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• Rasrap has the best efficiency among all 
sequences used in simulations

• The observed convergence rate for Monte Carlo 
sequences is between and 

• The observed convergence rate for Rasrap is 
between and 

Estimate
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Monte Carlo	→ ሺሻ is a (pseudo) random vector from ܷሺ0, 1ሻ௦.
Convergence rate is ܱሺܰିଵ/ଶሻ

Quasi-Monte Carlo	→ ሺሻ is the ݊௧ term of an dimensional-ݏ

low-discrepancy sequence (Halton, Sobol’, Faure, Niederreiter).
Convergence rate is ܱሺܰିଵlog௦	ܰሻ

Monte Carlo and (randomized) quasi-Monte Carlo methods Pricing collateralized mortgage obligations (CMO)
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where ௨ is a family of ݏ െ dimensional low-discrepancy
sequences indexed by the random parameter ݑ in randomized
quasi-Monte Carlo.
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Pricing caplets with LIBOR

Random-start random-permuted Halton sequence (Rasrap)

The ݊௧ term of the van der Corput sequence, ߶ሺ݊ሻ, in base
ܾ, is defined as follows: First, write the base ܾ expansion of ݊:
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then compute
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The Halton sequence in the bases ܾଵ, … , ܾ௦ is 
߶భ ݊ ,… ,߶ೞ ݊ , ݊ ൌ 1,⋯ ,∞.

Example: van der Corput sequence in base 2
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The random-permuted van der Corput sequence is:

߶ ݊ ൌ
ሺܽሻߪ
ܾ


ሺܽଵሻߪ
ܾଶ

 ⋯
ሺܽሻߪ
ܾାଵ

Where ߪ is a random permutation on the digit set ሼ0, … , ܾ െ 1ሽ.
The permuted Halton sequence is obtained from scrambled van
der Corput sequences in the usual way.

There is a well-known defect of the Halton sequence: in higher 
dimensions, certain components of the sequence exhibit very 
poor uniformity. This phenomenon is sometimes described as 
high correlation between higher bases.

Observing this deficiency of the Halton sequence, different 
appropriately chosen permutations to scramble digits were 
introduced. 

Parallel computing on GPU
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Sequential computing versus “counter-based” computing

London interbank offered rate (LIBOR) model

The dynamics of the forward LIBOR rates follow a system of SDEs:
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where ሻݐሺܮ is the forward rate at time ݐ over the period ሾ ܶ, ܶାଵ], ߪ is volatility and ߜ denotes the lengths of the intervals between
maturities.

Fix a time grid 0 ൌ ݐ ൏ ଵݐ ൏ ⋯ ൏ ݐ ൏ ାଵݐ to simulate the LIBOR market model. Take ݐ ൌ ܶ so the simulation goes directly from one
maturity date to the next. Assuming a constant volatility ߪ in the simulation:
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ୀఎሺ௧ሻ and ܼଵ, ܼଶ, … are independent ܰሺ0, ሻܫ random vectors in Թௗ. Here hats are used to identify

discretized variables.

Speedup 

von Neumann-Kakutani transformationn ܶ: 0, 1 → 0, 1 , is
constructed inductively, by a splitting and stacking process.

• The orbit of 0 under ܶ is the van der Corput sequence

• The orbit of any ݔ ∈ 0, 1 is a QMC sequence

• Choose ݔ at random from ܷ 0, 1 to obtain random-start
Halton sequence

Problems:

• Pricing collateralized mortgage obligations (CMO)

• Caplet pricing with LIBOR market model

Computing environment:

• CPU: Intel i7-2630QM

• GPU: Nvidia GeForce GT 540M

Sequences used:

Rasrap, Philox, XORWOW, Twister, Sobol’


