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1. Abstract

Abstract

• Three papers written in collaboration with Professor Hussaini
and inspired by him are briefly discussed.

• One is in computational fluid dynamics field, namely a problem
of controlling vortex shedding behind a cylinder (through suction
and blowing on the cylinder surface) governed by the unsteady
two-dimensional incompressible Navier - Stokes equations space
discretized by finite-volume approximation with time-dependent
boundary conditions.
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1. Abstract

Abstract

• The second is a topic of applied mathematics related to the
so-called perfectly matched layer (PML) as an absorbing
boundary condition. The equations are obtained in this layer by
splitting the shallow water equations in the coordinate directions
and introducing the absorption coefficients.

• The performance of the PML as an absorbing boundary treatment
is demonstrated using a commonly employed bell-shaped
Gaussian initially introduced at the center of the domain.
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1. Abstract

Abstract

• Finally the third paper relates to the domain of meteorology
namely the analysis of singular vectors (SVs) of the Florida State
University Global Spectral Model and its adjoint, which includes
linearized full physics of the atmosphere.

• It is demonstrated that the physical processes, especially
precipitation, fundamentally affect the leading SVs. When the
SVs are coupled with the precipitation geographically, their
growth rates increase substantially.
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2. Impact of Prof. Hussaini

Impact of Prof. Hussaini

• The impact of Professor Hussaini on these papers and the quality
of their presentation is outlined.

• Importance of precise, well-crafted and well-expressed clarity of
presentation

• Choice of highly original topics of reserch
• Importance of focusing reserch on "uncrowded" research areas
• Multidisciplinarity and in-depth knowledge of research topics
• Strife to perfection- lessons from a master
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3. Optimal control of cylinder wakes via suction and blowing

Optimal control of cylinder wakes via suction and blowing

• Optimal control of cylinder wakes via suction and blowing,
Zhijin Li, I. M. Navon, M. Y. Hussaini, F.-X. Le Dimet,
Computers & Fluids, vol. 32, no. 2, pp. 149-171, 2003 (32
citations)

• Optimal control algorithm for controlling vortex shedding
behind circular cylinder in uniform stream at Reynolds numbers
exceeding Re = 40.

• Adequate choice of cost functional as space-time integral of
some physical quantity.

• Minimization of above cost functional using DFP Quasi-Newton
over a time interval longer than the vortex shedding period.

• Regularization of ill-posed cost functional using Tikhonov
regularization.
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3. Optimal control of cylinder wakes via suction and blowing

Mathematical Model

• Let Ω denote the flow domain.
• The flow field is described by the velocity vector (u, v) and the

scalar pressure p and is obtained by solving the following
momentum and mass conservation equations (in dimensionless
form)

∂u
∂t

+
∂p
∂t

=
1
Re

(
∂2u
∂x2 +

∂2u
∂y2 )− ∂u2

∂x
− ∂uv

∂y
in Ω,

∂v
∂t

+
∂p
∂y

=
1
Re

(
∂2v
∂x2 +

∂2v
∂y2 )− ∂uv

∂x
− ∂v2

∂y
in Ω,

∂u
∂x

+
∂v
∂y

= 0 in Ω,

subject to the initial condition

(u, v)|t=0 = (u0, v0) in Ω.

with appropriate b.c’s.
I. M. Navon
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3. Optimal control of cylinder wakes via suction and blowing

Mathematical Model

• We used the following notation: the cylinder diameter d, the free
stream velocity U and Re = Ud/ν is the Reynolds number.

• On the surface of the cylinder injection and suction normal to the
surface are allowed.

• The injection and suction are the control parameters in the
present study.
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3. Optimal control of cylinder wakes via suction and blowing

Discretization scheme

• Finite-volume discretization was used is space.
• A semi-implicit method was employed for the discretization in

time, which is explicit in the convective terms and implicit in the
pressure term.

• The time step is calculated as

∆t = τ min(
Re

2
(

1
∆x2 +

1
∆y2 )−1,

∆x
umax

,
∆y
vmax

).

• The factor τ ∈ [0, 1] was set to 0.6.
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3. Optimal control of cylinder wakes via suction and blowing

Typical objective functional

• An important objective is the minimization of the drag.
• For incompressible flow it can be computed from integral of

dissipation function

JE =
ν

2

∫ t2

t1

∫
Ω
|(∇U) + (∇U)T |2dΩdt,

where U is the velocity vector with components u and v, and ν is
the kinematic viscosity of the fluid.

• We used L-BFGS and Q-N minimization methods that require
only storage of a few additional vectors
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3. Optimal control of cylinder wakes via suction and blowing

Typical objective functional

• To solve a "flow - tracking" problem we denote (ud, vd) the
desired steady laminar flow

JF =
1
2

∫ t2

t1

∫
Ω

(|u− ud|2 + |v− vd|2dΩdt.
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3. Optimal control of cylinder wakes via suction and blowing

Regularized objective functional

• We employed a Tikhonov regularization

JFR = JF +
η

2
|y|2 ' JF + ηΣ

where JF is defined in previous slide, and η is the regularization
parameter (a dimensionless constant), y is an M-dimensional
control-parameter vector (which corresponds to boundary
parameters), and Σ is a stabilizing function.
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Figures

• Open issues
• Controllability
• Existence of solutions
• Uniqueness of solutions
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Figure 1: The geometry of the computational domain Ω. Only the left half
part is shown.
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Figures
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Figure 2: A schematic illustration of boundary cells and boundary values.
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3. Optimal control of cylinder wakes via suction and blowing

Figures

1

Figure 3: Streamfunction of the uncontrolled steady state for Re = 4.0.
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3. Optimal control of cylinder wakes via suction and blowing

Figures

1

Figure 4: Evolution of streaklines during one vortex shedding period about
2.0 time units starting at the time of 17.8 time units. The Reynolds number is
80.0. The flow displays well developed Karman vortex street at the time 16.0
time units with the initial condition depicted in Fig. 3.
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3. Optimal control of cylinder wakes via suction and blowing

Figures

inflow

1

Figure 5: Distribution of optimal injection and suction for the time windows
of 1.0. The optimizing flow vector is restricted to be only in the rear half of
the cylinder and normal to the surface. Reynolds number is 80.0. The initial
condition is the same as depicted in Fig. 4.
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Figures

1

1

Figure 6: Evolution of streak lines for the controlled flow. The optimization
time windows are 1.0 units (upper) and 3.0 units (lower).
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3. Optimal control of cylinder wakes via suction and blowing

Figures

1

Figure 7: Evolution of streak lines for the controlled flow. The optimized
injection and suction at the surface of the cylinder are obtained by
minimizing JF , with the time window starting at t = 0 with the state depicted
in Fig. 4. Then the model is integrated with the initial condition at t = 20
depicted in Fig. 4.
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3. Optimal control of cylinder wakes via suction and blowing

Figures

1 1

Figure 8: Evolution of both the objective functional and its gradient norm
with minimization iteration numbers. The objective functional JF is used.
The time windows are 1.0 units (left) and 3.0 units (right).
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Figures

1

1

Figure 9: Steady states of streak lines of the controlled flow with the optimal
injection/suction obtained after 10 minimization iterations.
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3. Optimal control of cylinder wakes via suction and blowing

Figures

1

Figure 10: Same as in Fig. 8, but without regularization. The minimization
stops after 47 iterations since the minimization cannot find a sufficient
descent step leading to a sufficient decrease.
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3. Optimal control of cylinder wakes via suction and blowing

Conclusions

• In practical applications computing solutions of optimal control
problem to full optimality is not necessary (most of the decrease
achieved in first 10 iterations

• Novelty: obtaining size and location of blowing and suction on
the boundary of the rear part of the cylinder

• In order to achieve robust control the time window of control
(data assimilation) should be larger then the vortex shedding
period, the inverse of the Strouhal frequency.
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4. A perfectly matched layer approach for the linearized SWE models

A perfectly matched layer approach for the linearized SWE models

• A perfectly matched layer approach to the linearized shallow
water equations models, I.M. Navon, Beny Neta and M. Y.
Hussaini, Monthly Weather Review , 132, No 6, 1369-1378
(2004) (43 citations)

• This topic deals with a particular application of absorbing
boundary conditions called perfectly matched layer (PML)
proposed by Berenger.

• The buffer/sponge layer consists in surrounding the truncated
physical domain with a zone where non-physical equations are
employed to damp incident waves so as to minimize reflection
into physical domain of interest.

• The parameters of PML are chosen such that reflected wave
amplitude is negligibly small by the time it reaches the interface
between absorbing layer and interior domain.
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4. A perfectly matched layer approach for the linearized SWE models

Mathematical model

• We considered the linearized shallow water equations (SWE) on
an f-plane for a rectangular domain is considered.

• We tested an advection case of a bell-shaped Gaussian
propagating in parallel to the PML.

• We then proceeded to test propagation of the bell shaped
Gaussian at an angle with the PML which yielded unstable
solutions necessitating, as suggested by Tam et al. (1998), the
use of a 9 point Laplacian filter to stabilize them.
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4. A perfectly matched layer approach for the linearized SWE models

Mathematical model

• Split-PML linearized SWE on the f− plane.

∂u1

∂t
+ U

∂u
∂x

+
∂φ

∂x
= −σxu1,

∂u2

∂t
+ V

∂u
∂y

= −σyu2

∂u3

∂t
− fv = 0,

∂v1

∂t
+ U

∂v
∂x

= −σxv1

∂v2

∂t
+ V

∂v
∂y

+
∂φ

∂y
= −σyv2,

∂v3

∂t
+ fu = 0

∂φ1

∂t
+ Φ

∂u
∂x

+ U
∂φ

∂x
= −σxφ1

∂φ2

∂t
+ Φ

∂v
∂y

+ V
∂φ

∂y
= −σyφ2

(1)
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4. A perfectly matched layer approach for the linearized SWE models

Mathematical model

where
• U = Umean, V = Vmean

• Φ is the mean geopotential height, f is the Coriolis factor
• σx, σy are the absorption coefficients in the PML.
• A dispersion relation exists between possibly complex wave

vector (kx, ky) and possibly complex frequency

−ω2W3
x W3

y Z
[
Φ(X2 + Y2)− F2 + Z2] = 0 (2)

with
Z = 1 + iUX (3)

Wx = σx − iω, Wy = σy − iω (4)

X =
kx

Wx
, Y =

ky

Wy
, F =

f
ω

(5)
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4. A perfectly matched layer approach for the linearized SWE models

Plane Waves in a perfectly matched layer

• If we have a plane wave

Ψ = Ψ0ei(kxx+kyy−ωt)

Ψ = (u1, u2, u3, v1, v2, v3, φ1, φ2)

is the solution of PML system if

1 Triplet (w, kx, ky) satisfies dispersion equation.

2 Amplitudes of Φ0 are solution of the linear homogeneous system
for which the determinant is the dispersion equation.

3 Perfect transmission sufficient condition is

σy1 = σy2 .
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4. A perfectly matched layer approach for the linearized SWE models

Numerical testing

• This scheme is implemented on a non-staggered grid
• The scheme has a CFL stability condition

∆t ≤
√

(∆x)2 + (∆y)2
√

Φ
√

2

• Spatial differencing of the linearized shallow water equations
was carried out on a rectangular domain of 141× 141 grid points

• uniform spatial horizontal grid length of ∆x = ∆y = 100km.
• We used H = hav = 5000m and a time step of ∆t = 120sec.
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4. A perfectly matched layer approach for the linearized SWE models

Numerical testing

• We compared the results with a control simulation computed on
a much larger domain of 400× 400 grid points unaffected by b.c.
for the integration time-span.

• The experiment starts with a bell-shaped Gaussian at the center
of the domain

φ(x, y, 0) = φ0+φ̂ exp

{
−
[

x− Lx/2
Lx/10

]2
}

exp

{
−
[

y− Ly/2
Ly/10

]2
}

(6)
• Lx = Ly = 10, 000km, φ0 = (5000m) · g, and φ̂ = (500m) · g.
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4. A perfectly matched layer approach for the linearized SWE models

Numerical testing

• The PML absorption coefficients varied gradually inside the
PML

σx = σm

∣∣∣∣x− xl

D

∣∣∣∣γ , σy = σm

∣∣∣∣y− yl

D

∣∣∣∣γ ,
• xl, yl denotes location where the PML starts, D is the depth of the

PML layer.
• γ is a constant.
• The PML depth was 20∆x, and the parameters governing the

spatial variation of σ for the absorbing layer were γ = 3 and

σm = σx = σy = 0.0018.
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4. A perfectly matched layer approach for the linearized SWE models

Test1

• Propagation parallel to the PML axis. Mean Absolute
Divergence should be zero.

• Without PML divergence shows a drastic increase as the bell
reaches the boundary.

• With PML or with very large computational domain the results
tend to non-divergence as mandated by the analytical solution.
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4. A perfectly matched layer approach for the linearized SWE models

Test2

• Propagation at an angle of 45◦ exiting through a corner.
• Here the σ curve follows a cubic spline until the full value of
σx = σy = σm is attained.

• Here PML excites unstable solution.
• Controlled by a 9 point Laplacian.
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4. A perfectly matched layer approach for the linearized SWE models

Novelty

• PML may improve b.c. for meso-scale models that use
combination of nudging and sponge layer approaches.

• Gravity wave can both leave the domain or enter it without
hindrance.

• Generalization to full 3D NWP models using normal mode
decomposition yielding a shallow water equation for each
vertical mode with different equivalent depth.
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5. Analysis of the singular vectors of the full physics FSU Global Spectral Model

Analysis of the singular vectors of the full physics FSU Global Spectral
Model

• Analysis of the singular vectors of the full-physics Florida State
University Global Spectral Model, Zhijin Li, I.M. Navon and M.
Y. Hussaini, Tellus , Vol. 57A , 560-574 (2005) (12 citations)

• FSUGSM (Krishnamurti et al. 1991) is the result of work of
several decades by group of Prof. T.N. Krishnamurti.

• Its adjoint model was derived by Wang and Navon 1993,
Tsuyuki 1996, Zhu and Navon 1997-1999, Li et al. 2000.
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5. Analysis of the singular vectors of the full physics FSU Global Spectral Model

Singular value decomposition

• Consider the FSUGSM, which is perturbed at any point in its
nonlinear trajectory.

• The evolution of the perturbation state vector x is then governed
by

xt = A(t, 0)x0, (7)

• xt is the perturbation at time t, x0 is the initial perturbation at
time 0

• A(t, 0) is the linearized version of nonlinear model i.e. the
tangent linear model.

• the perturbation state vector x represents {u, v,T, lnπ}, which
are the perturbations of velocity components, temperature, and
logarithm of surface pressure respectively.
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5. Analysis of the singular vectors of the full physics FSU Global Spectral Model

Singular value decomposition

• In order to compute the fastest growing perturbations (the
so-called singular vectors that will be defined precisely later), it
is necessary to define an inner product for the linear vector space
of perturbations.

• We introduce the dry total energy norm

||x||2 = (x, x) =< x,Ex >=
1
2

∫ 1

0

∫
Σ

[
u2 + v2 +

cp

Tr
T2
]

(
∂p
∂σ

)dΣdσ+

1
2

∫
Σ

RdTrPr(lnπ)2dΣ.

• Cp is the specific heat of dry air at constant pressure, Rd the gas
constant for dry air,

• Tr = 300K a reference temperature, Pr = 800hpa a reference
pressure.

• E is a positive-definite diagonal matrix.
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5. Analysis of the singular vectors of the full physics FSU Global Spectral Model

Singular value decomposition

• The definition of the norm allows one to relate the energy of the
perturbation x at time t to its initial value

||xt||2

||x0||2
=

< xt,Etxt >

< x0,E0x0 >
=
< Ax0,EtAx0 >

< x0,E0x0 >
=
< x0,ATEtAx0 >

< x0,E0x0 >
= λ2,

(8)

• Superscript T represents the transpose, and the subscripts t and 0
denote the weight matrix at time t and 0.

• Et = E0 and λ is usually called the energy amplification factor.
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5. Analysis of the singular vectors of the full physics FSU Global Spectral Model

Singular value decomposition

• We obtain the generalized eigenvalue problem,

ATEtAvi = λ2
i E0vi. (9)

• The generalized eigenvectors vi and the generalized eigenvalues
λi are the singular vectors and singular values of A w.r.t. E0-norm
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5. Analysis of the singular vectors of the full physics FSU Global Spectral Model

Singular value decomposition

• In practice, one can only compute a small number of singular
vectors compared with the huge dimension of the model
variables.

• In order to make the singular vectors more relevant to limited
area models, Barkmeijer (1992) introduced a local projection
operator P, which sets model variables to zero outside the
concerned area.

• The definition of the amplification factor is generalized as

λ2 =
< Pxt,EtPxt >

< x0,E0x0 >
. (10)
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5. Analysis of the singular vectors of the full physics FSU Global Spectral Model

Numerical tests

• Test of model without physics
• Test of model with boundary layer physics.
• A measure of similarity based on projection of a set of SVs on

another is provided by the similarity index of the two cases NP
and BP and is defined as:

s(A,B; N) =
1
N

N∑
i,j=1

mi,j(A,B),

mij(NP,BP) = (< vi(NP); Evj(BP) >)2.

• Test with a model with "full physics"
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5. Analysis of the singular vectors of the full physics FSU Global Spectral Model

Conclusions

• Precipitation effects leading SV only when it is the SV
perturbation geographically coupled with the precipitation
process.

• Impact of filtering technique
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5. Analysis of the singular vectors of the full physics FSU Global Spectral Model

Figures

Figure 11: (a) Zonal wind analysis at 300 hPa and valid at 00 UTC 3
September 1996. The contour interval is 10.0 m, and negative values are
dashed and values larger than 30.0 m shaded. (b) Accumulated precipitation
of the forecast over 36 h. The contour interval is 10.0 mm, and values larger
than 30.0 mm are shaded.
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