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Motivation of Current Research

Deterministic engineering design often leads to unexpected or
physically unrealizable results. This is due to the fact that
deterministic design is not able to capture the effects of even slight
natural fluctuations of parameters. Deterministic transonic
shape optimization is no exception—deterministic designs can
result in dramatically inferior performance when the actual
operating conditions are different from the design conditions used
during a deterministic optimization procedure.

What can be done to overcome the shortcomings of the
deterministic design (deterministic transonic shape
optimization)?
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Goals of Current Research

The goals of this research are to

overcome the off-design performance degradation of
deterministic transonic shape optimization to produce robust
designs;

consider innovative ways to achieve the robustness of the
designs;

improve an initial Royal Aircraft Establishment (RAE) 2822
design.
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Problem Formulation: Airfoil Shape Optimization Under
Uncertainty in the Operating Conditions

Our goal is to minimize the drag coefficient CD subject to a
prescribed lift coefficient C ∗L , and some other geometrical
constraints hi , i.e.

min
d∈D

CD (d,M) , over a range of M

subject to CL = C ∗L and hi (d,M) ≥ 0, for i = 1, 2, ..., n (1)

The desired shape d is an element of a design space D, and the
random Mach number M is defined on a given probability space
(Ω,F ,P) with probability density function f (M).

We will use the compressible Euler equations as the mathematical
model of the governing equations of the flow.
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Deterministic Airfoil Shape Optimization

The optimization problem (1) carried out over a single value
of the Mach number M is deterministic, as it does not take
into account any probabilistic properties of the random
variable M.

The deterministic optimum shape can be determined using
control theory approach.

The governing equations of the flow field are introduced as a
constraint in such a way that the final expression for the
gradient of the objective function does not require
reevaluation of the flow field.

To achieve this purpose, a Lagrange multiplier (or co-state
variable) is introduced to satisfy the so-called adjoint
equation.
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Deterministic Design Procedure

1 Initialize the deterministic parameters involved in the
optimization procedure, parameterize the configuration of
interest using a set of design parameters, and define the initial
shape;

2 Solve the flow equations for the flow variables density ρ,
velocity components u1, u2, u3, and pressure p;

3 Solve the adjoint equations for the co-state variables subject
to appropriate boundary conditions;

4 Evaluate the gradients and update the aerodynamic shape
based on the direction of steepest descent (for instance);

5 Return to step #2 until an optimum configuration is attained.
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Shortcomings of the Deterministic Design

Practical examples indicate that the deterministic optimization
approach described above can result in dramatically inferior
performance when the actual operating conditions are
different from the design values used for the optimization.
Therefore, practical robust designs need to be considered for
achieving consistent drag reduction over a given Mach number
range (first objective of the present research work).
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Robust Design Approaches to Airfoil Shape Optimization
Under Uncertainty

Robust Design = Optimization problem (1) (minimization of the
random loss function CD (d,M) ).
The stochastic minimizaton can be reformulated in the following
ways/according to the following objectives:

1 Find the design that minimizes the variance of the objective
function;

2 Find the worst-case performance (MiniMax strategy);

3 Find the design that minimizes the expectation of the
objective function (MEV);

4 Find the design that improves the performance over a given
range of uncertain parameters compared to the MEV design
(second objective of the present research work).
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Maximum/Minimum Expected Value (MEV) Criterion

The MEV optimum shape defined in aerodynamics by Huyse,
Padula, Lewis, and Li:

dMEV = arg min
d∈D

E (CD (d,M)) = arg min
d∈D

∫
Ω
CD (d,M) f (M) dM

(2)
In order to approximate the right hand side of (2), we let
M1,M2, ...,Mn be a random sample of size n of the random
variable M with probability density function f . A Monte Carlo-type
estimator defined by

dn
MEV = arg min

d∈D

[
1

n

n∑
k=1

CD (d,Mk)

]

converges to the optimum dMEV , as n→∞.

A.-M. Croicu et. al. Robust Airfoil Optimization Using MEV / EMV Approaches



MEV Design Procedure

1 Initialize the deterministic parameters, parameterize the
configuration of interest using a set of design variables, and
define the initial shape;

2 Sample all the values of the random variable M according to
its probability distribution function f (M);

3 For every value of the random variable M, solve the flow
equations for the flow variables ρ, u1, u2, u3, p;

4 For every value of the random variable M and the current
airfoil shape, solve the adjoint equations for the co-state
variables ψ subject to appropriate boundary conditions;

5 Evaluate the gradients G for every value of the random
variable M, average all the gradients and update the
aerodynamic shape based on the averaged direction of
steepest descent (for instance);

6 Return to step #3 and repeat until an MEV optimum
configuration is attained.
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Motivation of Expected Minimum / Maximum Value
(EMV) Criterion

Recall the Minimum / Maximum Expected Value (MEV)
Criterion is

dMEV = arg min
d∈D

E (CD (d,M))

Question: What if we commute the expectation and
minimization operators?

dEMV = E

(
arg min

d∈D
CD (d,M)

)
We call this strategy Expected Maximum/Minimum Value
(EMV) criterion and we would like to know how it compares
to MEV.
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Properties of Expected Minimum / Maximum Value
Criterion

It can be proved that:

If the objective function CD(d,M) to be minimized is
continuos and dMEV and dEMV are well-defined, then

E

(
min
d∈D

CD (d,M)

)
≤ min

d∈D
E (CD (d,M))

Croicu and Hussaini have proven that in some illustrative
cases, the EMV method provides a higher probability of lower
objective function than the MEV approach, i.e.

P (CD (dEMV ,M) ≤ CD (dMEV ,M)) ≥ 50%.
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Expected Maximum/Minimum Value (EMV) Criterion

dEMV = E

(
arg min

d∈D
CD (d,M)

)
=

∫
Ω

arg min
d∈D

CD (d,M) f (M) dM

(3)
In order to approximate the right hand side of (3), we let
M1,M2, ...,Mn be a random sample of size n of the random
variable M with probability density function f . For each sample
Mk , k = 1, 2, ..., n value, the optimization problem (1) yields a
solution d (Mk) , k = 1, 2, ..., n. The averaged optimal shape:

dn
EMV =

1

n

n∑
k=1

d (Mk) =
1

n

n∑
k=1

arg min
d∈D

CD (d,Mk)

If the right hand side of (3) is finite, then by the Strong Law of
Large Numbers, the Monte Carlo-type estimator dn

EMV converges

dn
EMV → dEMV as n→∞.
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EMV Design Procedure

1 Initialize the deterministic parameters, and parameterize the
configuration of interest using a set of design variables;

2 Sample a value of the random parameter M, according to its
probability distribution function f (M), and define the chosen
initial shape;

3 Solve the flow equations for the flow variables ρ, u1, u2, u3, p;

4 Solve the adjoint equations for the co-state variables ψ
subject to appropriate boundary conditions;

5 Evaluate the gradients G and update the aerodynamic shape
based on the direction of steepest descent (for instance);

6 Return to step #3 until an optimum configuration is attained;

7 Return to step #2 and repeat until a desired number of
sample points are analyzed;

8 Average all the optimum configurations obtained in step #6
to determine the EMV optimum design.

A.-M. Croicu et. al. Robust Airfoil Optimization Using MEV / EMV Approaches



Computer Implementation (contd.)

The design of a transonic airfoil that performs well over a
range of different Mach numbers is investigated using the
EMV and MEV approaches and the CFD code SYN83
(Anthony Jameson).

SYN83 is an implementation of a gradient-based optimization
technique in which the control variable—the airfoil shape
d—is parametrized using a set of 65 design nodes
{(xi , yi ), i = 1, 2, ..., 65}
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Computer Implementation (contd.)

The drag coefficient CD (d,M) is the objective function to be
minimized.

The gradient information is obtained via the adjoint equation,
and this adjoint equation is used to calculate the sensitivity
derivatives of the cost function with respect to the design
variables, in order to get a direction of improvement. The flow
is calculated using the steady-state inviscid Euler equations.

The initial shape is the well-known RAE 2822 profile with an
imposed lift coefficient CL = 0.5 . Because this shape is not
suitable for the transonic regime, substantial improvements
are to be expected.
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Computer Implementation (contd.)

We assume the following three distributions of the Mach
number: Uniform Distribution M ∼ U [0.7, 0.8], Gaussian
Distribution M ∼ N

(
0.75, (0.02)2

)
, and Gaussian

Distribution M ∼ N
(
0.775, (0.01)2

)
.

Different distributions are chosen with the aim of emphasizing
the importance of accurately quantifying the probability
distribution function (PDF) of the Mach range.

For practical problems, the PDF is likely to be very different
from the distributions used in our numerical simulations. The
actual PDF can be generated if appropriate historical flight
data is available.
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Computer Implementation (contd.)

For both stochastic optimization procedures (EMV or MEV)
and for each distribution, we choose 1000 samples of the
Mach number.

An optimal shape is found using the EMV and the MEV
methods, as well as an Single Point Optimization (SPO) at
the mean of the Mach number distributions.
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Results
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A.-M. Croicu et. al. Robust Airfoil Optimization Using MEV / EMV Approaches



Results (contd.)
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Results (contd.)
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Concluding Remarks

We focused on obtaining a robust optimal design starting
from an RAE 2822 airfoil with Mach number as an uncertain
parameter.

Two different stochastic approaches—EMV and MEV—have
been investigated and compared to the deterministic SPO.

As expected, SPO degrades rapidly away from the design
point and does not provide robust results.
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Concluding Remarks (contd.)

The EMV strategy is easier to implement if a deterministic
optimization code is available, provides lower drag for low
speeds, lower drag for more than 50% of the Mach range, and
similar performance to the SPO profile at the mean Mach
design point.

MEV profile exhibits lower drag at high speeds and the lowest
expected drag.

Therefore, the appropriate choice between the EMV and MEV
strategies would depend on some other considerations: the
magnitude of the shock-waves, the most plausible speed
regime and speed distribution, the ease of computational
implementations, etc.
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THANK YOU!

QUESTIONS?
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