
High-Order Finite-Element Earthquake 
Modeling on very Large Clusters of 

CPUs or GPUs 

Gordon Erlebacher 
Department of Scientific Computing 

Sept. 28, 2012 

Dimitri Komatitsch (Pau,France) 
David Michea (Pau, France) 
Dominik Goddeke (Dortmund, Germany) 

with 



I met Yousuff in 1986, while at NASA 
Langley Research Center   

– Introduced me to spectral methods, 
Transition, Turbulence, parallelism, … 

– Helped develop my talents in research, and 
writing through a grueling (for me) 
schedule 

– Helped me achieve balance between my 
personal and professional life 



'0
0

'0
1

'0
2

'0
3

'0
4

'0
5

'0
6

'0
7

'0
8

0

100

200

300

400

500

F
lo

a
ti
n
g
-P

o
in

t 
O

p
e
ra

ti
o
n
s
 (

F
L
O

P
s
) 

p
e
r 

S
e
c
o
n
d
 

(I
n
 B

ill
io

n
s
)

Core 2 Extreme

Pentium 4

Pentium III

Tesla 

C870

NV30
NV40

Core 2

G70

G71

G80

NVIDIA CUDAComparable FLOPS 

not Recorded

TEXT GPU 

Release

TEXT CPU 

Release

TEXT GPU Programming 

Language Release

Sh/RapidMind

BrookGPU

Year

GLSL

Cg/HLSL

RTSL

GTX 280 

(933 GFLOPs)
900

600

700

800

Evolution GPU 
Khronos 
OpenCL 

Fermi, GTX480 



Setup 

Infiniband Cpu 1 Cpu 2 

GPU 1 GPU 2 

10-30x speedup GPU vs CPU 

Amdahl: Amount of serialization must decrease!!! 



Topics 

•  SPECFEM3D 
• GPU and parallelism 
•  Some results 

Discuss the process of 
converting a Spectral Finite-
Element Code to run on a 
Cluster of GPUs 



SPECFEM3D 

•  Spectral Element Code 
• Modeling of seismic wave propagation 

in the full earth or in densely populated 
regions following large earthquakes 

• Developed by Dimitri Komatitsch, 
Jeroen Tromp and many collaborators 

• Won Gordon Bell award in 2003 
• Open Source.     



Global Grid  



Single 3D Slice (= 1 GPU) 

Single 
Spectral 
Element 



Non-Structured Mesh 



Curved Physical Element 

xn ξ( ) = Nn ξ( )xn
n=1

27

∑

ξ ∈ 0,1[ ]3    unit cube( )

3D element 



Gauss-Lobatto-Legendre 

Computational domain Physical domain 

            Qijk
N ξ,η,ζ( ) = lNi ξ( )lNj η( )lNk ζ( )

          f x, y, z( ) = QN
ijk fijk

i, j ,k=1

5

∑    (4th degree Lagrange interpolants)



Equations to solve 

 

ρu = ∇ ⋅σ + f
σ = C :ε

ε =
1
2
∇u + ∇u( )T⎡
⎣

⎤
⎦

u :  displacement vector
σ  : symmetric second order stress tensor
ε   : symmetric second order strain tensor
C : symmetric second order stiffness tensor
ρ  : density
f    : known external force



Discrete Form per Element 

 

      Mu + Ku = F

M :  mass matrix (diagonal in this case)
K  :  stiffness matrix
F   :  external force
u    : displacement vector
 

Many problems will reduce to this form, with different  
boundary conditions  (I ignore boundary conditions in 
this talk) 

Full 5x5x5 matrix 
for each element 



Time Advancement 

Time advancement is explicit 



Discrete Equations 

n = 0
while final time not reached:
     for each element k :

            Qijk
k ,n = Qijk

k ,n + Δt  L Qijk
k ,n ,t n( )     (actual code is 2/4th order)

     endfor

     Update global points on edges and corners
     Boundary conditions
     n = n +1
endwhile



Four Spectral Elements 

3D 2D 



1 2 3 4 5 5 6 7 8 9

10 11 12 13 14 14 15

1 2 3 4 5 1 2 3 4 5

1 2 3 4 51 2 3 4 5

Local numbering

Global numbering

Single element Single element 



Parallelism: Quick Tour 

SIMD 
MIMD 
Stream 
SIMT   (T for Thread) 



Single Instruction 
 Multiple Data 

Every processor 
executes the identical 
instruction at the 
same time 



Multiple Instruction  
Multiple Data 

Different processors 
execute different tasks Elasticity 

Navier-Stokes 

Visualization 



a(1,1)

a(2,1)

a(3,1)

a(n,n-1)

a(n,n)

.......

f(a)

f(a(1,1))

f(a(2,1))

f(a(3,1))

f(a(n,n-1))

f(a(n,n))

.......

Stream Processor

Stream Processing 
single thread 

Input stream Output stream 



Stream Processing  
block of threads 

Input stream Output stream 

SIMT 



Memory Bandwidth 

CPU 

GPU 

Minimize CPU to GPU transfers 



Several Multiprocessors 
per GPU  (280GTX has 24 MP) 



Treatment of input blocks 



CUDA  

Let us return to the Spectral  
Finite-Element code 



Paris Cluster 
•  CCRT/CEA/GENCI, Paris, France 
•  48 Teslas S1070  
•  Each Tesla:  4 GT200 GPUs and two PCI Express 2 buses 

(two GPUs share a PCI Express 2 bus) 
•  GT200 cards: 240 cores and 4 GB of device memory 
•  The Teslas are connected to BULL Novascale R422 E1 

nodes with two quad-core Intel Xeon Nehalem processors 
operating at 2.93 GHz 

•  Each node has 24 GB of RAM and runs Linux kernel 
2.6.18.  

•  Infiniband network 
•  CUDA 2.2 



Single GPU Results 
GTX 280 8800 GTX 

Version 1 Version 1 Version 2 

Mesh Size speedup speedup speedup % transfer 

65 MB 21 13 4.5 68% 

405 MB 25 15 5.3 68% 

633 MB 25 15 5.3 68% 

Version 1: fully on the GPU 
Version 2: Problem size larger than GPU memory 
       Update all elements in multiple passes 

%transfer:  time spent in CPU to GPU data transfers 





Overlap Communication and Computation 

•  Compute (on GPU) outer 
elements first 

•  Fill MPI buffers 
•  Issue non-blocking MPI 

instruction 
•  During MPI transfers, 

update inner elements on 
the GPU 

Transfer to MPI buffers 

Inner elements 

Outer elements 



Some Weak Scaling Tests 



Parameters 
•  192 slices 
•  Each slice: 446,080 spectral elements 
•  Total number elements: 85.6 million 
•  Each element: 125 points 
•  Unique points per slice: 29.6 million 
•  To number unique points: 5.6 billion 
•  27% outer elements, 73% inner elements 
•  Number of data points to transfer to adjacent 

GPUs: 12% of the slice total 



Test 1 

•  Range: 4-192 GPUs 
•  Each PCI-2 bus shared 

by 2 GPUs 
•  3 runs of test 

2% fluctuations 

Cost of blocking MPI: 16% 
Blocking 

Non-Blocking 



Test 2 

•  Range: 4-96GPUs 
•  Each PCI-2 bus 

shared by 2 GPUs 
•  3 runs of test 

No fluctuations 

Previous fluctuations due  
To sharing of PCIe bus 



Tests 3-4  

Cost of overlap: 3% 
Cost of cluster: 12% 



Conclusions 
•  CUDA on a single GPU leads to a speedup of 

25x for our application 
•  25x speedup is maintained when we use a 

cluster of GPUs with non-blocking MPI 
•  Crucial to use larger domains to compensate 

for the very high speedup offered by GPUs 
•  OpenCL (less efficient, more portable) 
•  Above results are valid in 2010 
•  Benchmarking not yet performed on most 

recent GPUs.  


