

to second order accuracy in both time and space. The method is popular in computa-

tional aerodynamics where it is known as MacCormack’s scheme. We use this scheme to

demonstrate how the numerical solution can misbehave when the solution to the partial

differential equation is discontinuous.

Example 2.1 The solution to the problem

ut—l—(u2/2)$:0
1 <0
x>0

u(0,2) = {0

—o<r<oo 0<t

is a translation of the initial step function with velocity 1/2 (from the Rankine Hugo-
niot condition). The solution satisfies the entropy condition. Below the solution
obtained using MacCormack’s scheme is displayed. The solid line is the exact solu-

tion, the circles are the numerical solution.

1
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Fig.2.1. MacCormack

10
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Fig.2.2. Leapfrog

The scheme does not behave well near the shock. The oscillations around the
shock are related to the well known Gibb’s phenomenon in Fourier analysis. There

is a small amount of numerical viscosity in this scheme, which keeps the oscillations
near the shock. With a scheme, like leapfrog, which only has dispersive errors and no

numerical damping, the oscillations spread out all over the computational domain. This
text describes how difference schemes which gives a solution without these erroneous

oscillations can be designed.



Example 2.2 The problem

ug+(u?)2), =0 —oco<z<oo 0<t
-1 <0
“(O’x):{l © >0

has the following solution
-1 <t
u(t,z) =19 x/t —t<az<t
1 x>t
However using MacCormack’s scheme, we instead get the solution

u(t,:z;):{_l x <0

1 x>0

which also is a weak solution to the problem, but which does not satisfy the entropy
condition. The result is plotted in fig. 2.3..

1

0.5

-0.5-
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Fig.2.3. MacCormack fails to produce entropy solution.

The consistency with the conservation law does not guarantee that a scheme picks
up the entropy satisfying solution. We will try to find difference schemes were such a
guarantee is available.

One usual standard form for difference approximations to the conservation law is
the conservative form,

The notation A = At/Axz is used. The function h(uj_ ..., u}, ) is called the numerical
fluz function. By Taylor expansion one can show that consistency with the conservation

law requires
flu) = h(u,u, ... u).

Here we mean consistency in the sense that a smooth solution inserted into the difference
formula gives a truncation error proportional to At(At? + Ax?), with p > 0,¢ > 0. The
conservative form implies that ( if u? — 0 as j — Fo0)

[e%e) [e%e)
n+1 __ n
> uitt= ) )

Jj=—o0 =0



the discrete counterpart of (1.3) holds.
We often write h” = h(u?

proximation becomes

u;‘_i_p), and thus the conservative ap-

um
j—1/2 — j—q> j—q—l—l?"'?

n+1 n hn
U — U

7 J+1/2

J /

At Az
It is possible to invent schemes that are consistent with the differential equation, but not
on conservative form. For such a scheme one can obtain solution were the shocks move
with incorrect speed. Consistency in the usual sense does not take in to account the
discontinuities, and therefore not the Rankine-Hugoniot condition. Loosely speaking,
we can say that the conservative form means consistency with the Rankine-Hugoniot

— R o,

condition. The following theorem states this more precisely

Theorem 2.1. If uj is computed with a consistent difference approximation on con-
servative form and u? — u(t,r) as At,Ar — 0 in L;, (RT R) then u(t,z) is a weak
solution to the conservation law.

Proof: We write the scheme (2.1)

hn

n+1 n
w; =y h j—1/2 —0

j U j+1/2
At T Az

Multiply with a test function ¢ € C§°(R*,R), and sum over n and j,

n—l—l 7? hn hn
n Jt1/2 Jj=1/2
nzoj_z_:oo c,o e i Az =0
Now, do partial summation using the rule E?:c a;ALh; = — E] o1 OjA_aj—ach.+
agbgy1. We get
n+1 n n 00 0,,0
_Z Z n+1‘f°J _‘fQJ_I_h ‘Pj+1_‘f°j)_ Y% _ g
p Sl At U A A

All boundary terms except the one at t = 0 disappears, since ¢ is compactly sup-
ported. Multiply AtAz and use the assumption that u7 — u. The sum will converge
towards the integral

—/ / wt+f(U)9%dxdt—/ uop dw =0
0 —o0 — 0

here the consistency h(u,u,...,u) = f(u) is used. Thus, by definition 1.4, the limit
function u 1s a weak solution of the conservation law.

Remark: The theorem is an if-then statement (implication in one direction). It
is possible to have non-conservative form, but still get a solution with correctly moving
shocks. An example is the approximation u;Dgu; on non conservative form to (u?/2),
u;Dou; =01if uj — 0 as 7 — £oo.

1s in fact conservative in the sense that E]__Oo



Example 2.1 showed that there might be problems near the shocks in certain differ-
ence methods. We now turn to the problem of characterize a good numerical solution
without oscillations around the shock.

The most popular measure for oscillations is

Definition 2.2. A difference method is called total variation decreasing (TVD) if it
produces a solution satisfying

(. @) (. @)

DA ) N VAT

for all n > 0.

We will sometimes use the notation TV (u™) = E;o:_oo [utyy —uf|. Originally the
concept was called total variation non-increasing (TVNI), but TVD has become the
standard term. We give an example to clarify the meaning of the definition.

Example 2.3 Consider the problem u; + (u?/2), = 0 with initial data

=1 j<0

J
=0 ;>0

[
u]

Approximate with the Lax-Wendroff scheme at some CFL number. After one time
step the solution is

uj=1 j<-1
up = 1.34
up = 0.23
ul=0 j>1

thus the scheme produced a small overshoot. The variation at ¢, was =1. The
variation at #1 1s ... +0+0.34 +1.114+0.23 +0 4+ ... = 1.68. The overshoot shows

as an increase in the total variation. Thus the Lax-Wendroff scheme is not TVD.

It is natural to require TVD, since the solution to the continuous problem u(t, x)
satisfies

d [ Ou
el e <0.
dt _Oo|8:1;|dx_0

It has turned out that the TVD criterion is sometimes too restrictive. We will later on
in some cases replace it with

Definition 2.3. A difference method is called essentially non oscillatory (ENO) if it
produces a solution satisfying

(. @) (. @)

S A< Y A+ 0(A)



for all n > 0 and some p > 1.

Example 2.2 shows that the numerical solution can fail to satisfy the entropy con-
dition. The theorem below provides one way to investigate whether a scheme is entropy
satisfying or not.

Theorem 2.4. If a difference method produces a solution, which also satisfies the
discrete entropy condition

(E(u?"’l) — E(u} )/ At + (H(uj_yyqy g pgy) — H(uj_ o osuly )/ Ae <0

with H(u;—g,...,u;4,) a numerical entropy flux consistent with the entropy flux of the
differential equation,

H(u,...,u)=F(u)
F'(u) = E'(u)f'(u)
then if uj converges the limit will satisfy
E(u)i+ F(u), <0
Proof: Similar to the proof of theorem 2.1.
There i1s an important class of schemes satisfying a discrete entropy condition.
Definition 2.5. The difference scheme

ol — g )

Uy j (Rt —hj1/2)

is called an E scheme if

h]‘_|_1/2 S f(u) all u € [u]‘,u]‘_|_1] 1fu] < Uj+1
Pivije > flu) allu € [ujpr,uj] if ujpy < uj

This definition is made because of the following theorem

Theorem 2.6. An E scheme satisfies the semi discrete entropy condition

dE(u;(t))

7 +DiH; 1/ <0

for all convex E(u). The numerical entropy flux is given by
Hj 12 = Fu;) + E'(uj)(hjo12 — f(u;)
Proof: Start from the difference method

Multiply by E'(u;), where E(u) is a convex function, so that we get the first term in
the semi discrete entropy condition

dE(u;)

AJ?T = —E'(uj)(hjy12 — hj_1/2)



where we also multiplied by Az. Introduce the entropy flux F'(u) = E'(u)f'(u) by

. dEcgtuj) b F(ue1) = F(uy) = —E'(u;)(hyer s — b1 o) + Flugen) — Fuj) (2.2)

We can write

/u“’1 E'(u)f'(u)du = [E' fli+t — /WJr1 E"(u)f(u)du

Using this expression for A F(u;) in the right hand side of (2.2) yields

dE(u,)

A
T

+F (1) = Fuj) = —E'(u;)(hjpipe — hjoi/2)+
uwjg1

B () (uyi) = B'w) i) = [ B0 f(w)d

Add and subtract E'(uj11)hjiq/2 to the right hand side
dE(u;)

Av—p =+ Fujyr1) — F(uj) = —E'(ujy1)(hjp12 — flujpr))+
i1

E'(uj)(hj_1js — fluj) + (E'(ujpr) — E'(uj)hjy1/s — / E"(u)f(u)du

which can be written

AW | Py = Fuy) + A (B )by jo — Flu)) =

dt
w41 Uji41
/ E"(u)duhjqq s — / E"(u)f(u)du

and thus by defining H;_ 3 = F(u;)+E'(u;)(h;j—1/2 — f(u;)) the result follows from
dE(u ; Wit1
Al‘ cgt ]) —|— A+Hj_1/2 = / E”(u)(hj_|_1/2 — f(u)) du

uj

The convexity of E(u) means that E"”(u) > 0, thus the right hand side is non positive
if hj41/2 satisfies the requirements in the theorem.

Remark: It is possible to prove the Entropy condition for the time discretized
approximation (forward Euler) as well. We gave the proof for the semi discrete approxi-
mation, because it gives a clear picture of how definition 2.5. enters into it, and because
the proof is considerably simpler than the proof for the fully discrete case.

It is possible to prove that an E scheme has at most order of accuracy one.

Note that in the definition of an E scheme, a statement is made about all values
of u between u;4; and u;. The theory in chapter one makes it probable that for non



convex flux functions it is necessary to have information of how the flux function behaves
between the grid points. We give an example to clarify this statement.
Example 2.4 The problem

ug+(u?)2), =0 —oco<z<oo 0<t
1 x <0
u(O,x):{_l x>0
has solution
1 x <0

u(t,:z;):{_l >0
Assume that a difference method is given which gives the steady solution profile

u?=1 j<-1

j
uy = 0.8

uy = —0.8
uj =-1 j5>2

for all n. Make a deformation of the flux function as in fig. 2.4. below.

f(u)

X

u

Fig.2.4. Deformed flux function

The steady shock does not satisfy the entropy condition for the deformed flux
function (cf. chapter 1). The deformed flux coincides with f(u) = u?/2 for |u| > 0.8,
and a scheme which only relies on flux values at the grid points, does not have sufficient
information to distinguish between the deformed flux and the quadratic one.

As an example we now give two classes of difference methods, monotone schemes
and three point schemes, where the TVD and entropy properties have been worked out.



2.3 Monotone Schemes

The TVD and ENO properties are usually difficult to investigate for a given scheme. We
therefore start analysing the subclass of monotone schemes, which is easy to distinguish.
We write an explicit difference method in general as

W = Gl ). (2.3)

With this notation we introduce the class of monotone schemes

Definition 2.7. The scheme (2.3) is monotone if the function G is an increasing func-
tion of all its arguments, 1.e.

8G(u_q, e ,up_|_1) >0

—qg << 1
Ou; - gsrspT

We let GG; denote the partial derivative of G with respect to its :th argument. Note
that it is implicitly assumed that G is a differentiable function.

Theorem 2.8. Monotone conservative schemes are TVD.

Proof:
>0 >0
Z uify —u T = Z |GQuG_ggrs s Ufgpya) = Gluf_gsufy )] =
j=—o0 Jj=—oo
>0
Z |G(U?_q + A+U§‘_q, e au?+p+1 + A+u‘77?+p+1) - G(u?_q, s 7u?—|—p+1)| =
j=—00

p+1

o0 1
Y /0 Gr(ul_, 4+ 0A4ul_ o uly o+ OA Ll AUl df] <

Jj=—00 k=—gq
Use the monitonicity and the triangle inequality

e%e} p+1

1
Z Z / Grluj_g +0A uf_ (oo ufyy g 08y )[Aqufy ] dE =
0

Jj=—o0k=—¢q

Change index from j to m = j + k

oo p+1
m=—oo k:—q

1
/ Grlupg g + 00 ug oo U pqprn + 08 ug, ) dOJA LU |
0

The result follows from the fact that

pt1

> Grlvm—k—gs- o Vmoktpr1) =1 (2.4)

k=—q



since we then get from above

(. @)

Z ufify =it <

oo p+1

2. 2.

m=—oo k:—q

1
/ Gr(upg, - ¢ TOA g, g qa---aunm—k+p+1‘|’9A+unm—k+p+1)d9|A+unm| =
0

> [ amspi= Y -l

m=—oC m=—oC

It remains to prove (2.4). To make the formulas simpler, we do this only for the three
point scheme

G(Vm=1,Vm,s Vm+1) = Um — A (O, Vmg1) — M(Om—1,0m))

where h(u,v) is the numerical flux function. If we denote the derivative of h with
respect to its first argument hq and let iy be the derivative with respect to the second
argument, we get

G—l(vm—lavmavm—i—l) = /\hl(vm 1,Um)

Go(vm—l,vm,va) /\( (vm,vm+1) - hz(vm—l,vm))
Gl(vm—l,vm,va) = —/\hz(vm,vm+1)
)

For the three point scheme (2.4) becomes

G_1(Vm, Vms1, Vmt2) + Go(Vm—1, Vm, Vmt1) + G1(Vm—2, Vm—1,0m ) =
A1 (Vs Vmg1) + 1= A R1 (Vs Vmg1) — ho(Vm—1,0m)) — A (Vm—1,0m) =1

and the proof is complete. The general (2.4) follows similarly by converting to deriva-
tives of the numerical flux function.

Theorem 2.9. Except for one trivial case, monotone schemes are at most first order
accurate.

To prove this we first state the following theorem, which does not use the monotonic-
ity of the scheme, and thus holds in general for all first order schemes on conservative
form.

Theorem 2.10. The truncation error of the method

u?""l = u — A(R"

n )
j+1/2 0 -1/2
1s

P = —Atz(q(u)uw)w + AtO(AtZ + A:L'Z)



where
o) = (57 S WGl ) = F1(w))2

and we denote u = u(t,, ;).

Proof: By definition the truncation error 7" is

7']” = u(tpt1,25) — Gultn, j—q), .., u(tn, Tjppy1)) =
u+ Atug + —5 i — (G(uy...,u)+ Z Gru, ..., u)(u(ty, zj4r) —u)+
k=—q
p+1 p+1

Z Z Z Grm(u, .. u)(u(tn, xjpr) — u)(u(tn, Tjgm) — u)+

k——q m=—q

O(AH(A? + Az?)))

where we use the notation v = u(t,, z;). We have here Taylor expanded the difference
scheme in u. Next we expand the functions u in @ and arrive at (modulo second order
terms)

2

A
7']” =u+ Atu; + TUH—

ptl N p+1 A p+1l  p+1
(u+ Avuy Y kG + ——ta Y EGr+ T(ug,;)2 Y kmGim)
k=—q k=—q k=—q m=—q

We use G to denote G(u,...,u), and similarly for the derivatives of G. Now add and

subtract the expression
p+1  p+1

A; )2 Y Y KGim (2.5)

k=—gm=—q

The reason for this is that the last term together with (2.5) becomes

p+1 p+1

P> Y (km— k)G =0 (2.6)

k=—qgm=—gq

We omit the proof that this sum is zero for the moment. If we accept (2.6) as a fact,
we get

k=—q
Ag? p+1 p+1  p+1
QUMZH XYY B Grm)

k=—q k=—g¢m=—gq



Now use
p+1

> kGi(u,...,u) = =\f'(u) (2.7)

k=—q

to eliminate the zero order terms. We omit the proof of (2.7) as well. The first order
terms remains

7-]?”‘ = TUtt — 5 Ugzz Z (szk)x) =
k=—q k=—q
2 > G,
k=—q

Finally we remove the time derivatives by substituting ws with ((f')%u,),. This can
be done because

it = —For = —~(F (u)ita)e =
- (f”(u)utuf + fl(u)uft) f ( )fﬂcuﬂc + f fxx —
(f' fo)e = ((f' ) uz)e

and the truncation error becomes

p+1

" At2
= S = g Y G0

k=—q

which is what we wanted to prove. It remains to prove (2.6) and (2.7). That can be
done by writing out the conservative form of the method and let the derivatives of G
instead become derivatives of the numerical flux function h. It is a straightforward
calculation similar to the one that was done in the last part of theorem 2.8., and we
do not give it here.

Finally we give the proof of theorem 2.9. By (2.7)

p+1 p+1

V() = (3 kG = (Y VGG

k=—q k=—q

were the monotonicity is used to split G into square roots. The Cauchy-Schwartz
inequality gives

p+1 p+1 p+1
PN RGE Y Gr= ) KGy
k=—¢ k=—q k=—q

by writing out the conservative form, it is easy to see that Ep+1_ G = 1. It follows
that

_ (é N k2 G(u,. . u) — f1(u)?)/2 < 0



where ¢(u) is the function defined in theorem 2.10.,
T = —At*(q(u)ug e

From Cauchy-Schwartz, we know that strict inequality (<) holds except if kG =
const.Gr = the method is a pure translation. This is the trivial case mentioned
in theorem 2.9. We conclude that strict inequality holds, except in this case, and
therefore the truncation error does not vanish. The accuracy is one.

Theorem 2.11. Monotone schemes satisfy the discrete entropy condition

(E(un—i—l) - E(“?))/At +( ;‘14-1/2 - ;‘1—1/2)/A$ <0

J

for the class of entropies E(u) = |u — ¢| all ¢ € R, and where the numerical entropy
flux, Hf+1/2 is consistent with the entropy flux

Fu) = sign(u — e)(f(u) — f(c))

Proof: Introduce the notation a V b = max(a,b) and a A b = min(a, b). Define the
numerical entropy flux as

Hj_ypy = H(uj_go- o sufyy) =
hleVul_,,...;eVuly ) —h(eAuj_,...;cAujy,)

where h is the numerical flux of the scheme. With this numerical entropy flux, we
obtain

B(u}) = AALH, = uf — |-

AALh(eV u?_ A, u?+p) — AALh(e A u?_q, co,CA u?+p)

q?

and since |u —¢| =uV ¢ — u A ¢, we arrive at

E(u}) = AALH! ) =ujVe—uj Ae—AALH! ),

(2.8)
=G(eVaul_g...,eVuly ) —GleAul_ oo e Aufy, 1)

From the monotonicity of the method we get

ntl n n n »
ui T = G(ui_ s yufypir) SGleVaul_oo,eVauly )

c=Glc,....,c) < GleVu]_,,...,eVuly, 1)

and thus
1
u?"’ Ve GleVaul_g,...,eVuly )

similarly we see that

_(u;?+1 A C) S _G(C A u;l_q7 NN & A u?—|—p+1)



Finally,
E(u?"’l) = |u;‘+1 —c|=u"TtVe— u;ﬂ'l Ne <

G(eVuj_,,.

= |u§‘ —c|— AA+Hf_1/2

7 7 7

where (2.8) was used in the last equality, This is the desired entropy inequality.

Remark: The class of entropy functions in the previous theorem is sufficiently
large to assure that the entropy condition (1.10) will hold for the limit solution.

2.4 Three point schemes

For three point schemes ( ;41/2 = h(ujt1,u; ) ), there is a complete characterization
of TVD schemes in terms of the numerical viscosity coefficient.

We first state the theorem on which all proofs that a scheme is TVD is based.
To apply this theorem, it is necessary to write the difference method differently. The
incremental form or I-form of the difference approximation to (1.1) is

+1 _
U;L = U;L —|— C]+1/2A+U;L — Dj_l/zA_U?

from the I-form the TVD property can be obtained through
Theorem 2.12. If

Cit17220 Djyi/2 20 Cit12+Djp12 <1
then the method is TVD.

Proof: Apply A, to both sides of the I-form and sum over j.

(. @) (. @)

oA = Y A U] + AL (e Agu}) = Ap(Dj g pAul)|
j=—o0 Jj=—oo
rearranging terms gives

(. @)

> A =

j=—00

(. @)

Z |Cj+3/2A+U?+1 +(1- Cj+1/2 - Dj+1/2)A+U? + Dj—1/2A+U§L—1|
j=—00
Apply the triangle inequality on the right hand side

DA< Y (O sp Ay |+
fam j=—oe
Y 1= Cirip = Djrpp)Aguf+ Y [Dj1jpAuf_y]



Now use the assumption that Cj4 /2, Djy; /o are positive and that the sum €1, /5 +
Djy12 <1

S IAuIT < Y CipaplAguly |+

flmes fam
> (1= Ciprje—Djap)lAsuf|+ > Dy pplAgul ]

j=—00 Jj=—00

Finally shift the indices in the first and third sum on the right hand side

>0 >0
DA < Y CipapplAgufl+
fam fam

(. @) (. @)

Y (1=Cipijp = Digap)lAufl+ Y DigaplAufl= Y [Aguf]

and the TVD property is proved.

Remark: The condition Cj4 /5 + Dji1/2 < 1 corresponds to the CFL condition in the
linear case, and is not required for a semi discrete method of lines approximation.
We now introduce the viscosity form or @-form of the difference approximation to

(1.1) as
1
ut = ul — AtDo f(uf) + §A+(Qj—1/2A—u?) (2.9)

J

where () is the numerical viscosity coefficient. A three point scheme is uniquely defined
through its coefficient of numerical viscosity as can be seen from the conversion formulas
at the end of this section. Thus there is only one degree of freedom in chosing a three
point scheme.

If we rewrite (2.9) on conservative form, the numerical flux function becomes

1 1
hjvij2 = §(f(uj+1) + fuj)) — 5Q1+1/2(U1+1 — uj). (2.10)

This is seen by inserting this numerical flux function into the conservative (or C-form)
and rearranging terms.

If we apply theorem 2.12. to the Q-form we get the following characterization of
three point TVD schemes.

Theorem 2.13. A three point scheme is TVD if and only if the numerical viscosity
coefficient satisfies

Majpry2] € Qjg12 <1
where a;y/y is the local wave speed

Flujp1)—f(uj) 4 4
Aj41/2 =\ 4 00T uj F Ui
fuj) Uj = Ujti



Proof. Starting from the conservative form, we add and subtract f(u;), and get

Wy — Fuf) hy iy = Fu})
+1/2 J 1/2 J
u?+1 = uy - /\( ’ —yn (u?+1 - uy) ]un " (u? - u?_l))
j-l-l J J Jj—1

Thus we can identify

_/\h?-i-l/? B f(u?)

C“i‘l 2= n n
a i1 = U
BY = Fu])
Jj—1/2 J
Dj—1/2 =—A ur —uyn
J J—1

Insert the expression (2.10) for hjiq/; into these formulas

flu ?4—1) - f(un)
2(u§‘+1 —u?)
fluj ) (

2(? )

1
Citi2=—A + Q;+1/2/2 (Qj+1/2 - /\Gj+1/2)

')
Djvp2=—A

1
+Qj_12/2 = 5(@;‘—1/2 + Aaj_1/2)
The positivity of Cj4 /5 and Dj_|_1/2 means that

Qj+1/2 > /\Gj+1/2 and
Qj+1/2 > _/\aj-l-l/Z

which is equivalent to the lower limit in the theorem

Qit1/2 = Majp1/2]

The condition Cjy1/5 + Djyq1/2 <1 becomes

Q12 <1

and the theorem follows.

The quantity a;y;/, is important and will be used throughout this text. The
second order Lax-Wendroff scheme has Q4 = A2 a]_|_1/2, and is clearly outside the
TVD region. Thus we get the following result

Corollary 2.14. Three point TVD schemes are at most first order accurate. The
situation can be viewed in fig. 2.5.

This result and the corresponding result for monotone schemes might seem depress-
ing. First order schemes are not accurate enough to be of use in practice. However,
higher order methods are developed using first order methods as building blocks. This
is the motivation for the study of first order methods.



-1 | 1

Fig.2.5. TVD domain for numerical viscosity

For reference we conclude this section by a listing of the three different standard
forms to write an approximation to (1.1), and formulas for converting between them.
The conservative form (C-form), the incremental form (I-form) and the viscosity form

(Q-form).
Q-form to C-form

1 1
hijraj2 = §(f(uj) + flujgr)) — 5Q1+1/2A+U1

C-form to Q-form
Fluj) + flujgn) = 2410

Qj+1/2 = A A

Q-form to I-form

1
Cj—|—1/2 = 5(@;‘4—1/2 - /\Gj+1/2)
1
D10 = 5(@;‘4—1/2 + Aajq1/2)
[-form to Q-form
Qjt1/2 = Cir12+ Djyay2

C-form to I-form

_/\h?-i-l/? B f(u?)

C“i‘l 2 = n n
e Uit 7Y
h?—l—l/z — flujyq)
Dj+1/2 =—A n n
Ujpr — Uy
I-form to C-form
1 1

hjripe = fluj) = S CiprppAiuy = f(ujen) = 3 Djijp A



2.5 Some Schemes

Here we give some examples of three point approximations, which can be analyzed
using the theorems in section 2.4. The schemes are important in their own rights, some
of them will come up later in versions of higher order accuracy and in extension to
nonlinear systems of conservation laws.

Example 2.5 The upwind scheme. This scheme is the lower TVD limit in theorem
2.13, i.e.

Qj+1/2 = /\|aj+1/2|-
Writing out the conservative form the scheme becomes

L fluggn) = fuy) o [ f(ugen) ajpaye <0
| ((wjp1—uy) =

2 Ujgp1 — U fluy) aji1/2 >0

hiere = 5 fup) +F ;)

and we can see the reason why this is called the upwind scheme. The scheme takes the
flux value from the direction of the characteristics. For the linear equation uy + au, = 0
the wave speed a;4 1/, = a is constant and the scheme becomes

u;ﬂ'l =uj —aAtDiu] a <0
u?""l =uj —aAtD_u} a>0
or with a* = max(0,a) and a= = min(0, a),

u?""l = u;‘ — At(a_D+u§‘ + a""D_u;‘)

By considering the example
w4+ (u?/2), =0 —oco<z<oo 0<t
-1 <0
u(0,2) = { 1 2>0

it is easy to see that the upwind scheme does not satisfy the entropy condition. The
scheme does not contain enough viscosity to break the expansion shock into an expansion
wave. The scheme is attractive because it has the least possible viscosity to suppress
oscillations.

Example 2.6. The Laz-Friedrichs scheme. At the other end of the TVD interval
in theorem 2.13 we find the Lax-Friedrichs scheme, which has the viscosity

Qj+1/2 =1
and numerical flux function
1 1
hjvij2 = §(f(uj+1) + fluj)) — ﬁ(uj-i'l — uj)

This scheme is extremely diffusive, and smears shocks enormously. The advantage of
the scheme is its simplicity, and the fact that the numerical flux function is infinitely
differentiable with respect to its arguments. This is of importance for steady state



computations when, in Newton type methods, the Jacobian of the scheme is required.
It is also a requirement when the formal order of accuracy is derived.

Example 2.7. The Godunov scheme. This scheme has the viscosity coefficient

Gonmr e ) =24 1)

(w—u;)(u—uj41)<0 Ujt1 — Uy

The scheme was originally derived for the Euler equations in gas dynamics, where it
was constructed as solving a Riemann problem locally between each two grid points.
This derivation will be given later. Here we can instead explain the Godunov scheme
as the lower limit in the definition of the E schemes

. Cfming; cucu; iy flu) i uy <ujp
it/ MaXy; 1 <u<u; f(u) if Uj > Ujt1

From this definition it is straightforward to derive the expression (2.11) for the viscosity
coefficient. The Godunov scheme is the E scheme with smallest coefficient of viscosity.

It is also a TVD scheme.

Example 2.8. The Engquist-Osher scheme. The E-O scheme was designed with
the intent of improving the upwind scheme with respect to entropy and convergence to
steady state. The viscosity coefficient takes into account all values between ;41 and
u; by integrating over this interval,

A vt
Qj+1/2 = —— | ()] du

Ujr1 — Uy j

If f' does not change sign between u; and uj41, then we see that the viscosity is equal
to the viscosity of the upwind scheme. The advantages with this method is that it is
an E scheme and that the numerical flux is a C*! function of its arguments, making it
suitable for steady state computations. The scheme is TVD.

Example 2.9. The Laz- Wendroff scheme. The only choice of viscosity that gives
a second order accurate approximation (both in space and time) is the Lax-Wendroff
scheme

2 2
Qj+1/2 = A Ai41/2
The scheme is not TVD, but it is important because of its optimality. (The only three

point second order scheme). Later when we discuss second order TVD schemes, the
Lax-Wendroff scheme will play an important role.

The Godunov, E-O and the upwind schemes coincide if the flux function derivative
f'(u) does not change sign between u; and uj4q1. The sonic points are the u values for
which f'(u) = 0. It is usually around the sonic points the entropy condition is hard to
satisfy. There have been suggested a number of fixes for the upwind scheme to satisfy
the entropy condition. One which is commonly used in computational fluid dynamics

(CFD) is the choice

0, _ [ Majyay2] if Majyi/a] > 2e
]+1/2 B (ACL]‘+1/2)2/(46) —|— € lf A|Cl]‘_|_1/2| S 2¢



The viscosity is prevented from going to zero when |a;11/2| = 0, and the viscosity
becomes a C'!' function of u;,uj4+1. The disadvantage is that we now have a parameter
to tune.

As a summary the schemes are plotted as function of increasing viscosity in fig.2.6.

Entropy TVD CFL-stable
Lax-Friedrics

Engquist-Osher

Godunov

Upwind

Lax-Wendroff

DO

Fig.2.6. Properties of methods as function of the viscosity

2.6. Two space dimensions

In two space dimensions we approximate the conservation law

Uy + fl(u)x + f2(u)y =0

on some domain, by the explicit difference method

n+l _ n LN AT
uig s = Ui = A Byl g = Ay AL

where A\, = At/Azx, A\, = At/Ay. bl = h(u

n n ) )

: \y 12, g ,ui_i_p’j) is a ﬂux‘cons1‘stent
with the flux fi, and similarly for g?j—l/Z‘ We can choose h”" . as a one dimensional
b

flux formula described in this chapter. Note however thalt \17\7/i2tfl this straightforward
generalization the Lax-Wendroff scheme will not maintain second order accuracy in two
dimensions. In the case of Lax-Wendroff, it is better to use operator splitting, then
second order accuracy can be kept.

For two space dimensions, it is possible to prove that TVD, in the sense that

ZAyW?H,j - u:"]| + A9‘/'|u?,j+1 - u:"]|
Y]

is decreasing, implies overall first order accuracy. First order is too restrictive. Instead
we write the scheme as

n+1
Ui g

and take

n
L2}

= u?’j + Ai—|—1/2,jA+iuZ]‘ - Bi—1/2,jA—iuZ]‘ + Ci,j—i—l/ZA—i—jqu - Di,j—l/ZA—ju

Aig1/2;20 Big1y2,; 20 Ci 117220 Dj 117220

(2.12)
Aigi/25+ Biviy2,; +Cijrra+ Dijyr2 <1



as a criterion for a scheme with good properties with respect to shocks. Unlike the one
dimensional case, (2.12) does not imply TVD, and thus allows for second order accurate
schemes in two space dimensions.

Exercises

1. Show that the Engquist-Osher scheme, the Godunov scheme and the upwind scheme
coincides when applied to the linear problem

Uy +au, =0

2. Determine the smallest constant d that makes the Lax-Wendroff scheme with added
viscosity

J
1 " " 1 "
hijyise = §(f(uj)+ fluliy)) — ﬁ(/\aj-l-l/?)zA-l-uj

TVD. Determine the cfl stability condition for the resulting TVD scheme. Does
the scheme satisfy an entropy condition ?

3. Assume the initial data .
|lur J 20

are given to the general three point scheme

U;H—l = uj = /\(h?+1/2 - ?—1/2)
j+1/2 = §(f(u])—|— f(uj—i—l)) - ﬁ@(uj—l—l - uj)

Determine conditions on () such that

TV(u') < TV (u®)

Compare with theorem 2.13.
4. Show that the method

fl+1 _.n _{AtD+f(u

1s not, conservative.



3. Second order accurate TVD methods

3.1 Limitations of Accuracy

Before starting to describe second order schemes for shock computations we give some
necessary conditions for such schemes. We saw in the previous chapter that three point
TVD schemes are at most first order accurate. Thus a second order TVD scheme on
C-form
WP = Ay W)
must involve more than three points on the time level #,,.
In fact second order accuracy everywhere is not compatible with the TVD con-

straint.
Theorem 3.1. At smooth extrema which are not sonic points a TVD scheme is first

order accurate.

Proof: Write the method on I-form

+1 _
Wt = )+ CjpapBrul - Diapp Ao

we consider a general explicit scheme, and thus

_ n n _ n n
Cj—|—1/2 - C(uj—q—|—17 ce 7uj—|—p—|—1) Dj—1/2 - D(uj—q7 Tt 7uj+P)

In all accuracy investigations, it is necessary to assume that the solution u; is smooth,
to allow for Taylor expansion. The truncation error is expanded as

7 = —ul(rj, thgr) +u(xj,t )—I—C']_|_1/2A+u —Dj 1 Aul =
At 2
= Atug = ——uu +(C + Z Cr((k + D)Azu, + O(Az?)))(Azu, +
k=—¢
Az? P
—tae + O(A2*)) = (D + Y Di(kAzu, + O(Ax?)))(Avu,—
k=—q
A 2
e + O(A%))

where we use the notation C' = C(u,...,u) and Cy is the derivative of C with respect
to its kth argument, evaluated at w,...,u, and where u is u(t,,z;). Simplify the
expression

At?
Tn = —Atut —I— (C — D)A(L’uw — TUH—I—

Ax 2
(C+ D)= s + Z Cr(k +1)Az? (u Z DikAz?(u,)? + O(Az®)

k——q k_—q

Consistency yields
C—D=-\f"(u) (3.1)



At a smooth extreme point u, = 0, and the condition for second order accuracy there
becomes

/\2utt == (C + D)UII
but
i = (f'(u)ue)e = /() tee + f'(u)gus

and at extrema the condition for second order second order accuracy thus becomes
C+ D= (A\f'(u))? (3.2)
Solving (3.1) and (3.2) for C and D gives

20 = (Af'(u))* = Af' ()
2D = (Af'(u))? + Mf'(u)

If f'(u) # 0, the CFL condition A\f'(u) < 1 implies that not both C' and D can be
non negative. For TVD it is necessary that ;1,5 and D/, are non negative.
C = Cjq1/2 + O(Az), but (3.3) means that one of C, D are negative of order one,
(= —]O(1)]). Thus if f'(u) # 0 we have proved the impossibility to satisfy the TVD

condition given in theorem 2.12. If on the other hand f'(u) = 0, the above argument

(3.3)

is not true. This is the exception “u non sonic” mentioned in the theorem.

This result can be interpreted geometrically as clipping of extrema displayed in the
figures 3.1 and 3.2. In order to maintain TVD, the maximum can not be placed on
the exact solution curve at t + At, since this would correspond to an increase in the
variation.

Time =t Time =t +dt

11F 1 11F

Fig.3.1. Time ¢ Fig.3.2. Translated to time ¢ + At
It is also necessary to consider non linear methods, as seen in the following theorem

Theorem 3.2. A linear difference approximation

14
n+1 _ n
Uy = E: ArU; 4

k=—q



which is TVD, is at most first order accurate.

Proof: Consider the function

J

n_J1 <0
Y70 j>0

Then TV (u™) = 1. We evaluate the variation after one time step

(. @) (. @)

P P
TV(@"™ )= Y 1Apaft = Y 1Y aedqufyy =Y

j=—00 j=—o0 k=-—gq k=—q

The scheme is consistent if

P
Y ar=1 (3.4)
k=—¢
if ar < 0 for some k, then (3.4) gives
P
TV (u"t) = Z lag] >1
k=—¢

and the method i1s not TVD. Thus a; > 0 and the result follows from theorem 2.9
since ay positive means that the scheme is monotone.

Note that the theorem does not state which partial differential equation we approx-
imate. Second order TVD schemes (away from smooth extrema) must be non linear
even when applied to the linear partial differential equation uy 4+ au, = 0.

There exist a large number of second order TVD methods. They have in common
that they all degenerate to first order accuracy at smooth extrema, and are non linear
schemes. We distinguish two main classes of methods

1. Equation simultaneously discretized in time and space. These schemes are TVD
modifications of the Lax-Wendroff scheme
nt1 At? )

i = u?—AtDof(u?)+ 7D+(aj_1/2D_u?)

[

2. Spatially second order semi discrete approximations, which leaves the time dis-
cretization as a separate choice. These schemes are TVD modifications of the

method J
U n
—dt] = —Dof(uj)

What method to use depends on the specific application. A general guideline can
be given based on the unmodified schemes. The class 1 is suited for time dependent
calculations, while methods in class 2 are better for finding a stationary solution, since
the spatial discretization does not depend on a time step. The generalization of the
Lax-Wendroff scheme to more space dimensions than one is somewhat complicated, but
operator splitting dimension by dimension can be used. For the semi-discrete methods,
the two and three dimensional cases are straightforward.



We describe second order TVD schemes based on the Lax-Wendroff method in
sections 3.2, 3.3 and 3.4. Sections 3.5 and 3.6 deal with semi discrete methods.

3.2 The Modified Flux Method

For the linear problem u; + au, = 0, one can show that the highest order of accuracy
for a three point scheme is two, and that the Lax-Wendroff scheme is the only scheme,
which has this optimal property. This scheme is not TVD. We show below how it is
possible to modify the viscosity of the Lax-Wendroff scheme so that it becomes a TVD
viscosity wherever necessary, i.e. in the neighborhood of shocks.

The method is sometimes named the modified flux method, due to the following
interpretation. If hij1 /5 is the numerical flux of a first order TVD scheme then

u?+1 B u? + ?+1/2 B h?—l/z — uy + f(u) + O(Al‘)
At Az - v '
If hﬂ_/‘{ /2 1s the numerical flux of the Lax-Wendroff scheme then
(z+1 _on hnLW _ hnLW
u U —
J I Jj+1/2 Jj—1/2 :ut‘l‘f(u)x +O(A:1;2),

At Az

and therefore

ntl_yn ok

U Uy ?+1/2 B h?—l/Z _
x + A = u¢ + flu)y+
h?ﬂ/z - h?—flm//z - (hn — ot )

j=1/2 j=1/2 _I_O(sz)'

Az
From this formula we immediately obtain

Lemma 3.3. If
h]‘_|_1/2 — hf—il—/‘{/Z == O(A(Ez)

and if the leading error term in the O(Ax?) is smooth, then the method using the flux
jy1/2 is second order accurate.

Proof: The assumption of smooth error term give

Ashjos _AhiGp | ALOA?)  AchiG, O(A)
Az - Az Az - Az

Thus one power of Az is lost from dividing by Az and one power gained by taking
the difference.

We will apply a first order TVD method to a problem with the modified flux
function

1
9; =1+ b

where b; is some quantity resembling the difference

1 n
/\(h]L-F{/Z o h]+1/2) = §(Qj—|—1/2 - Q]L_F{/Z)A+u]



Thus we let er{/z denote the numerical viscosity of the Lax-Wendroff method, and
Q412 the viscosity of the first order TVD method.

Apply now a first order TVD scheme to the problem with flux function g¢;, the
modified numerical flux becomes

1

M
2/\(

Jt1/2 = (f]+1 + fi) = 55 (Q(9)j11/28+u] — (bjp1 +b5)) (3.5)

where we write Q(g);41/2 to stress that the viscosity is evaluated using the flux g;.

Theorem 2.13. is used to find the condition for TVD

b —
Aaji1je + ——" bin = bj | < Q(g)j41/2 <1 (3.6)
Uj+1 — Uj
By comparison with the Lax-Wendroff flux we get the following condition for second
order accuracy
bjt1 +9b;

Uj+1 — UJ

Q(Q)j—i—l/Z - ]-1-1/2 + O(Ax) (37)

We have two problems here, the first is how to determine the flux modification b; so

that (3.6) and (3.7) can be satisfied. A second problem arises if b; is only known at the

grid points, but our TVD scheme requires flux values intermediate between grid points

when @Q(¢) is to be evaluated, such as e.g. the Godunov or the Engquist-Osher schemes.
Introduce the notation

1
dit1/2 = §(Qj—|—1/2 — Q1Y ) A ud

Define
_J0 if AjuiA_uf <0 58
J sign(Ayu?)min(|d;y1 /2], [dj—1/2]) otherwise (3.8)

Note that b; = 0 at extrema, and thus that no modification will be made there. The
accuracy at extrema is first order in accordance with theorem 3.1. Note also that
because of theorem 2.13 Q41 /2 — Q]_H/z > 0, and thus that d; 1/, and Aju} have the
same sign.

Theorem 3.4. If b; is given by (3.8) then the scheme with numerical flux (3.5) is
second order accurate away from extrema if the viscosity coefficient, Q(g);41/2 satisfies

|Q(9)j+1/2 - Qj+1/2| = O(Az) (3.9)

Proof: Assume that the solution is a smooth function. Away from extrema b; =
djy1/2 or dj_y o and similarly for b4, but

dj_|_1/2 = dj—l/Z —|— O(Al’z)
so that

b]‘_|_1 + b] . 2dj—i—l/Z + O(sz)
A_|_u§‘ N A_i_u’?

J




and thus, by the definition of d;, ,,

bjy1 +b;
Q9)j+1/2 — % Q9)jx1/2 — Qjg1/2 + Q]+1/2 + O(Ax)
J

The condition for second order accuracy (3.7) is satisfied if
Q(9)j+1/2 — Qjt172 = O(Ax)

This theorem had been very easy to prove if we had defined b; = d;;/, always, the
more complicated definition of b; is made to make it possible to prove the TVD property
of the method, which we now proceed to do. First we define the modified viscosity as
bjt1 —b;
Q9)j+172 = Qjrzz + || (3.10)
Ui — Y
Thus we use an upwind approximation to the modified part of the flux. With this
viscosity we prove

Theorem 3.5. The scheme defined by the numerical flux (3.5) and with b; given by
(3.8) and Q(g)j41/2 by (3.10) is TVD and second order accurate away from extrerma
under the cfl condition Q13 < 3

Proof: The lower part of the TVD inequality (3.6) is immediate from the triangle

inequality

\ bjt1 —b; < bjtr —bj ‘

A jp1/2 + 7| Qjy1/2 + |7n| = Q(9)j41/2

REAR Y1 =Y
and where we use that (), is the viscosity of a TVD scheme. The upper limit
bjt1 — by
Qjy1/2 + |7n| <1

Ujpr — Uy

is shown using the fact that b; and b;4; always have the same sign and thus that

b‘_|_1—b‘ maX|b<|,|b<+1| 1
2o =y o Bk el < 20,000 - Q1Y)

Ujpr T U [Atu]
so that
_ 1
+1
Qg )]+1/2 = Q]+1/2 + |$| = 2Q1+1/2 LK/z = 2Q1+1/"
J J

The upper inequality is satisfied under the cfl condition Q4,2 < % Second order

accuracy follows directly from theorem 3.4 by the observation that

bisi — b,
|H| = O(Az)
J+1 J



And the theorem has been proved. Note that in the special case of an upwind approxi-
mation Q412 = Al@j4q/2| the cfl condition can be relaxed, because then QY = Q?,
and the upper TVD inequality becomes

3 1 1 1

S @ir12 =3 e = §(Qj+1/2 +1) - 5(1 — Qjy12)’ <

which is < 1if Majqq /5] < 1.

(Qjt1/2 +1)

N =

Instead of defining Q(g);j11/2 through (3.10) we could have extended b; (defined by
(3.8)) to be defined for all u by a piecewise linear interpolation. It is then possible to
prove that any first order three point TVD scheme applied to the flux function f + %b
will lead to a Q(¢);4+1/2 which satisfies the requirements above for second order accuracy
away from extrema and TVD, under a cfl condition similar to the one above.

The scheme using (3.8), (3.10) can be rewritten as

uj+1 =u; — 5( j+1 = j—1) + §A+( j—1/2A_uj)_
A_b;

1 1
5 (bjr1 —bj1) + §A+(|A_u§‘

4

Aul)

i.e. to convert a first order TVD scheme to a second order one, we can add the extra
terms

1 1 A_b;
—§(bj+1 —bj—1)+ _AJF('A_u?;

. A—ur)
without changing the original scheme. This makes the modification easy to implement
into a computer program where the first order method is available. The correction term
is sometimes called antidiffusive flux, since it is consistent with the equation u; = —cu .
with ¢ > 0.

It is easy to see that the method has a five point stencil, and that it is a non linear
method when applied to the linear equation uy 4+ au, = 0.



3.3 The Weighted Upwind-Lax-Wendroff Method

We next described another class of methods, based on the same idea of switching to
the Lax-Wendroff method whenever possible due to the TVD constraint. This second
class of methods have all numerical flux functions which can be written as a weighted
average of the upwind method and the Lax-Wendroff method,

hjtipz =(1— wj+1/z)h§ﬁ?% + wj+1/2hfrf/2'

Any first order TVD method can be used instead of the upwind flux, h?jﬁ%. The idea
is to have w;, /9 &~ 1, when the solution is smooth, and w;, /, & 0 near discontinuities.
Note that the methods in the previous section can not be written in this way, due to
the non-linear dependence of Q(g);41/2 on the modified flux.

For this class of methods, the known results about TVD have mainly been worked

out for the linear problem u; 4+ au, = 0. For this problem we obtain the numerical flux
1 1
hjtiye = a(ujpr +uy)/2 = SAlalApuj + 5 (Ala] = (Aa)? w1 /oAy (3.11)

Example of weight functions are

45(7“]‘) ifa>0

Wit1/2 = { 6(1/ri41) ifa<0 (3.12)
or
Wipi2 = ¢(rj) + é(1/rjp1) — 1 (3.13)
Where we define A
By
r] N A_|_u]

as a measure of the smoothness of u;. When u; is smooth, and does not have an extreme
point, r; = 1 + O(Ax).
The function ¢(r) is called limiter. We require that ¢(1) = 1, which implies that

¢(rj) =1+ O0(Az) ¢(1/rj) =1+ O(Az)
and consequently

hiprye = Dy + (1= wip o) (RIS = RPN ) = RN 1, + O(Az)O(Ax)

at smooth non-extreme points for the weight functions (3.12), (3,13). According to
lemma 3.3, ¢(1) = 1 thus guarantees second order of accuracy. The TVD property is
investigated in the next theorem.

Theorem 3.6. The method with numerical flux (3.11), and limiter (3.12), approxi-
mating uy + auy, = 0 is TVD if ¢(r) satisfies

0<o(r)<2 0<o(r)/r <2



Proof: Assume that a > 0. The proof for a < 0 is similar. We will apply theorem
2.12, and begin therefore by writing the method using (3.11), (3.12) as
Aa — (Aa)?

ntl u;‘ — /\aA_u;‘ —

Uj

(63081 — () Au)
With the definitions

Cjt1/2 =0
20— 0 L0~ bry0)

T

Dj—1/2 = ACL —|—

we can write the method as

+1
uy = U;L —|— C]+1/2A+U;L — Dj_l/zA_U?.

Assuming the cfl condition Aa < 1, we see that the TVD condition 0 < D 12 <1

1s satisfied if .

—2< —¢(rj) — ¢(rj—1) < 2.

Ty

This condition is true if e.g.

0<¢(r)<2 0= 4(r)/r<2
Example of a function satisfying the conditions on ¢(r) in theorem 3.6 is

qﬁ(T):{ﬁl}ﬂl Hr>0

0 otherwise

There is a special terminology for this class of methods. The scheme with limiter (3.12) is
called an upwind TVD scheme, and the scheme with the limiter (3.13) a symmetric TVD
scheme, thus indicating whether the upwind direction is required in the computation
of the weight function. Note that in both cases the upwind direction is required when

computing the flux h?jﬁ%. The symmetric TVD scheme is simpler than the upwind

TVD scheme, but we pay for the simlicity because the TVD analysis for the case (3.13)
( exercise 3 ) will give more restrictive conditions on ¢.



3.4 The Flux Corrected Transport Method
The methods described in sections 3.2 and 3.3 can abstractly be written

ut = L(u") + M(u™)

where L is the first order TVD scheme, and M is the modification such that the resulting
scheme is TVD and such that L + M is the Lax-Wendroff scheme whenever possible
due to the TVD constraint.

We now turn to another method based on the same idea of modifying the Lax-
Wendroff scheme, but instead on the form

3.14
un—l—l — u* —I—M(u*) ( )

where L is a first order TVD scheme and M is a modification such that L(u™)+M(L(u™))
1s TVD and the Lax-Wendroff scheme whenever possible. We thus implement the second
order modification as a corrector step to the TVD predictor. This method is known as
the flux corrected transport method (FCT). We thus use the predictor step

Wi =l = AA B,

where h” is the numerical flux of a first order TVD method. The corrector step is

J+1/2
u}H—l = u;‘ — (b]+1/2 — bj—l/Z) (315)
where
0 if AjujA_uj <0 or Ajuj (A_ujy, <0
byar2 = (3.16)

s m1n(§|A_uj s djy1 2| Aguil, §|A+uj+1 |) otherwise

Here s =sign(Aju}) and djyy/y = %(Qj—i—l/z — Qﬁ_/‘{/z), where @11/, is the numerical
viscosity of the first order predictor, and er{/z is the numerical viscosity of the Lax-
Wendroff method.

Again we can see that no change is made at extrema, and thus that the accuracy
is only first order there. The easiest way to understand the formula above is through
the proof of the following theorem.

Theorem 3.7. The FCT method (3.14) where L is a first order TVD scheme and M
is given by (3.15), (3.16) is TVD and second order accurate away from extrema.

Proof: To prove TVD define
f = {0 if AjujA_uj <0

smin(3|Ajuf], 3]A_u¥]) otherwise
with s =sign(Aju}). Write the corrector as

+1 _
U;L = u;‘ —|— C]_|_1/2A+u;“ — D]‘_l/zA_uj;



with
—bjt12 + [
A_|_u;f

—bi_12+ f;
A_u;f

and then use theorem 2.12 to show that TV (u"*!) < TV(u*). TVD of the total
method follows since the predictor assures that TV(u*) < TV(u™). At extrema
bjt1/2 = 0 and C, D are obviously non negative. Assume that AyujA_ui > 0. We
then have

Cit1j2 = Dj1y =

Sign(A-i-u*) .1 * 1 *
Citiy2 ZW(mln(§|A+U1|a §|A—Uj|)—
mln(§|A+uj+1|7dj+1/2|A+uj|7 §|A—Uj|)) >0
since 0 < d;yq/, <1/2. Similarly for D;1;/, we have

sign(Ayu’)

. 1 *k 1 *k
A_i_u;f (m1n(§|A+uj+1|,§|A+uj|)—

Dijyi2 =
mln(§|A+uj+1|7dj+1/2|A+uj|7 §|A—uj|)) >0

Finally we have to prove that C';1 /2 + D412 < 1. This follows from

fitr + 15 =2bjaps _ 38wl 4 A ut] = 2]bj4 o]

At = Au] =1
+Uj +Uj

Citrj2 + Djyrjz =

Next we prove second order accuracy. Assume that u; is smooth, and that there are
no local extrema. Then

bjp1/2 = smin(5Auf + O(AL®)], djg1 ol Al 51 A+uf + O(A?))

and, since u} = uj + O(Axz),

bjvis2 = %(Qj+1/2 — QMY Al + O(AR?) =
(@2 — QU ) Al + O(AR) + O(A2?) =
%(QJH/? — Q7Y ) Avul + O(Ae?)
Thus for the total flux of the FCT method we have

ji2 T+ ij—i—l/z = §(f]‘+1 + fj ) — 5Q1+1/2A+u1‘+

1 n
ﬁ(@jﬂ/z - QfK/Z)A+uj + O(Az?) =

Rty s + O(Az?)



The scheme is Lax-Wendroff up to truncation error, and thus second order accurate
( see lemma 3.3).

Remark: The method of artificial compression (ACM) is a method on the form (3.14),
(3.15), but with

by 0 if AyujA_uj <0 or Ajui A ujyy <0
an sign(Aju]) min([A_uj], [Apuf], [Ajui,|) otherwise
this correction sharpens discontinuities and can be made TVD with some changes, but
is not in general second order accurate (not even away from extrema).
Originally, FCT was defined using the scheme in exercise 2.2 as predictor. This gives

djy1/2 = é, a constant, and the computation of the antidiffusive flux in the corrector
step becomes very simple. Furthermore, FCT was defined using the corrector flux

0 if AyulA_u? <0 or Aju? A_ul, ;<0
biy1/2 = { ’ ’ a o (3.17)

smin(|A_uj|, djy1 /2] Auf], [Apujy]) otherwise '

which in general does not lead to a TVD method.

We have here modified the flux (3.17) with factors % in some places, to make the

total method TVD for arbitrary TVD predictors. Alternatively a more restrictive CFL
condition could have been imposed on the corrector step, e.g. A < 1/2.

Example 3.1 An example to show that (3.17) can increase the variation. Take
the monotone function

ui=0ui=1u;=2u; =21 u;=3 ug=4
Using (3.14) with d = ¢ gives
biyija =1/8 baprys = 1/10 byiyjo =1/80 byyyjo = 1/10 bsyyy = 1/8
and finally
ufTh =0 T =1.025 uftt =2.0875 ufT =2.0125 wlt =2.975 Wit =0

A maximum and a minimum have been introduced, which leads to an increase in vari-
ation.



3.5 Semi Discrete Inner TVD Schemes

The semi-discrete methods are divided into two different groups, the inner schemes
which are the analogue of

du (1) 1 1
# =~ 1o A5 (e + uj))
and the outer schemes which are the analogue of
du (1) 1 1
ét =~ 18- (Fluje) + fluj))

Before starting the description, we state the semi discrete version of theorem 2.12. A
semi discrete method 1s TVD if

TV (u(ty)) < TV(u(ty)) all t, >t

and the theorem is

Theorem 3.8. The method
du ;
d—t] — C]+1/2A+u] — Dj—l/ZA—uj
is TVD if
Cit17220 Djyi/2 20

Proof: Is left to the reader.

In addition to this TVD condition, we will also require

where A is a constant. This because if the problem is discretized in time with an explicit
method one gets the third condition in theorem 2.12 (or a similar condition if another
method than forward Euler is used in time )

At(Cip12+ Djyiy) <1
which can be satisfied for a cfl condition A < 1/(2A4) if (3.18) hold.

We start with a description of the inner TVD schemes. Assume
hjtijz = h(ujpr, uj)

is a numerical flux of a three point first order TVD scheme. This is an approximation
to the flux in the intermediate point x;, /5. As a more accurate approximation of this
flux we instead take

hjprp2 = h(uﬁ—l/zvufﬂ/z) (3.19)

and use du () )
U




where uﬁ_l/z and u]L_H/z are approximations from the right and from the left to the
value of u at the point ;4.
One way to interpret this is that a piecewise linear interpolation of the values u;
is made
u=uj;+sj(x—x;)/Ax xj_1/3 <T < Tjq1)

we then take "
u]‘—l/z:uj_sj/2 (3.21)

L — /9 '
Uihqyg = Uj+ s/

The slopes have to be constructed so that they meet the requirements for second order

accuracy and TVD. We will here follow a more general outline, and allow « and

R
j+1/2
L b 1 ily obtained f i ise li i lati
Ui )2 to be any values, not necessarily obtained from piecewise linear interpolation.
Remark: The inner scheme with piecewise linear interpolation is sometimes referred

to as “the MUSCL scheme”.

The condition for second order accuracy can be seen from

Theorem 3.9. If & )
Uitz — Uj1/2 = O(Az7)
u]L_H/Z — Uj+1/2 == O(sz)
where ujiq/ = (ujt1 + u;)/2 and the numerical flux function is Lipschitz continuous

then the approximation (3.20) is second order accurate in space.

Proof: The numerical flux f( %(Uj_|_1 +u;)) leads to a second order accurate method.
We prove the theorem by showing

1
hjyij2 — f(§(uj+1 +uj)) = O(Az?)
Begin by using the consistency f(u) = h(u,u), then use the Lipschitz condition

Wl ety ) = Fluggage) =

h(uﬁ-l/%ufﬂ/z) - h(uj+1/27uj+1/2) <

L(uR —u; )—l—L(uL — U )
NY541/2 Jj+1/2 20Uy /9 412

We can see that hjiq/0 — f(ujy1/2) = O(Az?) and thus the order is two. In the same
way as in lemma 3.3, it is necessary that the leading term in the O(Ax?) is smooth.
This will not always be the case near extreme points in the methods described below.

We give two sets of conditions for TVD, the first is



Theorem 3.10. If the scheme with numerica] flux h(ujq1,u;) is TVD, then the ap-

proximation using the numerical flux h(uf i1/ ]—1—1/2) is TVD if
R L
Y1z " iz o
Uj1 = Uj
R L
ut — ut
j—1/2 J+1/2 < 0 (322)
Uj1 = Uj
R L
U172 = Y5412 <0
Uy —uj-1

Proof: Write —A h(u?

ul
j—1/20 Y- 1/2) as

- (h(uﬁ—lﬂ? ]-1-1/2) f(u]L+1/2)) + (h(u fh 1/2 ]L-|-1/2) f(u]L+1/2))
= (hlufy oy ufy o) = Flugy o))+ (g gy ugy ) — flugt

From the theory of first order schemes, we know that

o M g) = )
172 Ujt1 = Uj B
(3.23)
p  _ yhlupuio) = fuy)
e uj = Ui N

which can be used by writing

—A+h( j—1/2,U ]Ll/Z) Cj+1/2A+uj_Dj—1/2A—uj

with R L L R L
c B h(uj—|—1/27uj—|—1/2)_f(uj—|—1/2)uj—|—1/2_uj—|—1/2
j+1/2 = — R _ . L Uit 1 — s +
Uit1/2 — U412 j+1 j
R L L R L
Ty oo uiinye) = FUih o) Uiia e = Wik o
R L .
Yi—172 7 Y412 Uit =ty
R L R R L
M) e
J=1/2 = wB b U — U N
j=1/2 J+1/2 J i-t
R L R R L
h(uj—1/27uj—1/2) - f(uj—l/Z) U172 — %512

T e
thus by using (3.23), we find that Cj1/, > 0, D44/ > 0 if (3.22) holds.

We can obtain less restrictive TVD conditions if we add assumptions about the first
order numerical flux. One example of this is



Theorem 3.11. If the scheme with numerical flux h(u;i1,u;) is monotone, then the

ult is TVD if

approximation using the numerical flux h( it1/20 u]L_H/Z)

R _ R
Uit1/2 ~ Yy-1/2 >0

AR (3.24)

L L
us — U=
1/2 —1/2
J+1/ J / ZO
Uy —Uyj—1

Proof: Write —A+h(u?_1/2,uf_1/2) as

_(h(uﬁ—l/%uf—l—lﬂ) - h(u?—l/Zv UJL+1/2))_

(h(u?—lﬂ’ UJL+1/2) - h(u?—l/Zv u]L—l/Z)) =
1
_/0 hl(u?—l/Z + 9A+u§{—1/27Uf+1/2)d9A+u?—1/2_

1
/0 h2(u§{_1/27uf_1/2 —I_ 9A+uf_1/2)d9A+uf_l/2

where hy and ho are the derivatives of h with respect to its first and second argument

respectively. Since the scheme

U;H—l = u;‘ - A(h(u?+17 u;‘) - h(uya u?—l))

is assumed to be monotone, h; < 0 and he > 0. Thus by taking

R _ R
Yit1/2 ~ Yj-1/2

Ujt1 — Uj

J

1
Ciyi2 = —/0 hl(u?_l/z + 9A+uf‘_1/2,uf+1/2)d9

1 UL+1/2 — uL—l/Z
Dj—1/2 — / h2(uﬁ_1/27 u]L_l/z —I_ 9A+uf_1/2) de J — ‘]
0 u] u]_l

TVD follows from theorem 2.12 if (3.24) holds.

We are now ready to describe how to do the piecewise linear interpolation. Apply
theorem 3.10 to the right and left values (3.21). The resulting inequalities are

Lsjtit+s;

1— >0
2 A_|_u] o
5y
>0
A+u]‘ o
Sj >0

A_uj



If AjujA_u; <0, it is necessary that s; = 0, i.e. the usual degeneracy to first order
accuracy at extrema. Condition for second order accuracy is obtained from theorem 3.9

Si41 1
wjpr = =5 = (e Fug) + O(Az?)

1
= U1 +uj) + O(Az?)

Sj
T2
which is equivalent to

s;=Aqu; + O(Al‘z)
Since A_u; = Ayuj + O(Az?), the choice

~_Jo if Aqju;A_u; <0
J sign(Ayu;)min(|Ajuj|, |[A_u,;|) otherwise

leads to a second order TVD scheme. The function above is called the minmod function,
and we write
s; = minmod(Ajuj;, A_uj)

This is the only example we give of a choice of slopes satisfying the requirements in
theorem 3.10. Instead we now turn to theorem 3.11. The TVD requirements there gives
more freedom of choice.

Apply theorem 3.11 to the right and left values (3.21). The resulting inequalities
are

ujt1 = s+ /2 —uj+55/2
A+u]‘ -
ujF8i/2—uj1 = sj-1/2

>0
A_u]‘ o

which simplifies to
Sj+1 — 5j
11— T >0
2A+u] -

Sj+1 — 5j
1+ 2 >

1.e.
|sj+1 = 55| < 2[Aqu) (3.25)
By taking
] Aqu;A_u; <0
5= B(Ajuj,A_uj;) otherwise

where B is a function which has the same sign as its arguments, s; and s;4; will always
have the same sign. (3.25) is then satisfied if

max(|s; |, |sj+1]) < 2|A4u;]
which holds if B(x,y) is such that

B(a,y)| < 2min(e], ly)). (3.26)



This follows because (3.26) implies that
max([s;], |sj41]) < 2max(min(|Au;], [A_uj]), min([Apwjpa ], [Apus]) < 2|A4u;]

We now give some examples of functions, B, that are sometimes used in computations.
The condition for second order accuracy

s; = Aquj + O(Az?)
1s translated into
B(Aguj, Ayuj+ O(Az?)) = Ay, + O(Az?)
This is satisfied if
Blz,z) ==z

and B is Lipschitz continuous, which can easily be checked to hold for the examples
below.
Example 3.2 minmod slope limiter. Take

B(xvy) = Sign(x)min(|x|7 |y|)

(3.26) is clearly satisfied. This is the slope limiter already encountered in connection
with theorem 3.10.

Example 3.3 van Leer’s slope limiter. This is the function

2xy
T +vy

B(x,y) =
An advantage is that this is a smooth function of its arguments. (3.26) follows from

2|z|
B(z,y)| < ——— < 2|z| |z| <y
|B(z,y)| 15 [y/7] lz| | <yl
2]y
B(z,y)| < ——— <2|y| |y| <=
|B(z,y)| 15 2/ lyl |yl < |z]

Example 3.4 Superbee slope limiter. This is the function

Bla,y) = {sign(x)ma?c(|x|, ly|) %f /2 <y <2
2sign(a)min(|z|,|y|) if ©/2 >y or y > 2«
This is a slope limiter which gives high compression, (3.26) is easy to verify.
Example 3.5 van Albada’s slope limniter.
:1;2y + y2:1;

B(,y) = —3 —y



another smooth function which satisfies the requirements for second order TVD. The
reader is asked to verify (3.26). This limiter is not set equal to zero if zy < 0. In
computer programs we use the modification

(2 + )y +(y* + )
262 —|—$2 _I_y2

B(xvy) =

with € a small constant, to avoid difficulties when = =y = 0.

Note also that the function B(z,y) = (@ + y)/2 leads to a centered difference
method, which does not satisfy the TVD conditions.

These were all examples of slope limiters. We now generalize these limiters into
limiter functions, which in general can not be interpreted as piecewise linear interpola-

tion. Instead the values uf can be considered as interpolated from the right

L
: j—1/2> %412
and the left respectively. We take

1 1

u?—l/z =uy; = §¢(r_j)A+uj
1

“]L+1/2 = uj + §¢(T1)A—uy‘

(3.27)

where r; is defined as
. A_|_u]
A_uj

T

The function ¢(r) is called a limster. If b = 1, the interpolation interpretation becomes
clear. This is a generalization of the piecewise linear interpolation, assume that

p(r) =rip(1/r) (3.28)
Compare with (3.21), and it is clear that (3.27) corresponds to taking

sj = (rj)A_u;

We will now consider (3.27), without requiring (3.28). In this way a wider class of TVD

methods can be treated.
Apply theorem 3.11 to (3.27)

it — g0 ) A g — (v — 3¥()Agu;)

Ti+1

>0
A+u]‘ -
uj + 39(rp)A-uy — (wj-1 + 3(ri-1)A-uj—1) o
A_u]‘ -
which simplifies to
L= Srpnd(——) () 2 0
2r]+1 T]‘_|_1 2 7“]‘ -
1 1
L+ 5o(rje) = ijﬁb(rj) >0



Thus if v is such that

1 1
14+ §¢(3) — 5;/}(7“) >0 all r,s

the method is TVD. By inspecting the I-form in the proof of theorem 3.11, we see that
the boundedness (3.18) means that the this expression is bounded from above by a
constant, 1.e.

0<1+ %;/}(3) — %;/}(r) <A all r, s (3.29)

Theorem 3.12. If the limiter function 1 is Lipschitz continuous and the following
holds for all r
P(1) =1

m < (r) <M
P(r)

7

M+2-24< <24m

for some constants m > —1, M, A, then the second order semi discrete method, obtained
by putting (3.27) into a first order numerical flux function is second order accurate and
TVD if the first order flux corresponds to a monotone scheme.

Proof: We have seen above that (3.29) implies TVD. Estimate the expression in
(3.29) using the given bounds,

1 1 1 1
- - >14=m— = _
L S(s) — o) 2 14 om - (24 m) =0
We obtain the upper bound similarly,
1+1¢() i;z;()<1+1M l(M+2 24)=A
g\ T = ST T -

(3.29) holds and the method is TVD. Second order accuracy follows if (1) = 1
and 1 is Lipschitz in a neighborhood of 1. If u, # 0, then r; = 1 + O(Az) and
Y(r;) =14 O(Az), thus

1

1 1
Uiy = g = (A = uj = 5 A u; 4 O(A?) =
J

1 1 1
S i) = ALA L+ O(A) = S(uj + 1) + O(A?)

and similarly for u]L_H/z. Theorem 3.9 gives second order accuracy. The condition
m > —1 means that the point (1,¢(1)) is inside the TVD region. Since (r) is
bounded, we have in general lim,_ 4. ¢(r)/r = 0, which means that zero must be

an allowed value for ¢ (r)/r. This is no problem since A can be chosen large enough
so that the lower bound is negative.

The TVD domain is outlined in the figure 3.3. together with a shaded curve indicating
a limiter function inside the TVD domain.
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We now give some examples of commonly used limiter functions. The reader is
asked to verify that the functions satisfy the conditions for TVD and second order
accuracy given in theorem 3.12.

(M+2-2A)r
i=(2+m)r

}si

TVD
TVD ’

Fig.3.3. TVD region.

Example 3.6 The slope limiters given previously can be converted to limiter functions
with the following results. The minmod limiter becomes

Ao ifr <0

min(1,7) otherwise

P(r) =
van Leer’s limiter becomes

ﬁ\u r) = 2 .
(r) ID otherwise

Ao ifr <0

The superbee limiter becomes

Ao ifr <0

max(min(2r, 1), min(r,2)) otherwise

o(r) =

and finally the van Albada’s limiter becomes

ﬁmn_'ﬁ

v =

which one usually does not put equal to zero for r negative. It is inside the TVD region,
also for r < 0.

Now we give some limiters for which (r)/r # 1»(1/r), and thus which can not be
interpreted as piecewise linear interpolation.
Example 3.7 A generalization of the minmod limiter is

@SHAO if r <0

min(c,r) otherwise

where ¢ is a constant, 1 < ¢ < 2.



Example 3.8 2/5-limiters. These are limiters with the additional property
Y1) =2/3

In this case one can show that the scheme is third order accurate away from extrema.
Note that ¢(r)/r = ¢(1/r) implies that ¢'(1) = 1/2, so that it is impossible to interpret
these limiters as piecewise linear reconstruction. Some examples of limiters in this class
are

4r? 4 2
R
or ,
2re +r
hlr) = 22 —r 42

Of course, these 2/3-limiters satisfy ¢(1) = 1 and are inside the TVD region in figure
3.3.

We finally show in figures 3.4 — 3.7 some of the functions in the examples above.

2 T T T T T 2

151 1 15

1k

0.5r

0

-0.5F 1 -0.5[

1 L L L L L 1 L L L L L
-1 -0.5 0 0.5 1 15 2 -1 -0.5 0 05 1 15 2

Fig.3.4. Minmod limiter function Fig.3.5. van Leer limiter function

2 T T T T T 2

151 1 15F

1F

0.5

0

-0.5r 1 -0.51

El 05 0 05 1 15 2 E 05 0 05 1 15 2

Fig.3.6. van Albada limiter function Fig.3.7. 2/3-limiter function



3.6 Semi Discrete Outer TVD Schemes
The last part of this chapter is devoted to the outer TVD semi discrete schemes. Begin
with the centered difference approximation

du; 1 1
d—t] = _EA+§(]C(U]) + f(uj—l))

introduce the numerical flux %1/ from a first order TVD scheme and rewrite the
centered approximation as

du 1 1 1

d—t] = —EAJr(hj—lﬂ + §(f(uj) —hj_12) + §(f(uj—1) —hj-1/2))
we can interpret the numerical flux of this method as a first order one, with two cor-
rection terms. To make the approximation TVD it is necessary to sometimes switch off
the correction terms. We do this using a limiter function ( flux limiter ) similar to what
was done for the inner scheme. The numerical flux for the outer second order TVD
schemes is

1 1
B = hivge + 50 ujen) = i) + 590700 (w) = hypay)  (3:30)

where we use

v S =i o FO4) = Ry
Fujpr) =hjprpe 7 fluja) = hjoay
these quantities and the way the limiter functions ¢» depend on them are defined in such

a way that a reasonably simple condition on )(r) is obtained from the TVD requirement.
The formulas above are easiest understood through the proof of the following theorem.

Theorem 3.13. If the limiter function (r) satisfies
1 1
0<1-— §¢(T) + 2—¢(3) <A all rs (3.31)
s
for a constant A, then the outer semi discrete method is TVD.

Proof: We write the method with the numerical flux (3.30) on I-form

1
—A+h§2_)1/2 = —(hjy12 — fj + §(fj+1 — i) )+
1 _
S(f5 — hj+1/2)77b(rj+1) - hj—1/2 + fi—

2
L (fj—l - h]‘—l/z)@/}(r,j_))

§(fj - hj—l/z)%/’(r;r_ﬂ

Thus it is possible to define

1
2

lijyie — f; . 1 _
Citi2 = —m(l - 5@/’(7“]‘“) + fﬁ/}(ﬁ )
hj_isa—f 1
Djmpp = === o)+ 5 el )



from which we see that if the inequality

1 1
1— §¢(T) + %;/)(3) >0 all r, s
is true, then Cy,/5, Dji1/2 are non negative, and TVD follows from theorem 3.8.
Finally, the boundedness (3.18) gives the upper bound.

Finally we further investigate condition (3.31) to obtain a theorem similar to the-
orem 3.12.

Theorem 3.14. If the limiter function 1 is Lipschitz continuous and the following
holds for all r
P(1) =1

m < (r) <M
M—2§¢£T) <24—-24m

for some constants m,M < 2, A, then the second order outer semi discrete method,
using the flux (3.30), where h;y,, corresponds to a first order TVD scheme is second
order accurate and TVD.

Proof: We verify the condition (3.31). Use the given bounds to obtain the lower
limit
L Sh(r) 4 op(s) 21— 2 M 4 (M~ 2) 20
2\ T = R T Ty =

and the upper limit

1 1 1 1
_ - - <1—Zm4 (24— <
L= 50(r) + ot(s) S1—gm+ 5(24 -2+ m) < 4
and TVD follows from theorem 3.13. Second order accuracy follows if (1) = 1
and 1 is Lipschitz in a neighborhood of 1. If f, # 0, then r; = 1 4+ O(Az) and
Y(r;) =14 O(Az), thus the numerical flux of the method becomes

1 1

hjrie + 51+ OA)(Flujpr) = hjprje) + 51+ OA2))(f(uj) = hjtrye) =
1
5 (flujn) + f(uj) + O(Az?)
where we use that the flux difference f(uj11) —hjy1/2 = O(Ax) and similar for the
other flux difference. Thus the numerical flux is equal to the flux of a second order
scheme up to truncation error. The condition M < 2 means that zero is included in
the interval, which is necessary by the same argument as was given in the proof of
theorem 3.12. Since A can be chosen large enough, the point (1,4 (1)) can be included
into the TVD region.

The TVD region for the outer limiters is thus similar to the TVD region for the inner
limiters, shown in figure 3.3.

In fact most of the examples of limiter functions given in this chapter satisfy both
the requirements in theorem 3.12 and 3.14. The condition such a limiter has to satisfy
is obtained if we combine the two TVD regions.



[8]e)

Theorem 3.15. If¢(r) satisfies

$(1) =1

m < (r) < M
(r)

7

—
~—

=

M-2<

<24m

with M < 2,m > —1, then ¢(r) will give a second order TVD scheme if it is used either
as an inner or an outer limiter.

Remark: By choosing the constant A = 2, the TVD conditions for inner and outer
limiters coincide.

Let us finally compare the formula (3.30) with a simpler weighted upwind-centered
method, which we define in analogy with the methods in section 3.3, as having the
following numerical flux function

hﬁ)nz = (L —wjyiy2)hjp1y2 +wipiyphiy ),
The centered flux is h§+1/2 = (fj+1 + f;)/2, and hjyq/5 is the numerical flux of a first
order TVD method. With this method we can retain the simplicity of the weighted
TVD methods, and at the same time avoid the difficulties at steady state and multi
dimensional computations associated with the Lax-Wendroff method.

If we write out the formula above, we obtain

hgi)l/z = hjpayz +wiprp((Flujrn) + f()/2 = hjgay2)

and we see that this is a simplification of formula (3.30) where we lump together the
two correction terms, so that they are multiplied with the same weight. We could e.g.

define
wit12 = P(rj) +(1/rjpa) — 1
with
I Qj—1/2D-u; _ (fi + fi-1)/2— hj-1/2
! Qit120-u;  (fix1 +1i)/2—hjti/0
It is possible to show TVD for this method, under conditions on ¢, similar to the
previous analysis in this chapter.

Time discretization will be discussed in section 4. For the moment, we recommend
the Runge-Kutta method
ul = u™ — NALA"

j—1/2
u? = ut — /\A+h1_1/2

J
un—l—l — (un _I_ u2)/2

to be used for second order accuracy in time. It can be proved that if the semi discrete
problem is TVD, the fully discretized problem is TVD too, if the method above is used.



Exercises

1. Give conditions on s; such that the piecewise linear interpolation
u(e) =uj + sj(e —a;)/ Az i1y <@ < Xjpq0
does not increase the variation, i.e.

;4 5;/2 <ujyr —sj41/2 if u increasing

Uj+5;/2 > ujqr — 5j41/2 if u decreasing
2. The 2/3-limiters in example 3.8 can be viewed as a modification of the difference
scheme (the k-scheme)

1+& 1—=x
(wjpr —uj)+ 2 (uj —uj-1))

u?""l = u;‘ —aAtD_(u; +

for a certain value of x. Here it is applied to the problem u; + au, = 0, a > 0.
Investigate how the spatial accuracy depends on the parameter .

3. Give conditions on ¢(r) such that the method with numerical flux (3.11) and limiter
(3.13) is TVD when applied to the problem u; + auy = 0, a > 0.



4. Higher Order of Accuracy

4.1 Point values and cell averages

In this section we will not strictly enforce the TVD constraint. As we have seen, TVD
leads to restrictions in the accuracy. It is, however, necessary to use some of the ideas
in the previous sections to make the increase in variation “as small as possible”. A
pure centered difference approach is not sufficient as can be seen from the following
experiment. We solve u;+ (u?/2), = 0, with a step function as initial data. The scheme

du Az?

—L = _Dy(I—

= DyD_)f(u;) — dAa* (D4 D),

1s used, discretized in time using a fourth order Runge-Kutta method. The spatial
discretization is a fourth order accurate centered difference together with a fourth order
artificial dissipation term. There is a viscosity parameter d left to tune the method
for shocks. The result in fig. 4.1 shows the solution after shocks have formed for some
different values of the viscosity d. In the first picture the viscosity parameter is too small
to give substantial damping of oscillations. in the second picture, d = 0.2 which was
the best value according to subjective judgement by looking at the results. In the last
picture d = 0.235, which turned out to be the largest possible viscosity due to the CFL
constraint. The dissipation operator was not taken into account in the CFL condition.

d=0.01 d=0.200 d=0.235

0.8F 4 osf

o6t 1 osf
04t 1 oal

0.2F 4 o02r

oF

o
o

L L L L L L L L L . L L L L L L L L L R L L L L L L L L L
‘1 08 06 04 -02 0 02 04 06 08 1 ‘1 08 06 04 -02 0 02 04 06 08 1 ‘1 08 06 04 -02 0 02 04 06 08

Fig. 4.1. Fourth order solution of Burger’s equation.

Note that the results are not particularly good, not even after tuning the viscosity.
The higher order methods described in this chapter will give good results for this
problem. We must however issue a warning that the theory for higher order non oscil-
latory schemes is not well developed.
This far we have not made any distinction between cell averages and point values.
Consider the grid
r; J=...,—1,0,1,...

with Az = x; — xj_; = constant. The numerical approximation uf at (tn,z;) can be
thought of as an approximation to the point value u(t,,z;). Alternatively, we introduce
the cells, c; as

c;j=1xlvj_1/s v <wiq1y0})



n

J

1 [T/
A—/ u(ty,x)de.
T T

i—1/2

where ;115 = (2; +2j11)/2, and view u} as an approximation to the cell average

The situation is depicted in fig. 4.2.

Point j Cell j

| | | | | |
! I B \
i-1 i i+1

Fig. 4.2. Grid cells and grid points.

The distinction between these two views is not important for methods with accuracy

< 2, since
1 Tit1/2 )
u(tn,x;) = —/ u(tn,x)de + O(Az?)
Az f,
j—1/2

In this section, however, we will treat higher order of accuracy than two. We first
analyze semi discrete methods, and save the time discretization until the last section.
The cell average based higher order schemes are the generalization of the inner schemes
described in the previous chapter. The schemes starts from the following exact formula
for the cell average. Integrate

with respect to x over one cell at t. The result is

d 1[5+ flult, wjpipe)) = flult,2j-1/2))
Eﬂ Lj_1/2 U(t,l') dl’ —|— A:[ = 0 (4:1)
Compare this with the numerical approximation
du; h; —h;_
Uj + J+1/2 j—1/2 =0 (42)

dt Az

If the numerical flux approximates the flux of the exact solution at the cell interface

hisrps = flult 2j0002)) + O(A?)

then (4.2) is a p th order approximation to the PDE in terms of its cell averages.

One usual way to find higher order approximations is to make a piecewise poly-
nomial approximation, L(z) of u(t,,z) from the given cell averages u?. Inside each
cell u(t,,x) is approximated by a polynomial, and at the cell interfaces, ;44 /, there
may be jumps. From this piecewise polynomial the numerical flux is obtained as
h(uﬁ_l/z, u]L-|—1/2)7 where h(w;41,u;) is the numerical flux of a first order TVD method
and the end values are "

u = lim L(x
j+1/2 v 1o ( )
L .

Uitrp = lim  L(x)

T2



Fig. 4.3 below shows a piecewise parabolic approximation.

R
u Uiy

u,am\ // \
A

Fig. 4.3. Piecewise parabolic reconstruction.

The point value based higher order methods starts from the observation that if

futen = [ R

Tji—1/2

for some function F(x), then

flu(z))e = F(x”l/z)A_xF(xj—l/z)

and thus if the numerical flux satisfies
hj—|—1/2 = F($]+1/2) —|— O(A(Ep)

the scheme (4.2) is p th order accurate in terms of point values. The function F(x) can
be obtained by interpolation of the grid function

zj41/2 i
Gjti/2 = / F(z)de =) f(up)Az

k=a

and then taking the derivative of the interpolation polynomial, F(x) = dG(x)/dx. The
point based algorithm is much easier to generalize to more than one space dimension.

In section 4.2. we show some different ways to do the piecewise polynomial re-
construction. When the time discretization is made, extra care has to be taken to get
the same high order of accuracy as for the spatial approximation. This is the topic of
section 4.4.



4.2 Inner interpolation gives a cell average scheme

There are three ingredients in an inner high order scheme

1. A First order numerical flux.
L

R
i1/20 and u

2. A piecewise polynomial interpolation to find u it1/2

3. A time discretization.

The topic of this section is 2., polynomial interpolation. We will consider the
problem of finding the values of the solution at the cell interfaces, uﬁ_l/z, u]L_H/z,
J = ...,—1,0,1,... from given cell averages. This is done by piecewise polynomial
interpolation, and in such a way that the variation of the interpolant is is as small as
possible. Strictly speaking, this is not an interpolation problem, since the function is
given as cell averages, while an interpolation problem requires the function at certain
points. The term reconstruction is therefore used to denote the process of finding an
approximation to a function whose cell averages are given.

One method in this class is the so called piecewise parabolic method (PPM). It con-
tains a reconstruction step using parabolic polynomials. The reconstruction algorithm
contains limiters to ensure monotonicity. We here give the algorithm without details,
just to give the reader an understanding for the complexity of the PPM reconstruction
step. ‘

(a) Define the primitive function Vi, = Yt URAT.

(b) Interpolate Vjq/, using piecewise quartic polynomial.

(¢) Define u]L_H/z = uﬁ_l/z = dV(xj41/2)/de.

(d) Modify the left and right values obtained in (c), so that they both are between u;
and uj4q.

(e) If the parabola in cell j ( parabola through uf

j=1/2° “JL+1/2
Azu; ) has an extreme point inside the cell, modify it such that it becomes mono-
tone inside the cell.

(f) If a cell is inside a discontinuity replace the parabola with a line, which gives a
steeper shock representation than the original parabola. As discontinuity detector
the following conditions are used

if A+A_u]‘_1A+A_u]‘+1 <0
and |A+A_A+u]| Z M1
and A+A_A+u]‘A+u]‘ <0
and |A0u]| Z M2

then there is a discontinuity in cell j.

and satisfying fc udr =
J

We next describe another method for obtaining high order interpolation of discon-
tinuous functions. The essentially non oscillatory (ENO) interpolation is a systematic
way to incrementally increase the accuracy to any order by adding points to the inter-
polation polynomial from the left or from the right, depending on in which direction
the function is least oscillatory.

The process is described using Newton’s form of the interpolation polynomial. As-
sume that the function ¢(z) is known at the points x;,5 = ...,—1,0,1,.... Define the



divided differences [z;, ..., ziy,]g recursively by

[:]g = g(x:)
_ [Tit1, - Tiprlg = [2is o Tigroa]g
[l’i, s 7xi+1”]g -
Loty — Xy
Newton’s polynomial interpolating ¢ at the points z1,...,z, is then given by

7

P"(x) = Z(l‘ —xy (@ —ag).. . (x —ximq) w1, ..., 259

=1

where (¢ — x;)...(z —a;) = 1if ¢ > j. This form is convinient, since if we want
to add another point to the interpolation problem, we can immediately update the
interpolation polynomial using the formula

Py =P a)+ (x —x1) ... (2 — )1, o, Tnti]g

Proof of the above statements and description of various interpolation procedures can
be found in any textbook on approximation theory.

We now give an algorithm for constructing a piecewise N degree polynomial con-
tinuous interpolant L(z) from the given grid function wu;, with

L(z;) = u;

and which does introduce as small amount of oscillations as possible. Start by defining
the linear polynomial

Li(a) = uj+ (v — aj)(ujur —uj)/Dr 2j Sa <ajn

and the indices

kl

ke = J
max_]—l_]'

to bookkeep the stencil width. The interpolation proceeds recursively as follows. Define

the divided differences

a, = [wkiﬁ,ll""’wkﬁl}i-l-l]u
b, = [x,»- ey Top—1 U
p [ kiu,rll_lv ’ kﬁmlm]

where thus we add one point to the right for a, and one point to the left for b,. Next
use the smallest difference to update the polynomial.

if |ap,| < |bp| then

p—1
kmam

L(e) = D7) 4ap [ (- i)

k=kP1

min

S e |

max max

kP = kD

min min



else

kP
Lr(a)=L"""(a)+b, J[ (&—ax)
k=kP7
N L
| A e |

Thus LP(x) is a degree p polynomial which interpolates u(x) and which is constructed
from the smallest possible divided differences.
We next show how this interpolation algorithm can be used to solve the reconstruc-
tion problem. There are two ways to do this.
1. Reconstruction by primitive function (RP).
2. Reconstruction by deconvolution (RD).
In the first method (RP), we observe that the primitive function

Tit1/2 J

U(:ch_|_1/2):/ u(ty,v)de = Z up Az

- k=—o0

is known at the points x4, /,. The function U(x) is interpolated using the ENO inter-
polation algorithm above. The interpolation polynomial, L(x), is differentiated to get
the approximation to u(t,, ). Thus the left and right values required in the numerical

flux are
I - dL($]+1/2—)
=T g
G T T g

L(z) is continuous, but the derivatives may have different values from the left and from
the right at the break points x;,,/5. In this way the reconstructed function becomes
plecewise continuous.

To describe the second method (RD), we first note that

1 z+Ax/2 1/2
u(z) = — / u(y)dy = / u(x + sAx)ds (4.3)
Az T—Az/2 —1/2

where thus u(x) is the cell average. We interpolate the given cell averages, using the
ENO interpolation algorithm above, to get an approximation to u(x), and then find the
approximation to u(x) by inverting (“deconvolute”) (4.3).

To invert (4.3) use Taylor expansion

_ 1/2 N1 sAz? d’u N
e =[S e e+ Ol =
- v=0

d’u 1/2 N
o (:1;])/ " ds + O(Ax™)

—1/2

N—-1 1
2_:0 ;Al’y



All the derivatives d”u/dz"(z;) are unknowns but there is only one equation. To in-
troduce more equations it is necessary to consider the derivatives of u(x). Similarly as
above one gets

dk— . N—-k-1 1 du—l—k 1/2
u(l']) _ —Al’yiu(l'])/ sV dS—I—O(Al‘N_k)

—1/2

for k = 1,...,N — 1. In this way N equations are obtained for the N unknowns
d’u/dz¥(x;), v =0,...,N — 1.

The reconstruction polynomial is then defined as

N— 1
l’—l’ Yu
LN 1 Z ] de( ) l’j_l/z <$<$]‘+1/2 (4:5)

vl

In summary the algorithm becomes
1. Use the ENO interpolation algorithm to interpolate the cell averages u;. The result
is a polynomial of degree N, Q™ (x), piecewise differentiable with breakpoints at
Tj.
2. Evaluate the derivatives dQ™ (x;)/dz. Since z; are break points extra care has to

be taken. We define

dQ™(z;) _ minmod(dQN(xj_) dQN($j+))
dx dx ’ dx

and similarly for higher order derivatives.
3. Solve the upper triangular linear system of equations

deN(xj) N—k—1 1 dk—l—uu 1/2 N
— = —Aa¥—(x; Yd A k=0,...,.N -1
dzk ;) vl . dzk+v () /—1/2 +"ds +0(Aa”) %

to get the derivatives d”u/dz"(x;).
4. Define (4.5) as the piecewise polynomial reconstruction.

Example 4.1. We derive the second order ENO scheme through RP. Second
order means doing piecewise linear reconstruction. Thus the primitive function has to
be interpolated using degree 2 polynomials. We obtain

1
Ulz) =Ujq1y2 + ( — $j+1/2)uj‘|’ﬂ($ —xj_1o )@ — Ty 0)m(A_uj, Aguy)

Tj-1/2 < T < Tjyi/z

v if 2] <yl
m(x,y) = i
ew={y bzl
The linear approximation inside cell j becomes

dU_ ‘_I_l’—l']
d:z;_u] Az

where

m(A_uj, Ayuj)



this is a scheme on the form treated in chapter 3 ( see p.50 ), with
s;=m(Ayu;, A_u;y)

the TVD condition (3.25) is satisfied. Thus this is a TVD scheme which and conse-

quently it degenerates to first order at extrema.

In general one can prove that the RP ENO scheme using degree N polynomials has
truncation error O(AzY), except at points where any of the first N — 1 derivatives
disappears, there the truncation error is O(Az™ ~1). Tt is also possible to prove that the
truncation error for RD ENO method using degree N polynomials is O(Az®) always.

4.3 Outer interpolation gives a point value scheme

This scheme is based on interpolation of the numerical fluxes. To achieve the
desired order of accuracy, it is necessary that the interpolated fluxes have a sufficient
amount of derivatives. This is a very important point which somewhat restricts the
possible choices of first order numerical flux to build the method from.

Assume that the point values

uj j=...,-2,-1,0,1,2,...

are known. The idea of this method was outlined in section 4.1. We form the interpolant

of ‘
J
Hji12 =Ax Z flug)

k=a

by using the ENO interpolation algorithm, and then take the numerical flux as

2T T

The interpolation is made piecewise polynomial with break points x;. This direct ap-
proach have to be modified somewhat. If we carry out the above scheme we get

H'(z) = {HJH/? t@ =)l ] < [finl

Hj+1/2‘|‘($—$]‘+1/2)f]‘+1 if |fj—|—1| < |f]| Ty X Ty4+1

which leads to ‘
. 12={fj if [ £5] < [Fj+1]
i+1/ fier i [ < [f5]

if the order of accuracy is chosen =1. Although this flux is consistent, the resulting
method is not TVD (Exercise 2). It is crucial that the first order approximation is
TVD. From numerical experiments, it is possible to verify that this method is not non
oscillatory no matter how high the accuracy of the interpolant. Instead we make the
first order version of this method TVD, by taking

H'(z) = {Hj—I—l/Z +(z—wjpap)fy Hajpp >0 ;<@ < T

Hiprp+(x —ajqi2)fit ifajpin <0



the first order method is then the upwind scheme. Continuing the interpolation to
higher order leads to a non oscillatory high order scheme, but the method does not
satisfy an entropy condition.

We obtain a more general way of choosing the starting first order polynomial if we
consider a first order TVD flux Ay, /, and split it as

hjty2 = f]+ + i

where f* corresponds to positive wave speeds and f~ to negative wave speeds. As an
example the Engquist-Osher scheme (section 2.5) can be written on this form with

[ fw) Hfu)>0 [0 f(u) >0
f+(“)—{o if f'(u) <0 Fow) {f(u) if f'(u) <0

Another example is the Lax-Friedrichs scheme, where

or the modified Lax-Friedrichs scheme
FHu) = (f(u) + au)/2
fr(u) = (f(u) — au)/2
with o = max|f'(u)|.
We define the starting polynomials
H(2) = Hji1ys + (v — 2j412)f 5

T; < T < Tjpq
Hi_(:z:):Hj+1/2—|-(:1?—51?j+1/2)ff ’ ’

and then continue the ENO interpolation of f and f~ respectively through the points
r; to arbitrary order of accuracy, p. Finally

3 o dH_]i_($]+1/2) dHf(x]—i—l/Z)
S

The truncation error for this method will involve differences of the functions fT and
f~. Thus to achieve the expected accuracy it is necessary to have fT,f~ € CP, p
large enough. Because of this, the scheme has mostly been used together with the C'*°
Lax-Friedrichs numerical flux, or the modified Lax-Friedrichs numerical flux. However
the Lax-Friedrichs scheme does not always give sufficient shock resolution. Although
the higher order versions, obtained as described above, performs much better than the
first order Lax-Friedrichs, there is still need for first order TVD methods giving better
shock resolution than Lax-Friedrichs and having more derivatives than the upwind or
the Engquist-Osher schemes, to be used as building blocks for this method.
We conclude with some remarks about two space dimensions. For the problem

ue + f(u)e +g(u)y =0



the method described in this section can be applied separately in the x- and y- directions
to approximate /0x and 9/0y respectively (see section 2.6). There are no extra com-
plications. For the cell centered scheme, the two dimensional generalization of formula
(4.1) gives an integral around the cell boundary. This integral is required to p th order
accuracy, which can be done by a numerical quadrature formula. If e.g., p = 4 this
means using two values on each cell side. Thus for each cell, we need a two dimensional
reconstruction, which is a non trivial problem in its own right, and then we have 8 flux
evaluations to make, two on each side. The cell centered scheme quickly becomes more
computationally expensive than the point centered scheme.

4.4 Time discretization

The easiest way to obtain a high order time discretization is to use a Runge-Kutta
method. However it has been observed that e.g., the classical fourth order Runge-
Kutta method can cause large amount of oscillations in the solution although the space
discretization is made TVD. Therefore, we have to be extra careful about how to design
Runge-Kutta schemes.

We consider the semi discrete approximation

du
e
to the problem
ue = —flu),

where we know that the forward Euler approximation
u Tl =y AtL(u™)

leads to a TVD or ENO method. The semi discrete TVD methods treated previously
can all be written

du
dt
with non negative C;1 /9, Dji1 /2. From theorem 2.12 it follows that the forward Euler
time discretization is TVD under the CFL constraint At(Cj1/5 + Dj11/2) < 1, all j.
Thus it is not too restrictive to assume TVD for the forward Euler time discretization.

= j+1/2A—|—Uj - Dj—l/zﬁ—uj

The idea of TVD Runge-Kutta methods is to write the scheme as a convex combination
of forward Euler steps. One general form for explicit m stage Runge-Kutta methods is

w0 =y
1—1

u® =y —I—AthikL(u(k)) 1=1,2,....m (4.5)
k=0

yr L ()



AV
For each stage, the weights ozgj), kE=0,...,2 — 1, satisfying

ol >0
ST
k=0

are introduced. Then (4.5) can be rewritten

ul® = "
1—1 ‘ ‘

u® = Z ozgcl)u(k) + ﬂ,(cl)AtL(u(k)) 1=1,2,....m (4.6)
k=0

un—l—l — u(m)

with ﬂ,(cl) = cip — E; 1k-|—1 cskag) By writing

L o BOA
o =2 el S L) =12
=0

it is easy to prove
Theorem 4.1. If ﬂ,(cl) > 0 and the method
u Tl =y AtL(u™)

is TVD under the CFL condition A < Ay, (A = At/Ax), then the method (4.6) is TVD
under the CFL condition

(4.7)

Proof: For each stage it holds

. 5"
B SIS Z @18+ (4t At )]

j=—00 j=—o0 k=0

i—1
< Zagcl)TV(u(k))
k=0

where we used that ozgj) > 0 and that the forward Euler parts in the sum above
are TVD under the constraint (4.7). Use induction by assuming that TV (u(®) <

TV(u(O)) for all £ <2 —1. This is certainly true for : = 1. The inequality above gives

i—1
TV () < (3 af)TV®) = TV (u®)
k=0



(s
Thus we have proved TV (u(™)) < TV (u(®)), which is the TVD condition TV (u"+1) <
TV (u™).
If, however, some ﬂ,(cl) < 0 then the step
oy 8
oy

L(u(k))

corresponds to a reversal of time, and we replace the operator L(u) with an operator

~

j}(u) which is such that —L(u) approximates the problem

Uy = f(u)x

in a TVD (or ENO) fashion. We give an example to show how the operator j}(u) is
derived.
Example 4.3. We approximate

Ut = Uy

using the stable TVD approximation
utl =y AtDu”

Thus, using the formulas above, L(u) = AtD4. The operator L is obtained from
approximating
Ut = —Ug

using the stable TVD approximation

utt =y — AtD_y"

~

From this we find that —L(u) = —AtD_, and thus
L(u) = AtD_

The CFL condition for the case of negative ﬂ,(cl) with L(u) replacing L(u) is obtained
from using the absolute value in (4.7).

To derive some particular Runge-Kutta methods, we start from (4.6) and investi-
gate, by Taylor expansion, the possible methods. We give one example.
Example 4.4 Require second order accuracy and m = 2. The method is

w0 ="
u = 4O 4 Atﬂél)l}(u(o))
u? = agz)u(o) + Atﬂéz)l}(u(o)) + agz)u(l) + Atﬂ;z)l}(u(l))

untl — ,(2)



(4

where we will choose a( ) > 0. To get the accuracy, take an exact solution to uy = L(u),
and insert it into the method. The truncation error in time is (dropping all terms of

O(At?))
= u(t + At) — (g u + At L(w) + of? (u + A8V L(u))+
A L+ Aty L))
where we use u to denote the exact solution u(t). Taylor expansion gives

r=(—ap’ — a1 - 57 - 57 - ol ) At

At?
o Uit~ At? eh 2)531)[’(“)[’/(“)

The observation uy = (L(u))s = L'(u)uy = L'(u)L(u) gives the conditions for second

order accuracy

(2) + a(Z) —1

2 1 2) (1

é )1 _ - ol )5( )
25,

2 _ 1

RS

The factors
1 oz(()z) agz)

7118671 18]
comes into the CFL condition. If they all can be made > 1, this Runge-Kutta scheme
will be non oscillatory under the same CFL condition as the forward Euler scheme is
non oscillatory. If furthermore we can choose all 3 non negative, we can avoid the
operator j}(u) We first try ﬂél) =1, which gives ﬂ (2) _ = 1/2 and then to keep the next

CFL factor =1, we take agz) = 1/2. This leads to oz( ) = = 1/2 and ﬂé ) = 0. We have

obtained the method
u® = 40 4 AtL(u(O))

1
u® = §(u(0) +uM 4 AtL(uV))

which is the same as the method given on page 58. This method gives second order in
time and retains the non oscillatory features from the semi discrete approximation. It
does not require j}(u), which saves programming effort.

In a similar way we can derive the third order TVD Runge-Kutta method

W = O 4 AL ()

3 1 At
L2 _ Z“(O) N Z“(l) N ZL(“(I))
1 2 2A?
L3 _ Lo (@ , 28t )
gu tgu L)
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This method has CFL factor one, and is thus stable under the CFL condition obtained
from the forward Euler discretization. For higher accuracy than three, no method not
involving j}(u) is known. It i1s recommended that a known high order Runge-Kutta
method is written on the form (4.6), and then L(u) is replaced by j}(u) wherever 3 < 0.

The Runge-Kutta approach seems to be the simplest way to do time discretization
and we recommend it. There are however other ways. We conclude with a brief discus-
sion of these alternative time discretizations. One example is a Lax-Wendroff type of
method. It relies on the formula

At?

u =y At(u")e + T(U")tt + ...

The time derivatives are then replaced by spatial ones.

Uy = _f(u)x
ug = (f'(w)f(u)e)a

The spatial derivatives are approximated using the ENO scheme. The procedure be-
comes very complicated for higher order of accuracy than 2 in time. It is not suited for
steady state computations, but the stencil will not be as wide as for the Runge-Kutta
schemes.

Another, more one dimensional method, can be given by a direct integration of the
conservation law in the x — ¢ plane. This method is derived for schemes based on cell
averages. Consider the conservation law

ur+ flu)y, =0

integrate around one cell in the x — ¢ plane as depicted in fig. 4.4,

tn+17

| |
[ [ X
X.
Xiap 7 Xisar2

Fig. 4.4. Path of integration in the x — ¢ plane.

and use Green’s formula to obtain

ﬁud:p—f(u)dt:O
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Evaluate this integral directly

Tit1/2 fnt1
/ U(tn,x)dl‘—/ flu(t,zjp1p2)) di=

Tj_1/2 tn

Tit1/2 tnt1
/ u(tngr, @) de + / flu(t,zj1y2))dt =0

Tj_1/2 tn

Letting u} denote the cell average, the above integral becomes

1 th41
+1
Note that no approximation has yet been made. Assume that the cell averages uj are
known, and that L(t,,x) is the function obtained by piecewise polynomial reconstruc-
tion from the cell averages. As numerical approximation to the PDE we take

_ 7

uit =i = (R = hag)

Here, h?—|—1/2 approximates

1 th41

E / f(v(t,x]+1/2)) dt
tn

with v(¢,2) the solution to the PDE for t > t,, using L(¢,,x) as initial data. For first

order accuracy we can approximate

th41
/ Fo(t,@jq1y2)) dt m Atf(o(tn, wjq1/2)) = Ath(ufy,uf)
1

n

The reconstructed function has break points at x4, /5, and therefore f(v(t,,z;41/2)) is
not uniquely defined. We use the semi discrete flux hji;/; to be the flux at (t,,z;41/2).
This leads to the usual forward Euler method, which is only first order accurate in time.
For higher order accuracy the flux at other points may be needed e.g., second order
accuracy can be obtained from the approximation

fnt1 At
| ottt Sl + i 2)) =

At n .
7(h(ujfl/27 uj—fl/z) + f(v(tn+1a$j+1/2)))

where the value v(t,41,2j41/2) is found by tracing the characteristic through the point

(tnt1,%j41/2) backward to ¢ = t,, where the reconstructed function is known, and

h(u?fyzv u;‘_fl/z) is the semi discrete flux function evaluated at the known time t,,.
There is an abundance of methods based on this idea. Another example is when

one half step using the first order scheme is taken to obtain a value at (tn+1/2, l’j_|_1/2)
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and then the approximation

th41
[ Htta ) e St 1 72)
(2%

is used to get a second order accurate scheme.

Exercises

1.

The second order cell based RD ENO scheme has second order accuracy everywhere
and is consequently not TVD. Write this scheme on slope limiter form ( as on p.50
), and thus derive the ENO limiter function

1
B(Ajuj, A_uj;) = minmod(Aju; — §m(A+A_u]‘+1,A+A_u]‘),
1
A_uj + §m(A+A_u]‘,A+A_u]‘_1))
with
x o if |x| <
m(z,y) :{ 2| < |y

y i Jy| <|z]

Show that the method, using the numerical flux

B — {f(w) | f(uj)] < |f(ujsen)]
P2 T flujgn) 3 | Fujgn)] < [F(u))

1s not a TVD method.

Derive the limiter function ¢ (r) corresponding to the slope limiter in example 4.1,

o if |2| < |y|
m(‘””’y)—{y if Jy| < o]

and show that it can fit inside the TVD domain given in fig. 3.3, chapter 3.
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5. Systems of conservation laws

5.1 Linear systems

When we apply the methods for scalar problems to systems of hyperbolic partial differ-
ential equations, one of the most important facts is that the methods have to be applied
to the characteristic variables. We here give an example of a linear system to illustrate
this.

Example 5.1. Consider the system

(1), = (o) (), - (0) o)

The PDE can be decoupled into two independent scalar problems by a diagonalizing
transformation. It is easy to verify that the eigenvectors and eigenvalues of the matrix

(1 o)

are

and multiply (5.1) by R™!. The result is

r — 0
e (5.2)

ze — 2, =0

where the transformed variables are defined as

(1)=m(0)=5(:20) (53)

Next, we consider this PDE on —oo < x < o0, t > 0, and give the initial data

1 z<0 -1 2<0
w(o’x):{o x>0 Z(O’“’):{o x>0

which, by (5.3), corresponds to

2 <0
u(0,2)=0 v(O,:L'):{O >0

The solution for ¢ > 0 is

1 2—1t<0

-1 24t<0
w(t"”):{o r—t>0 Z(t’x)_{

0 r+t>0
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as easily found from the diagonal form (5.2). In the variables (u v) this corresponds to

0 < —t 2 < —t
u(t,:z;):{l —t<z<t v(t,:z:):{l —t<z<t .
0 z>1t 0 z>1t

The solution is depicted in Figures 5.1 and 5.2 below.

u z
0 0—+

X X
V] w ]

oL

o

X X
Fig. 5.1a. Original variables. Fig. 5.1b. Characteristic variables.

Initial data.

u z
0- 0

X X
V] W

oL

o

X X
Fig. 5.2a. Original variables. Fig. 5.2b. Characteristic variables.

Solution at time > 0.

The point with this example is that the variable u is zero at ¢t = 0, but immediately
develops a square pulse at ¢ > 0. Thus there is no TVD property in the variable u, and



()

therefore it is not reasonable to use a TVD scheme componentwise in (v v). A TVD
method has to be applied in the characteristic variables (w z).
In general we consider linear systems

u; +Au, =0
where A is a diagonalizable matrix. Then we can perform the transformation
R'a;+ R"'ARR 'u, =0
where R 1s the matrix of eigenvectors of A. Introducing the characteristic variable
v=R"u,

we obtain the decoupled system

vi+Av, =0 (5.4)

where A is the diagonal matrix consisting of the eigenvalues of A. We thus have a set of
m independent scalar equations, (v )¢ + Ax(vg ). = 0 which have solutions vgo(x — Axt)
for given initial data vgo(x).

We use the decoupling of the linear system to solve the problem

u; + Au, =0
_Juar Hz<0
“(x’o)_{uR if 2> 0

where u; and up are two constant states. A hyperbolic partial differential equation
with the initial data consisting of two constant states is called a Riemann problem.
According to the discussion above, the solution can be written

u(z,t) =Y vko(aw — Aet)ry,
k

=1

where now all the functions vgo(x) are step functions with a jump at @ = 0. ry are the
eigenvectors of A 1.e., the columns of R. We assume that the eigenvalues are enumerated

in increasing order Ay < Ay < ... < Ap,. Let us denote
v (l‘) - {vkL z <0
k0 o vgkr x>0

The solution is thus piecewise constant, with changes when = — A\it changes sign for
some k. From this observation the solution formula

q

m q
u(:z;,t):kaRrk—l— Z vker:uL—l—Z(ka—vkL)rk /\q<$/t</\q+1
k=1 k=q+1 k=1

follows easily. The solution is thus constant on wedges in the x — ¢ plane, as seen in

Fig. 5.3.



i J

Fig. 5.3. Solution of the linear Riemann problem in the # — ¢ plane, m = 4.

As seen above, the states inside the wedges are given by

q
u, =up + Y (vkr — vkL)Tk
k=1

with uy = ug,ug = u,,.

5.2 Non linear systems

If the coefficient matrix is diagonalizable, a linear system can be decoupled into a number
of independent scalar problems. This is however not true for a non linear system, the
diagonalizing transformation R is now a function of u(x,t) and we can not use a relation
like (Rv); = Rv; which was essential in deriving (5.4). The non linear system is more
complicated than a collection of scalar non linear problems.

We consider the equation

u; + f(u), =0

where the solution vector is u = (ui(x,t),...,um(x,t))T. The Jacobian matrix of the
flux function is denoted A(u) = 9f/Ju. The eigenvalues of A(u), A\;(u) are assumed to
be real, distinct, and ordered in increasing order

A(ua) < Az(u) < ... Ay (u)

The corresponding eigenvectors are denoted ri(u),...,ry,(u).
We generalize the convexity condition f"(u) # 0 to systems as follows.

Definition 5.1. The kth field is genuinely non linear if vrI'V, \i(u) # 0 for all u.
If a scalar problem is linear then f"(u) = 0. This condition is generalized to

Definition 5.2. The kth field is linearly degenerate if r1' V, \g(u) = 0 for all u.
Here V, is the gradient operator with respect to u,

Oa Oa

Ve = (..., —).
“ 8u1 8um)

It is not hard to verify that definition 5.1 and 5.2 degenerates to the convexity and the
linearity conditions respectively in the scalar case m = 1.



We will here discuss three types of solutions.
1. Shocks.
Rarefaction waves.
3. Contact discontinuities.

In section 5.3 we will show how these three types of solutions can be pieced together
to form a solution of the Riemann problem for the non linear system. For the scalar
equation we have seen a shock solution in example 1.5 and an expansion wave solution
in us in example 1.4.

We first describe shock solutions. These satisfy the Rankine-Hugoniot condition,

S(UL — uR) = f(llL) — f(llR) (55)

o

which is derived in the same way as for the scalar problem. We also require an entropy
condition. Since we are dealing with the generalization of the convex conservation law,
we will look for an entropy condition which generalizes the condition (1.9) i.e., the
characteristics should point into the shock.

Definition 5.3. Let k be a genuinely non linear field. A k-shock is a discontinuity
satisfying (5.5) and for which it holds

/\k(uL) > 8 > /\k(uR)
/\k_l(UL) < s < /\k+1(UR)

The meaning of this definition is first that the shock is in the kth characteristic
variable, and second that the number of undetermined quantities at the shock (i.e.,
the number of characteristics pointing out from the shock) is equal to the number of
equations given by (5.5). If we consider the shock as a boundary we see that definition
5.3 means that the characteristics 1,...,k — 1 are inflow quantities into the region on
the left of the shock. The characteristics £ + 1,...,m are inflow quantities into the
region on the right of the shock. Thus there are m — 1 inflow variables which we must
specify. Eliminating s from (5.5) gives m — 1 equations, thus the number of equations
and unknown are equal.

Assume that uy, is given, we investigate which states ug can be connected to uy,
through a shock wave. (5.5) is a system of m equations for the m 4+ 1 unknowns, ug, s.
We expect to find a one parameter family of solutions ug. Furthermore, it is natural to
have one such family of solutions for each eigenvalue, corresponding in the linear case
to placing the discontinuity in any of the m characteristic variables v;,2 = 1,...,m.
These intuitive ideas are stated in the following theorem. The proof is not given here.
See e.g., [18] for a proof.

Theorem 5.4. Assume that the kth field is genuinely non linear. The set of states ugr
near uy, which can be connected to uy, through a k-shock form a smooth one parameter
family ug = u(p),—po < p < 0. ur(0) = ur. The shock speed, s is also a smooth
function of p.

Formally we could use (5.5) to obtain a shock solution for p > 0 as well, but it turns
out that the entropy condition is not satisfied for p positive. The situation is similar
to the scalar equation, where the entropy condition imposes the restriction that shocks
only can jump downwards ( see examples 1.4 and 1.5 ).



We next investigate the rarefaction wave solutions. A rarefaction wave centered at
x=0 is a solution which only depends on «/t i.e., u(x,t) = b(x/t). Inserting this ansatz
into the equation gives

x 1
—=b'"+-A(b)b' =0
12 + t (b)
We denote £ = ¢/t and b’ = db/d¢ and we thus have
(A(b) — b =0,
The solution is given in terms of eigenvalues and eigenvectors

¢=Ab(¢)) b =ecr(b)

¢ is a constant. Here it is possible to use genuine non linearity to show that ¢ = 1. For
a given state uy, we thus can solve the ordinary differential equation

b'({) =x(b({)) & <E{<& +p
&0 = A(b(&o))
to some final point & + p, where p is a sufficiently small parameter value. The state

ur = b(& + p) is in this way connected to the state ur, = b(&y) through a k-rarefation
wave. From the above computations we obtain the following theorem.

(5.6)

Theorem 5.5. Assume that the kth field is genuinely non linear. The set of states ugr
near uy, which can be connected to uy through a k-rarefaction wave form a smooth one
parameter family ugp = u(p),0 < p < py. ur(0) = ur.

Fig. 5.4a shows an example of the k-characteristics for a rarefaction wave and
Fig. 5.4b shows one example of a component of the solution u(x/t) at a fixed time.

t Uz

X X

Fig. 5.4a. Characteristics in one field. Fig. 5.4b. Solution at a time ¢ > 0.

We summarize the shock and rarefaction cases above as follows.



Theorem 5.6. Assume that the kth field is genuinely non linear. Given the state
uy, there is a one parameter family of states ur = u(p), —po < p < po which can be
connected to uy, through a k-shock (p < 0) or a k-rarefaction wave (p > 0). u(p) is
twice continuously differentiable.

The differentiability is proved by expanding the function u(p) around p = 0, and
can be found in e.g., [18]. For the example m = 2, the situation is displayed in Fig. 5.5.
The curves show where it is possible to place ug in order to connect it to the given
state uy through a shock or a rarefaction wave.

u 1S

1-R
2R

Uy

Fig. 5.5. Phase plane. 2-S = 2-shock. 1-R = 1-rarefaction.
Next we define the Riemann invariants. They are quantities which are constant on
rarefaction waves, and can be

Definition 5.7. A k-Riemann invariant is a smooth scalar function w(uy,...,um),
such that
rkTVuw =0

i.e., the gradient of w is perpendicular to the kth eigenvector of A.

Theorem 5.8. There exist m — 1 k-Riemann invariants with linearly independent gra-
dients.

Proof: The vector field
m a
rkTVu = E ri(u)—au‘

can by a coordinate transformation v = u

s
I
—

~

v) be written

QD‘QD

U1

and we choose

wi(vV) =v2 wa(V)=v3 ... Wp_1(V)=10vn.



The functions w;,s = 1,...,m — 1 will then satisfy

ow;
81}1

=0
and have linearly independent gradients. Transforming back yields functions w;(u)
with the desired properties.

Riemann invariants are used for computing the states across a rarefaction wave.
The useful property is given in the following theorem.

Theorem 5.9. The k-Riemann invariants are constant on a k-rarefaction wave.

Proof: We have seen above that on a k-rarefaction wave, the solution is a function

of £ = x/t and satisfies
u'(§) = rr(u())

Let w be a k-Riemann invariant. We obtain

du; O
Z dug a;” = u'(6)TV,w = 1x(u)TVyw =0

by the definition of Riemann invariant. Thus dw/dé = 0 and w is constant on the
k-rarefaction wave.

Theorem 5.9 gives the following equations for two states connected by a k-rarefaction
wave

wi(uL):wi(uR) izl,...,m—l (57)

where w; are the k-Riemann invariants. For a rarefaction wave, these relations can be
used similarly as (5.5) is used for a shock e.g. to determine the state ug from a given
uy,.

Let us finally investigate the linearly degenerate fields. Assume that the kth field
is linearly degenerate, and define the curve u(p) through

B vu(utp) (53)

The kth eigenvalue is constant on this curve, since the linear degeneracy gives

d\g(u)  du
= — V. \r = Ak =0.
dp de k= I'k( ) \Y% k 0

Theorem 5.10. Assume that the kth field is linearly degenerate. The states on the
curve (5.8) can all be connected to uy through a discontinuity moving with speed

s = Ar(ug) = Ae(u(p)).

Proof: Define the function



which appears in the Rankine-Hugoniot condition. Differentiate this function with
respect to p to obtain

dG du
Fr (A(u(p)) - 3)%

which is zero due to (5.8), and the definition of s. Thus
f(u(p)) — su(p) = const. = f(ur) — suy,

and the Rankine-Hugoniot condition is satisfied.

These discontinuities are called contact discontinuities. The kth characteristics are
parallel to the discontinuity. This wave have many similarities with the solution of a
linear problem, uy+au, = 0 with a single discontinuity as initial data. The discontinuity
is propagating along the characteristics with the wave speed a. There is no entropy
condition for a linearly degenerate field, as in the linear equation the solution in the
weak sense is unique.

For systems which do not consist of linearly degenerate and genuinely nonlinear
fields, the entropy condition in definition 5.3 has to be replaced with something more
general. The situation is similar to the scalar equation when the entropy condition (1.9)
is not enough for non-convex conservation laws. We can define the more general entropy
condition for systems in the same way as for the scalar equation i.e., in terms of a class
of entropy functions E(u), which satisfy an inequality

E(u);+ F(u), <0

with V,FT = V,ET A(u).

The formulas are is similar to the formulas for the scalar case.

We will apply the numerical methods to the equations of gas dynamics, which
consist of genuinely non linear and linearly degenerate fields. Thus definition 5.3 will
be sufficient, and we do not here develop more general entropy conditions.



5.3. The Riemann problem for non linear hyperbolic systems

We here solve the Riemann problem

u; + f(u), =0
) ug Hz<0
“(x’o)_{uR if # >0

where uy, and up are two constant states. The solution of this problem will sometimes
be used in numerical methods where we solve a Riemann problem locally between the
grid points.

We assume that all characteristic fields are genuinely non linear, and that u; and
up are sufficiently close, such that we can apply the parametrization in theorem 5.6.
The solution is similar to the solution for the linear equation, in the sense that it consists
of m + 1 constant states separated by shocks or rarefaction waves.

To construct the solution, we connect uy, to a new state u; by a l-wave (shock or
rarefaction). We write this as

u; = u(p17 uL)-
Next the state u; is connected to the a state uy by a 2-wave.
u; = U(Pzalll) = u(p17p27uL)

We continue this to the mth state, given as a function of m parameters and the left
state,

Uy = U(pl,pz,...,pm,UL)

By requiring
ur = Uy

we obtain the system of m algebraic equations
Ugr = u(p17p27"'7pm7uL) (59)

for the m unknown p;1,...,py,. If up and up are close enough, it follows from the
inverse mapping theorem that we can always solve (5.9). To see this it is necessary to
check that the Jacobian of the mapping

f(p17p27 s 7pm) = —ugR + u(p17p27 <oy Pmy UL)
is non-singular at (0,...,0). From the rarefaction wave solutions (5.6), we see that
u(p) = ug + pri + O(p?)

which by the smoothness at p = 0 ( theorem 5.6 ) must hold for p both positive and
negative. For the Riemann problem we thus obtain

u; =uy +piry + O(p%)
U = Uy + polo + O(pg) =ur +pir1 + pera + O((p1 -|-p2)2)

up =uy +piri+Fpere + oo putm FO((p1 +p2 ot pm)?)
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which shows that the Jacobian of the mapping at (0,...,0) is R, the matrix of eigen-
vectors. This matrix is non singular by the hyperbolicity. Thus the inverse mapping
theorem applies and we have a solution of the type shown in Fig. 5.6.

t

N
1

arefaction

1-shock U, 3-shock

Ur

X

Fig. 5.6. Example wave structure in the solution of the Riemann problem.

In Fig. 5.7a we give an example of a solution for m = 2 in the phase plane. Fig. 5.7b
indicates the wave structure in the x — ¢ plane, and Fig. 5.7c shows the corresponding
solution in variable uq(x,t) as function of « for a given time.

1-shock

2-rarefaction

uo

u X

1

Fig. 5.7a. Example of a phase plane plot. Fig. 5.7b. Corresponding wave structure.

u

Ur

u.
“M_f

X

Fig. 5.7c. Solution at a time ¢ > 0 for the waves in Fig. 5.7b.



5.4. Existence of solution

We saw in section 5.3 that there exist a solution to the Riemann problem if the states
u;, and up are sufficiently close. The only known result on existence for the problem

u; + f(u), =0
u(0,z) = ug(x)

has been proved under a similar assumption, namely that the initial data have suffi-
ciently small variation.

Theorem 5.10. Assume a non linear hyperbolic system is given, with all the fields
genuinely non linear. There are constants 0, K such that if the variation of the initial
data is sufficiently small in the sense that

luo — ¢l + TV (vo) <6
for some constant state ¢, then a weak solution u(x,t) exist, and is such that
TV(u(t,.)) < KTV (ug)

It is not known whether this solution is unique or satisfies the entropy condition.
The theorem is proved by showing convergence of the random choice difference method.
The method is interesting because of the convergence properties, but is in practical
cases outperformed by most other methods. Therefore, we describe the method here
and not in the chapter on difference methods for systems.

The method is defined on a staggered grid, the approximation is ugj at ty and u%j_l
at t; e.t.c., see Fig. 5.8.

t
t1+;€} o o o [¢]
t
nL [¢] o o o
- o o o o
[¢] o o o
4 | | | | | | |
T T T T T T T T
X1 X X

i i1
Fig. 5.8. Staggered grid.

Given a solution ..., u}_5,uf,uj;,,..., the random choice method consists of the

. . - n+1
following steps to determine the solution at u ;.

1. Solve the Riemann problem at w1y with u} as left state and u},, as right state.
2. Let the new time level ¢,,41 be such that no waves from (t,,z;41) is outside the
interval [z, 2 j42] at 4. This corresponds to a CFL condition.



3. Choose a point (tp41,2(0)) = (tny1, 2 +60(xj42 —x;)) where 6 is a random number
in [0,1]. The same random number is used for all cells.

4. Define the new value, u?jll, as the value of the solution of the Riemann problem
at this random point.

The same procedure is then repeated to get u?"’z from u?fll, u?j’ll etc.

In Fig. 5.9, we give a picture of the local Riemann problems in the = — ¢ plane as
obtained by this algorithm.

{IEAVAY AV

Xa X X

Fig. 5.9. Riemann problems are solved locally at cell interfaces.

The main advantage of the random choice method is that all grid values are obtained
as solutions of local Riemann problems. Thus no new intermediate values are introduced
in shocks, which in some applications can be of value. Because of the local Riemann
problems, control of the variation can be achieved by using estimates for the solutions of
the Riemann problem. We do not give the proof of theorem 5.10 here. It is technically
complicated, but does not rely on any advanced mathematical concepts.



6. Numerical methods for systems of conservation laws

6.1. Simple waves in gas dynamics

We will consider the generalization of the first order schemes in chapter 2 to systems of
equations. For the special case of the gas dynamics equations

p m 0
m + | put+p =10 (6.1)
e/, (e +pu 0

x

specific formulas will be given. In (6.1) m = pu is the momentum, p the density, u
the velocity, p the pressure and e the total energy of an inviscid fluid. An additional
relation to link p to the other variables p,m, e is obtained by assuming the perfect gas
law

p= (3= 1)~ gpu?).

where v 1s a constant specific for the fluid in question. For air one usually takes v = 1.4.
Since there is not sufficient theory available to derive a systematic treatment, the
ideas for systems are based on the TVD ideas for scalar equations. The methods for
systems are derived in a heuristic way. Thus this chapter can only describe “how to”
derive methods for system and not “if” or “why” the methods will give correct answers.
We will give first order accurate methods. Similar to the scalar case second order
methods can be derived from the first order ones by piecewise linear interpolation.

In the random choice method and the Godunov method, we have to solve a Riemann
problem exactly. In section 6.2 we show how to do this for (6.1) through an iterative
procedure. We begin by giving some formulas for simple wave solutions of (6.1) i.e.,
shocks, rarefaction waves, and contact discontinuities. We noted in chapter 5 that the
eigenvalues and eigenvectors are important for the wave structure. Thus we begin by
finding these quantites for (6.1).

Theorem 6.1. For the gas dynamics equations (6.1), where

p= (3= 1)~ gpu?).

the eigenvalues and eigenvectors of the Jacobian 0f /Ou are

M=u—¢c a=u \y=u-+c

1 1 1
r = u—=c ro = U r3 = u-+c
h — uc u? /2 h + uc

where the sound of speed, ¢, and the enthalpy h are defined by

Proof: Straightforward calculations, not given here.



The formulas for the eigenvectors and eigenvalues enables us to verify that
¢ ¢
er/\lz—(’y—l—l)%#O ri Vi, =0 rgV/\gz(’y—l—l)%#O.

For example

0 0 0
rIVA, = —u—l—u—u—l—u2/2—u:
ap om e
-m  u
—2‘|-——|-0:0
Pt p

Thus the 1 and 3 fields are genuinely non linear and can cause a shock wave or a
rarefaction wave to appear in the solution. The 2 field is linearly degenerate and can
only give rise to contact discontinuities.

The jump condition is

s[m] = [pu® + p] (6.2)
sle] = [u(e + p)]

where we use the notation [¢] = ¢r — ¢r,. The jump condition can be rewritten in the
following form

[pv] =0 (6.3a)
[pv* +p] =0 (6.3)
vL[7_102+v2] =0 (6.3¢)

where we have defined v = u — s as the speed relative to the shock wave. The derivation
of (6.3) from (6.2) is somewhat tedious and we omit it here. The form (6.3) is easier to
use in proving some of the theorems below.

Finally to obtain conditions which connect states separated by a rarefaction wave,
we need the Riemann invariants. From the definition of the Riemann invariant wy,

rkTVwk =0,

we get by straightforward calculations the following results. For the 1-field

2
wgl) =u+——c wgz) =pp 7, (6.4a)
v—1
the 2-field
wgl) =u wgz) =p (6.4b)
and finally the 3-field
2
wi =u——=ge i =pp” (6.4c)

Thus there are two Riemann invariants for each characteristic field. As seen in the
previous chapter the Riemann invariants are constant on rarefaction waves, so that e.g.,



for two states uy, upg, separated by a 1 rarefaction

Uy + 1CL:uR—I-

T T

pLpr =PrPR
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and similarly for the other fields.

The conditions that connects two states are different if the separating wave is a
shock wave or a rarefaction wave. It is therefore necessary to distinguish between these
two cases when solving the Riemann problem. One useful criterion is derived in the
following theorem.

Theorem 6.2. For 1-waves

pr, < pr for shocks

pr, > pr for rarefaction waves

for 3-waves
pr > pr for shocks

pr, < pr for rarefaction waves
and for the contact discontinuity

PL = PR

Proof: The conditions for shocks are derived from the jump condition (6.3) and the
entropy inequalities. We prove the theorem for the 1-waves. First assume a 1-shock.
The entropy condition according to definition 5.3 is

Uy —C¢r, >8> UR — CR, s < UR

from which
vy > Cr, 0<vr <cp

follows. Note that vy and vg are positive. (6.3¢) gives

1 2¢2 2¢2 1

i ch< L —I—U%: °R —|—v§{<—7+ c?_z

v—1 v—1 v—1 v—1
and hence

cr, < CR.
Use (6.3c) again to obtain
c? c? 1
0<7f1_7—Ll:_(v%_v%‘)

Since vy,vg are positive we find that

V1, > VR



From (6.3b) we obtain the pressure difference

PL — PR = pRVE — pLVT

which by (6.3a) is
pL —pr = pror(ve —vr) <0
The result p;, < pr have been obtained. Next consider a 1 rarefaction wave. We have
the inequality
uyp —cy, < Ur — CR
which states that the head of the wave travels faster than its tail, see Fig. 6.1 below.

The slope of the 1- characteristics is uy, — ¢y, to the left of the wave and urp — cg to
the right.

Fig. 6.1. 1-rarefaction wave for (6.1).

From the 1 Riemann invariant (6.4a) we obtain
PrRPR =DpLPL
PR _ <,o_R>7
PL PL
We use the definition ¢? = yp/p to eliminate p, with the result

2y
pr

pL (Z_f> B (65)

The second 1 Riemann invariant gives

+1 2 2
ur —cr + cp, =ur + ¢, = upr—+ CR =
v—1 v—1 v—1
+1 +1
uR—CR—I-7 CR>UL—CL—|-7 CR
v—1 v—1

and hence
CI, > CR



(6.5) finally gives the result
PL > PR

The proof for the 3 waves is similar and we omit it. For the contact discontinuity, p
is a Riemann invariant and according to chapter 5, does not change across it.

6.2. The Riemann problem in gas dynamics
We are now ready to solve the Riemann problem in gas dynamics. Assume that the
initial data 0
_Jur z<
u(O,:z;)—{UR x>0

are given. We want to solve (6.1) for these data forwards in time. The solution consists
of a 1-wave a contact discontinuity and a 3-wave as seen in Fig. 6.2 below.

/! -\W
IWave ave

.30

X

Fig. 6.2. General wave structure for (6.1).

The 1-wave and the 3-wave can be either a shock or a rarefaction wave. The 2-
wave is always a contact discontinuity. The pressure does not change across the contact
discontinuity, and therefore it should be easier to find an equation for the single unknown
pressure than for a quantity which changes across the contact and thus has two unknown
states. We begin with finding the intermediate pressure p. from an iterative process.
The rest of the state variables can then be found from direct formulas.

Theorem 6.3. Define

_PL—Pc MR:PR—Pc
uyr — Ue UR — Ue

My =

then the formulas

My, = \/prpro(p./pr)
Mg = \/prPRO(Pc/PR)

are valid. The function ¢(x) is defined as

(%x—l— 72;1)1/2 ifa>1

o= { G

27 1—z(r=1)/2v




Proof: We prove the theorem for the left wave, the proof for the right wave is
similar and leads to the same conclusion. First assume that the left wave is a shock.
The jump conditions (6.3 a,b) gives

pr — pe = pron(ve — vr).
since v = u — s this means that
My =prvp (6.6)
Solve (6.3a) for p. and insert into (6.3b,c). We obtain

prL+ ,OLU% =pPc+ pLVLV:
YPL L2 YPcVc
+ QUL = (

S _ lrecre 2
(v = Dpr v —1)prog ¢

N 1
—v
2
Next solve the first equation above for v. and insert it into the second. After some

simplifying algebra the result is

prvi _v—1 y+1p
— _I_ -
PL 2 2 pr

Using (6.6), one gets
M% Y= 1 i +1 Pe
— _I_ -
PLPL 2 2 pr

From theorem 6.2 p./p;, > 1, since the left wave must be a 1 wave. After taking
the squareroot the positive sign should be chosen, since by (6.6) M, is positive (vy,
positive can be seen from the proof of theorem 6.2). Thus we have proved that

My, = \/prpro(pr/pe).

if pL/pc > 1.
Next assume that the left wave is a rarefaction wave. Then the first Riemann
invariant for the 1 wave gives

2
cr, = U+
v—1 v—1

ur +

A=
Up — Ue v—1 c.

= -1
cr, 2 (cL )
&
PL — Pe 2 ce
— = — =1 6.7
v 7—1(@ ) (6.7)

Ce

The second Riemann invariant gives

prLpy =pep:”.



By using the definition ¢? = vp/p to eliminate p, we can rewrite this as

y—1
Ce (m)W
c, \pr
y=1
_Pr—pe_ 2 ((ﬁ) T
cr My, v—1"\pL

Finally use ¢? = vp/p to eliminate ¢ from the left hand side. We know from theorem
6.2 that p./pr. < 1, and thus the obtained result

PLPL 2 pe\
I e~ = —2((2) T -
VML v—1'\pz
is easily seen to be equivalent to

My, = \/prpro(pe/pr).

The derivation of the expressions for Mp is analogous and not given here.

Inserting into (6.7) yields

The different cases + < 1 and x > 1 corresponds to rarefaction waves and shock waves
respectively, as seen from theorem 6.2. Note that the computation of

1—=2
1 — P

becomes numerically ill conditioned for = close to one. It is therefore good practice in
a computer program to replace this function by the polynomial approximation

1 —1

RS g Q)

p 2p

if 1 —e < x < 1, where € is a small number and depends on the machine precision used.
Eliminating u. from the definition of M; and Mpg gives finally the formula

pe = (ur —up+pr/Mpg + pr./Myp)/(1/Mg + 1/Mfp).

The iterative method for finding p,. is defined as

pt = (ur —ur+pr/Mj + pr /M) /(1/M}, + 1/M}) (6.8a)
pit! = max(pl, €r) (6.8b)

where € 1s introduced to prevent negative pressure during the iteration. Theorem 6.3 is
used to evaluate MF = \/qu(pf/pL) and ME = \/MQﬁ(pf/pR). The initial guess,
P’ = (pr + pr)/2 has turned out to work well in computer programs. Convergence
is usually fast, but for strong rarefactions degradation in convergence rate has been
observed. If no convergence is achieved after a fixed number of iterations, we replace

(6.8b) by

pe™t = amax(er, py) + (1 - a)p;



where o = 1/2. If there is still convergence problems, we reduce « further.
After p. is found, we compute

e =ur — (pr — pc)/Mr

Theorem 6.2. gives complete information about the wave configuration. If p. /py, < 1 the
l-wave is a rarefaction, otherwise a shock and if p./pr < 1 the 3-wave is a rarefaction,
otherwise a shock. The contact discontinuity lies between the 1 wave and the 3 wave,
and propagates with velocity wu..

For each point (x,t) in which we want to compute the solution, we make tests to
decide whether the point is
To the left of the 1- wave.
Inside the 1-wave if it is a rarefaction.
To the right of the 1 wave but to the left of the contact discontinuity.
To the right of the contact discontinuity but to the left of the 3-wave.
Inside the 3-wave, if it is a rarefaction.
To the right of the 3 wave.
The jump condition, or the invariance of the Riemann invariants over the rarefaction

a

b

@ ]

(ol

)

waves, gives formulas for the intermediate quantities. Because we know the intermediate
pressure p. it turns out that there is no need to solve any equations, but all required
quantities are found from direct formulas. A fortran program which solves the Riemann
problem in gas dynamics is supplied in the appendix.

The formulas to determine u(x, t) will be different in each of the different cases. The
computer program will thus contain a certain amount of formulas, but the execution time
will be reasonable, since only one branch of the alternatives is actually executed. On a
vector computer the situation becomes more troublesome, since there are difficulties in
making IF statements vectorize.

We have now constructed a solution of the Riemann problem. By further analysis
of the solution procedure it is possible to prove

Theorem 6.4. There is a unique solution of the Riemann problem for the gas dynamics
equations (6.1) if

2
1(CL —I—CR) (69)

Ur —uyp <

When (6.9) is not satisfied, there will be a vacuum present in the solution and the
intermediate state will therefore not be well defined.



6.3. The Godunov, Roe, and Osher methods

In this section we give a description of three of the best shock capturing methods for
systems of conservation laws. First the Godunov scheme is described, since its main
feature is the solution of a Riemann problem, most of the description has already been
made in section 6.2. This scheme is important since other methods are often thought
of as its simplification. However, it is not necessary to make this interpretation.
Second we give the generalization of the upwind scheme to system, known as Roe’s
method. Finally the Engquist-Osher scheme for systems is described, it is usually called
Osher’s method.
6.3.1. Godunov’s method. Godunov’s method has many features in common
with the random choice method. The following algorithm describes the method.
1. We start from given uj the numerical solution at time #,. The solution is defined
for all x by piecewise constant interpolation

u"(:z;) = u? Tj1/2 <@ < Tjy1/2-

2. We then solve the Riemann problems at all break points @;1/5. The next time
level t,41 is made small enough such that no waves from two different Riemann
problems interact. This gives a CFL condition At/Ax < const. Let

W —2jr1/2)/(t—tn),u5,0541)

denote the solution of the Riemann problem at (241 /2,%n).
3. The new solution is defined as the average over cell j of the solution of the Riemann
problems in 2 i.e.,

1 i
u?"'l :E(/ W((l‘ — l’j_l/z)/(tn—l—l - tn)auj—lvuj)dx

ji—1/2
Tiq1/2
[T = ) = ) s de)
zj
We write this algorithm on conservative form,

n+l _ .. n n

by, taking a contour integral around one cell in the = — ¢ plane. Since the solution in
t, <t < t,4 satisfies the PDE exactly the integral is zero, and we get

Tjp1/o fnta
/ u(tn,x) dr — / f(W(O,llj_|_1,llj)) dt—
x tn

J=1/2

, " (6.10)
Tj+1/2 n41
/ u(typ41,2)de + / f(w(0,u;,u;_1))dt =0

Tij_1/2 tn

Since we have defined u?""l

as the cell average of the solution, and since the integrals
in time have time independent integrands, we can rewrite (6.10) as a difference approx-

imation on conservative form with

?4—1/2 = f(w(0, ujt1, 1))



Thus Godunov’s method is implemented using the solution procedure in section 6.2. to
solve one Riemann problem in each grid point. This solution is evaluated at + = 0, and
the flux function is evaluated with the solution as argument.

It has often been argued that in Godunov’s method a large amount of work is spent
to solve a Riemann problem exactly. The information thus computed is mostly wasted
since it 1s only used to form an average.

In this context the generalization of the upwind and the Engquist-Osher schemes
to systems, which we now proceed to describe, can be viewed as a Godunov scheme with
a simplified solution of the Riemann problem. For each of the scalar methods there are
usually a number of different generalizations to systems, some complicated and some
very simplified.

6.3.2. Roe’s method. We now describe the upwind scheme. For a scalar conser-
vation law, this is the method with numerical flux

7

1 1 n .
j+1/2 — §(fj+1 + fj) - §|aj+1/2|(uj+1 - Uj)

This scheme is generalized using the eigenvalues of a jacobian matrix as wave speeds.
A matrix

Ajrry2 = A(uj,uj40)
with A(u,u) = A(u) = 0f/0u is defined, and the scheme becomes

12 = 5Eir + 1) = Sldjpp|(ufy, —uf)

where the absolute value of the matrix is defined as

M 0 ... 0
0 Ao ... O
Al =R , R
0o ... .0
0 ... 0 |\nl

Here A; are the eigenvalues and R is the matrix with the eigenvectors as columns. We
can see this as a local diagonalization of the system. The matrix can be chosen as
Ajt1/2 = A((ujpq +1;)/2), but the best result seems to be obtained by using a matrix
which satisfies the straightforward generalization of a division in the scalar case,

flujr1) —f(uy) = 441 2(0j41 —uy).

P. Roe has showed how to construct such matrices, the upwind scheme is therefore
sometimes called Roe’s method. The Roe matrix for the gas dynamics equations is
found by evaluating the jacobian at a weighted average,

Aj—|—1/2 = A(m(uj11,u5)),



where m(u,v) is the weighting procedure described below. The mean value density,
velocity and enthalpy is computed using the weights

/e
Vot T et e

w3

Thus we compute
p=Wipj+ W2pPj41
U= wiu; + wathj41
h = wlh] + IUth_|_1
1
& = (3~ i~ u)

from which the eigenvalues and eigenvectors of A;;,/, are found using theorem 6.1. In
practice the term

|A|A+u] = R|A|R_1A+u]‘

is evaluated as
m
Z | Ak|akry
k=1
where o is solution of the linear system of equations
Roa = A_|_u]‘.

For the Euler equations, ay can be derived analytically with the following result

v—1

ay = ——((h - ut)Aypj+uldimj — Ayej)
1 ulAip; — Apm;

ar = 5(Aypj —az+ +]c )

ulgpj — Aym;

)

It is assumed that the matrix R contains the eigenvectors of the jacobian A(u). The
quantities without index thus belong to the state in which the jacobian is evaluated.

6.3.3. Osher’s method. The Engquist-Osher scheme for systems is usually called
the Osher scheme. The numerical flux is

n 1 1 Uj+1
it1/2 = §(fj+1 +£5) — 3 |A(u)|du

J

1
a3 = §(A+Pj — Q2 — p

The integral of the absolute value of the jacobian,

/um |A(u)]| du (6.11)

j
is not path independent, and thus we have to describe an integration path in order to
define the method. Osher chose a path which follows the eigenvectors. If u(s),0 <s <1
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i1s a parametrization of the integration path then the following formulas describes the
curve.

du

— =I 0§8§81
ds

du

— =TI 51 <5< s
ds

du

— =TIy Sp-1 <s<1
ds

The first step in the algorithm consists of determining the points u(sy). The Riemann
invariants, wy are constant on path k, because

dwg(u) du
7 = Vw]::% = Vw,::rk =0.
Thus we have m — 1 relations
w(w) = (weg), j=1,...,m—1 (6.12)

for each subpath s < s < sgy1. The total number of equations is m(m — 1). The
unknowns are the intermediate states ug, k = 1,...,m — 1. Since each state is a vector
of m components, the total number of unknowns are also m(m — 1). We begin with
solving the non linear system of equations (6.12) for the unknowns ug. Second, we

evaluate the integral
uk

;41 m
/ Aldu=)" |A| du
" k=1

j Ui_1

where each subpath integral is evaluated using the formula

upg Sk Sk
/ |A|du: / |A|I‘k ds = / |/\k|rk ds.
Up_1 Skp—1 Sk—1

The subpath integral over [sg_1, sg] is further divided into pieces where Ay has constant
sign. Without absolute value the integrals are easy to evaluate. As an example, assume
that Ay is positive on [sg_1,s.] and negative on [y, sg], where s, € [sg_1,sk]. Define
u, = u(s.). The subpath integral becomes

Sy Sk Uy ug
/ Aprp ds — / Aprp ds = / Adu — / Adu = —f(uy) — f(ug_1) + 2f(u,).

Sk—1 Sx uj_

In a computer program, the integral (6.11) is determined by adding or subtracting a
number of terms f(u.), where u. are points of changing subpath or points where A
changes sign on a subpath.

We next describe how to implement this method for the Euler equations of gas
dynamics. In one space dimension m = 3 and we have the following path of integration
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for the integral (6.11)

du
ds
du
— =1y 81 < 8 < 89
ds
du
— =1TI3 SZSSS]_
ds

The following notation has become standard
u; =u(0) =uy
u(Sl) = u1/3
u(Sz) = u2/3
U1 = u(l) = U

We start by determining the intermediate states u; ;3 and uy /3. The Riemann invariants
(6.4) leads to the following system of equations

2 2
— = uy/3 + 7_101/3

Popy = Pi/apy s

g +
~

Ur/3 = Uz/3

P1/3 = P2y/3
2 2
C1 = Ug/3 — c
—{4 2/3 1 2/3

P1PT | = P2/3Py s

_\ /2y —v\ /27
o — Popy | _ p1/3101/73 _ <P2/3>1/2
pipy | P2/3P2_/73 P1/3

where we use py/3 = py/3. From the definition c? = yp/p it follows that

Ul —

First define

_an
Ca/3
This equation together with
Up/s = Uo + —— 1(00 —¢c1/3)
5 (6.13)
Ug/s = Uy — —— 1(01 - 02/3)
leads to the following formula for u /3 ( since we know that wus/3 = uy/3)
ug + 2 — ey + a(ug — 2 — 1c
uygs = 0 /(v = 1)eg (us /(v —1)er) (6.14)

(1+a)
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Thus in a program, one first form o and then use (6.14) to find uy /3. ¢1/3 and ¢y /5 are
then easily evaluated from (6.13). Then the density is computed as

We then have complete information about the states u; /3 and uy /3. We can proceed to
the evaluation of the numerical viscosity integral,

/ou+1 |A(u)|du:/uu1/3 |A(u)|du_|_/“2/3 |A(u)|du—|—/U1 |A(u)[da  (6.15)

"t 0 Uqi/3 Uz/3

For the Euler equations of gas dynamics, because of the genuine non linearity, the
eigenvalues u — ¢ and u + ¢ can change sign in at most one point on their paths. The
eigenvalue v is a Riemann invariant and is constant on path 2.

We start with the smallest eigenvalue A\y = u — ¢ for the first path. The sign of A\
is either constant or changes at the single sonic point where

Usl — Cs1 = 0

Thus if (ug — ¢o)(uq/3 —¢1/3) < 0 we include the sonic point in the path and obtain for
the first third part of the integral

/ | A(w)] du = sign(us — co)(26(uar) — £(u) — £y 5))

Here the sonic state ugy 1s found from the Riemann invariants and the sonic condition

L2
Co = Ug
v—1 " Ty

Popy | = PsiPay
Ug1 — Cs1 = 0

g +

Cs1

This system is easy to solve for the sonic state. If A\; does not change sign between the
0 and the 1/3 state then

/ 7 A(w)] du = sign(us — co)((uy ) — F(uy)

0

For the second part, the eigenvalue Ay = u is constant, and the integral becomes

/u2/3 |A(w)] du = sign(u s )(E(ugs) — £(uy )

1/3

The third part of the integral is similar to the first part, if (uy/3 + ¢z/3)(ur +¢1) <0
then the sonic point
Ug2 + 52 = 0
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is included and the integral from 2/3 to 1 becomes

/U1 |A(u)| du = sign(ug s + c/3)(2f(us2) — f(ug/3) — f(u;41))

2/3

The sonic state is found in the same way as the state s1 on path 1. If A3 does not
change sign we obtain

[ 1A = signtuss + s fyen) — fluzs)

2/3

Summing the three integrals according to (6.15) yields the final result for the integral
from u; to u;4q. From this integral we obtain the numerical flux as

1 1 Wit
S =5 E =5 [ A
u;
Remark: Osher originally proposed to order the integration path with the largest
eigenvalue first. In practice it has turned out that the method described above, with
the smallest eigenvalue first, works much better. The method starting with the small-
est eigenvalue is sometimes called the P-version of the scheme, while Osher’s original
ordering is called the O-version.
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6.4. Flux vector splitting

We here give some methods which are somewhat simpler than the methods in the
previous section. They are all based on flux vector splitting, the idea of which we can
be understand from Engquist-Osher scheme for a scalar problem. The numerical flux
for the scalar E-O scheme can be written

12 = %(fﬂrl + 1) — %/:Hl |f'(s)ds = fF(uj) + f~ (ujtr)
with L g
=0 +5 [ PO+ IFED s F () = f) = £

Thus the flux function is split in two parts corresponding to positive and negative wave
speeds respectively.

Flu) = fF(u)+ f~(u)

The approximation of the flux derivative becomes
D_Njy1yy =Dy f(uj) + D f ¥ (uy)

such that the derivative is approximated in a stable, upwind way. The Osher scheme
for systems can similarly be written as a splitting of the flux function into one part
corresponding to positive wave speeds and one part corresponding to negative wave
speeds.

In this section we use the flux splitting technique to obtain other, simpler methods
than the Osher scheme. The methods are all based on the idea that we split the flux
vector

f(u) = £ (u) + ()
where we try to achieve that the matrices

AT = 0ft /Ou
AT =0f" /Ou

are such that AT has positive eigenvalues and A~ has negative eigenvalues. The nu-
merical flux

b0 = (u;)+ £ (uj4q)

then defines a method of upwind type.

6.4.1. Steger-Warming splitting. For the first method given here, we need an
additional property of the problem to be approximated. It is not hard to prove that for
the Euler equations

f(u) = A(u)u (6.16)

where A is the Jacobian matrix 0f/du (show the homogeniety f(au) = aof(u) then
differentiate with respect to «). If (6.16) holds we define a flux splitting as

f(u) = ATu+ A u
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where A0 .00
0 A ... 0
AT =R R
0 ... . 0
0 ... 0 Xt

and similarly for A7. As usual A; are the eigenvalues and R the matrix of eigenvectors
of the Jacobian matrix A. For a scalar we define AT = max(0,\) and A~ = min(0, \).
The flux splitting above is named after Steger and Warming.

6.4.2. van Leer splitting. Another example, which does not require the property
(6.16), is the so called van Leer flux vector splitting. The method is, however, closely
linked to the structure of the Euler equations. In the van Leer splitting, we use the

(signed) Mach number
u

M=-

c

to determine the number of positive and negative eigenvalues. If M > 1 then the flow
is supersonic, and all eigenvalues are positive. We then define

ff=f f =0.

Similarly we define

ff=0 f =T

in the case M < —1.
If |[M| < 1 then there are both positive and negative eigenvalues. We define a
splitting using the identity

M=((M+1)7—(M-1)?*))/4.
The first component of the flux vector is
fi = pu=peM = pe((M +1)* — (M —1)*)/4
and the definition
fr=peM+17/4  fi = —pe(M—1)*/4

gives the property f1+ = fi for M — 1, f = fi for M — —1.
The other components are treated similarly, the algebra becomes more complicated
and we do not give the derivation here. The result is the following formulas

) 1
e N T R
et (-1 /(207 1)
) 1
N

—(2c=(y=1u)* /20" - 1))
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It is an easy exercise to verify that f = f* + f~. The common factors of flux vectors
can be written

plutc) _ pe 2
— = —(M+1
4e 4( + )
RPAY
4e 4

so that we have the desired property fT — 0 when M — —1 and f~ — 0 when M — 1.
The van Leer flux splitting is less expensive than the Osher scheme, but gives slightly
worse accuracy, especially for resolution of contact discontinuities.

6.4.3. Pressure splitting. We next describe the method of pressure splitting. It
is based on the observation that

pu p 0
f(u) = pul+p | =u pu +|p | =uf.+1,
u(p+e) (e +p) 0

It turns out that the eigenvalues of the first term, uf, are u, u,andyu. The eigenvalues
of the second term are 0,0 and —(y —1)u. Thus it is natural to try a splitting according
to the sign of w.

f+ = u+fc + 1_+gn(u)fp
1 i '
£ —u . o +%Il(u)fp

However, when the discontinuity in the switch (1 +sign(u))/2 is differenced the method
becomes unstable. It is important that the switch of sign is continuous, as in the first
T and u~ are continuous at v = 0. To overcome this difficulty, we replace
the sign function by a smoother version. In many applications the function

term where u
_ M(B—MZ)/Q |M| <1
9(M) = {sign(M) M| > 1

is used instead of the sign function. The signed Mach number M = u/c has of course
the same sign as u. The total pressure splitting method then becomes

1— (M
f+:u+fc—|—#fp

14 g(M),
f—:u—f0+%fp

Usually it is necessary to add an entropy fix i.e., increase the amount of artificial dis-
sipation, for the uf. terms when wu is near zero, in the same way as this is done for
the upwind method when the wave speed changes sign. The advantage of the pressure
splitting method is that it requires a relatively few number of arithmetic operations.

6.4.4. Lax-Friedrichs splitting. Finally we show how the Lax-Friedrich scheme
can be viewed as a flux splitting method. The numerical flux for a system is

1

1
hj i/ = §(fj+1 + ;) — ﬁ(uj-i'l —uy)
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which we split in two parts by defining

£ (w) = 5 (Fu) + 1)
1 1

where now A\ = At/Ax.
Since the CFL condition max ||\ < 1 is used, with a* eigenvalues to the jacobian
matrix, we see that the matrices

oft of~
Ou Ou
have positive and negative eigenvalues respectively. Thus the definition is reasonable.

We can generalize this and define

1

£ (u) = () + )
f (u) = %(f(u) — ku)

with £ > 0. If £ = max |a§|, the largest eigenvalue of the jacobian matrix at uj, the
scheme is called Rusanov’s method.

All the methods described in this section are inferior in shock resolution to the
methods in the previous section, (Godunov, Roe and Osher). For example some of
the methods in this section does not permit a steady shock solution spread over a fixed
number of grid points, instead all steady shocks will be smeared out over a large number
of grid points. The better schemes does admit such steady shock profiles. The schemes
in this section are however somewhat simpler to implement and uses fewer arithmetic
operations.



1US

6.5. Interpretation as approximate Riemann solver

The schemes described in this chapter can be viewed as approximations to the Godunov
scheme. We can construct methods in the same way as we defined the Godunov scheme
in section 6.3, but with w(a/t), the solution of the Riemann problem, replaced by an
approximate solution to the same Riemann problem. Let

w((2 —xj1y2)/(t —tn) uj,u1)

be an approximate solution of the Riemann problem between the states u; and u;_;.
Assume the same set up as in the description of the Godunov scheme in section 6.3. We
n+1

thus define the cell average u; ™" on the new time level as

1 v
u;H'I :E(/I W((l' —l']‘_l/z)/(tn—l—l _tn)vuj—17uj)dx
ji—1/2
o (6.17)
—|—/ W((l‘ —$j+1/2)/(tn—|—1 —tn),u]‘,u]‘+1)dl')
zj
First we give a necessary condition that such an approximate solver has to satisfy.

Theorem 6.5. If the approximate solution of the Riemann problem between uj and
up with jump at * = 0, w(x/t, ug,uy), is consistent with the conservation law in the
sense that

AI/Z A(E
/ W(:z;/t,uR,uL)dx = 7(UL—|—UR)—At(fR—fL) (618)
—Az/2

then (6.17) defines a scheme on conservative form, consistent with the conservation law.

We do not give the proof of this theorem, but we derive a formula for the numerical
flux associated with a given approximate Riemann solver.

Start by integrating around the square [z}, ;41 /2] X [tn,tnt1] and set this integral
equal to zero. We obtain

Tjp1/2 tn41 x;
/ uff de — / hjpypdt + / W((z = 2j1/2)/(tngr — o), Wi, uj)—
z tin z

J i+1/2

(2%
/ f(uj)dt =0 <
th41

u; Az 1 [Ei+1/2
hjpipp =S th— % / W((& = jp12)/(fngr — Tn), Ui, 1)

(6.19)
where the numerical flux %21, /5 is now unknown. We only use the approximate Riemann
solution on the time level #,41, but not in between the time levels. The formula (6.18)
guarantees that if we integrate around the square [z;41/2,2j4+1] X [tn,tn11] instead, we
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obtain the same numerical flux. Integrate

i tnt1 " Tit1/2
[ = [T s e [ (o = )t~ ) ) -
z tin z

i+1/2 J+t

tn

tn-|—1
n Tjt1
uj Az 1 /
z

}+1/2 = oAt + £ + At W((z —2j4172)/(tnt1 — tn), Wjp1, uy)

i+1/2

(6.20)
and combine (6.19) and (6.20), it is easy to see that (6.18) gives hji1/, = hfj—|—1/2'
Note that we can not, as we did for the Godunov scheme, obtain the numerical
flux as f(w(0,u;,u;_1)). This is because the solution between the time levels is not an
exact solution of the continuous problem, and thus the contour integral (6.10) is not
equal to zero. The numerical flux is uniquely determined from w by the formula (6.19).
It is not hard to show that the upwind scheme can be obtained in this way, if we
define w(x/t,ur,ur) as the solution to the linearized Riemann problem

u; + A(ug,ur)u, =0

_ [ug z <0
u(O,:z;)—{UR x>0

where A(u,Vv) is e.g., the Roe matrix (excercise).
Next we derive a simplified scheme for the Euler equations of gas dynamics. Assume
an approximate solution of the following form

u; =z < bt
w(z/t,ur,ug) =14 u, bt <o < bt
ugp bht<z

we thus assume that there are two waves moving with speeds b; and b, , and we require
by < by. The intermediate state u,, is determined from the consistency condition (6.19),
with the result
bpup —biug fr —1g
T -

By evaluating the integrals (6.18) we obtain the numerical flux for this method

+ b T + g
p bt Zbhnptien o el |
j+1/2 = o - T e (Wjt1 —uy)
j+1/2 7 Y412 j+1/2 7 Y412
where b;‘:-l/z = max(by j41/2,0) and bj_—i—l , = min(by j41/2,0). The wave speeds are

parameters we can tune to obtain a method with desired properties. For the Euler
equations, we can use the largest and smallest eigenvalues

bijti/2 = Ujtij2 = Cjp1j2 Do jrijp = ujpije + Cirape
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where u;y1/o and ¢y are the velocity and the speed of sound evaluated at an inter-
mediate point. One reasonable choice is to use the average procedure in Roe’s method
le.,

Ujq1/2 = Wi j41/2U5 T W jy1/2Ujt1

hjyi72 = wi j172hj +wa jp12hj4
1
e =0 = Dhjgap2 — §7¢j+1/2)

where h is the entalphy, h = (p + €)/p, and the weights are

VP VPi+1

W » [ . —— Wo = [ AL
1a]+1/2 \/E—I_\/p]T 2,]‘1‘1/2 \/E—I_\/p]T

(c.f. section 6.3). This scheme is sometimes called the HLL scheme from the initials of
its inventors ( Harten, Lax, van Leer).
Note that the wave speeds by = —\ and by = A gives the Lax-Friedrichs scheme.

6.6. Generalization to second and higher order of accuracy

The same ideas as were used in chapter 3 are here used for systems. Assume that a first
order method is given. We obtain a second order method by using the numerical flux

hji1/ =h(ujir —sj41/2,05 +5;/2)

where s are slopes of a piecewise linear reconstruction and where h” , , is the flux of

the first order method. We can use inner flux limiters as described in chapter 3, adapted

to systems analogously, but here we only describe piecewise linear interpolation.
One additional difficulty is to determine a good coordinate system for the interpo-
lation. The following strategies are in use

(a) Do interpolation componentwise in the conserved variables (p m e).

(b) Do interpolation componentwise in the variables (p u p).

(c¢) Foreach u;j define the characteristic coordinate system spanned by the left eigenvec-
tors of the jacobian A evaluated at uj, 1¥(u;), ¥ = 1,...,m. All the interpolation
or limiting for the cell 5 is then made in this coordinate system. e.g., define the
characteristic variables

¥ =1 v, i=-1,01 k=1,....m

7

and then the componentwise slopes

sy = Bl —cg,c5 — cby)

where B(z,y) is a limiter function described in chapter 3. Finally the slopes in the
original coordinates are obtained as

m
sj = sirf(u;)
k=1

with r¥, the right eigenvectors to A.
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(d) Use the Roe matrix and associated quantities. For a description of the matrix, see
Section 6.3. The quantities ( cf. Section 6.3) O‘f—|—1 , are used to represent A yu; in
characteristic coordinates. The slope limiting can be defined as

k _ k k
S; = B(O‘j+1/270{7‘—1/2)

with B(x,y) a limiter function. In the physical coordinates the slopes are added to
u at interfaces j + 1/2, and we thus take

uj+s;/2=u;+

m
k_k
Zsjrj+1/2'

k=1

N | —

At the j—1/2 interface we use the eigenvectors rf_l/z to the matrix A;_, /5 instead.

Note that in (c) the coordinate system is kept fixed, at a cell j when the slopes in
J are computed. While in (d) the limiting is done on quantities belonging to different
coordinate systems (e.g., & jy3/o and aqq/2).

The scheme with outer limiter (3.30) can be generalized to systems in a similar
way. We can use the Roe matrix decomposition or a fixed chararacteristic coordinate
system.

(d) can also be viewed as a general way to generalize schemes for scalar problems

to systems. All occurencies of Aju; in the scalar method are replaced by «a for

k

j+1/2
all components k. Finally the numerical flux function, h;i,/; is evaluated by using
the coordinate system spanned by r§+1/2. This method is usually applied to the Lax-
Wendroft type TVD schemes described in Chapter 3. We give an example to clarify

this.

Example 6.1 The method with the following numerical flux is a second order ENO
scheme based on the Lax-Wendroff scheme, derived for a scalar conservation law.

i1z = §(f(uj+1) + flu] ))‘|‘§a;r+1/2(1 —Aaj_1y0) /(1 + Majriye —aj_12))s;

1 _
—5 %11 = Ajap2) /(L Majiape = ajeryz))sjen

where
. . n n
s; = minmod(Ayui, A_u?).

@12 1s as usual the local wave speed (cf. Chapter 2), and A = 2L, The derivation
J+1/ P P ’ Az

is omitted since we just want to show how to generalize this method to systems using
(d) above. For systems the wave speeds are the eigenvalues of the jacobian. We thus

replace a;yy/, with a the eigenvalue of the Roe matrix. The coefficients «

k k
j+1/2 j+1/2

are used instead of Aju;, since by definition
Roa = A+u]‘

or written on vector form

m

k k _ ‘
DAty = Ay,
k=1
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The matrix R have the eigenvectors of the Roe matrix, r§+1/2 as columns. The numerical
flux for a system becomes

n 1
i+1/2 =§(fj +£41)+

1 — .
5 Z(a;’_l/z(l - /\af—l/z)/(l + /\(af+1/2 - af—l/Z))Sf_
k=1

I &
5%_{.1/2(1 - /\af+3/2)/(1 + /\(af+3/2 - a§+1/2))3f+1)r§+1/2

with the slope limited as

k __ : k k
55 = mlnmod(ozj+1/2, 0‘]‘—1/2)-
3 +ak — k 3 3 I
Here we use the notation ail1je = max(0, aj_|_1/2) and similarly for a;{1e

It has been observed that the ENO scheme can give a solution with spurious oscil-
lations if the interpolation is not made in the characteristic variables.

6.7. Some test problems

In this section we have collected some test problems for the one dimensional Euler
equations. We will always let u denote the vector with components (p m e), the density,
momentum and total energy.

First we give some Riemann problems, which have become standard to use in tests
of numerical methods. The first problem is

0.445

0.311 x <0

8.928

ui(0,2) = 0.5 (6.21)
0 x>0

1.4275

The solution of this problem at a time >0 is given in Fig. 6.3.

Density Pressure Velocity
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r 702k
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05 L L L L L L L L I 0

Fig. 6.3. Solution of Riemann problem (6.21).
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A l-rarefaction wave is travelling to the left. Travelling to the right, a 3-shock is
followed by a contact discontinuity. Note that the pressure does not change across the
contact discontinuity. The intermediate states are

0.345 1.304
u; = | 0.528 u; = | 1.995
6.571 7.693

and the wave speeds

s1 = 2.480 for the shock
89 = u, = 0.5290 for the contact discontinuity

uyp —cyp = —2.6326 u; — ¢y = —1.6365 across the rarefaction wave

Problem number two is the following

1
0 r <0
2.5
uy(0,2) = 0.125 (6.22)
0 x>0
0.25

for which the solution is displayed in Fig. 6.4.

Density Pressure Velocity

Fig. 6.4. Solution of Riemann problem (6.22).

It has similar structure to the previous problem, with a 1-rarefaction followed by a
contact discontinuity and a 3-shock. The intermediate states are

0.42632 0.26557
u; = | 0.39539 u; = | 0.24631
0.94118 0.87204
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and the wave speeds

s1 = 1.75222 for the shock
89 = u, = 0.92745 for the contact discontinuity

up —c;, = —1.183216 uy; — ¢y = —0.07027 across the rarefaction wave

The second problem contains a rarefaction wave which is close to being transonic, and
is a good test for the entropy condition.

These two problems can usually be solved without difficulties, although the quality
of the solution of course differs from different methods. A more difficult problem is the

following
1
-2 x <0
us(0,2) = 13 (6.23)
2 x>0
3

The solution is displayed in Fig. 6.5.

Density Pressure

L L L L L L K L L L L L L L L L
-0.8 -0.6 -0.4 -0.2 [ 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 6.5. Solution of Riemann problem (6.23).

The intermediate state is

0.02185
0
0.004735

The state of low density and pressure will sometimes lead to difficulties with negative
pressure. Of the schemes described in this chapter only Godunov and the P-version of
the Osher scheme can solve this problem, without crashing because of negative pressure.

Another common test problem is the so called blast wave problem. This problem
is defined on 0 < x < 1 with solid walls at + = 0 and « = 1. The initial data is

(102500)" z<0.1
uy(0,2) =14 (10 0.025)" 01<z<09 (6.24)
(10250) 09<ua
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At the walls the boundary conditions for the velocity
u(t,1)=0 wu(t,0)=0

are imposed. A shock wave and a rarefaction wave are formed at ¢ = 0.038 they have
interacted to produce the solution in Fig. 6.6

Density

I . I ! ! L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6.6. Solution of the blast wave problem (6.24) at ¢t = 0.038.

after one reflection at the boundary. The very large differences in pressure and the
more complex structure of the solution makes this a more challangeing problem than a
single Riemann problem.

The fifth problem is

3.857143
10.141852 r < —4
39.166666
= 2
us(0,z) 14 esindx (6.25)
0 x> —4
2.5

here one shock wave interacts with a sine wave of small amplitude. If € = 0 this is a
shock wave moving to the right. Usually one takes e = 0.2. The solution for this € is

Density

45-
4
351
of
251
o
15F 1
il AVAVAV
05

L L L L L L L L L
-5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 6.6. Solution of the oscillatory problem (6.25).
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The difficulty lies in resolving the oscillations that are formed behind the shock
wave in the density. This is a good test for resolution, usually the higher order accurate
ENO methods perform much better than second order TVD methods for this problem.

The solutions in the two last problems can not be found analytically, but in one
space dimension it is possible to obtain a converged solution by putting in a very large
amount of grid points. We do this to find the “exact” solution for comparison.

Exercises

1. Solve the linear Riemann problem

u; + Au, =0
_ [uag z <0
u(O,:z;)—{uR x>0

where A is a constant matrix with a basis of eigenvectors.

2. We define an approximate Riemann solver, w as the solution of the Riemann prob-
lem for a linear equation with the Roe matrix as coefficient matrix. The techniques
in section 6.4 are used to define a difference method from this approximate Rie-
mann solver. Show that the method thus obtained is the same as Roe’s method,
described in section 6.2.

3. Give an example which shows that for the Osher scheme applied to the Euler
equations

hj i #1;

even if all wave speeds in u;4; and u; are positive.



