
Randomized quasi-Monte Carlo
Simulation on GPU

Linlin Xu (Major Prof: Giray kten)

• Rasrap has the best efficiency among all
sequences used in simulations

• The observed convergence rate for Monte Carlo
sequences is between and

• The observed convergence rate for Rasrap is
between and

Estimate

ܫ ൌ න ݂ ࢞ ࢞݀
ሾ,ଵሻೞ

using sums of the form

ேܫ ൌ
ଵ

ே
∑ ݂ሺሺሻሻே
ୀଵ

Monte Carlo	→ ሺሻ is a (pseudo) random vector from ܷሺ0, 1ሻ௦.
Convergence rate is ܱሺܰିଵ/ଶሻ

Quasi-Monte Carlo	→ ሺሻ is the ݊௧ term of an dimensional-ݏ

low-discrepancy sequence (Halton, Sobol’, Faure, Niederreiter).
Convergence rate is ܱሺܰିଵlog௦	ܰሻ

Monte Carlo and (randomized) quasi-Monte Carlo methods Pricing collateralized mortgage obligations (CMO)

Estimate

ܫ ൌ න ݂ ࢞ ࢞݀
ሾ,ଵሻೞ

using sums of the form

௨ሻேሺܫ ൌ
ଵ

ே
∑ ݂ሺ௨ሺሻሻ
ே
ୀଵ

where ௨ is a family of ݏ െ dimensional low-discrepancy
sequences indexed by the random parameter ݑ in randomized
quasi-Monte Carlo.

ܧ ேܫ ௨ ൌ ܫ
ݎܸܽ ேܫ ௨ ൌ ܱሺܰିଶlogଶ௦	ܰሻ

Pricing caplets with LIBOR

Random-start random-permuted Halton sequence (Rasrap)

The ݊௧ term of the van der Corput sequence, ߶ሺ݊ሻ, in base
ܾ, is defined as follows: First, write the base ܾ expansion of ݊:

݊ ൌ ሺܽ ⋯ܽଵܽሻൌ ܽ ܽଵܾ ⋯ ܾܽ,

then compute

߶ ݊ ൌ ሺ. ܽ ܽଵ ⋯ܽሻൌ
ܽ
ܾ

ܽଵ
ܾଶ

 ⋯
ܽ
ܾାଵ

.

The Halton sequence in the bases ܾଵ, … , ܾ௦ is
߶భ ݊ ,… ,߶ೞ ݊ , ݊ ൌ 1,⋯ ,∞.

Example: van der Corput sequence in base 2
1
2
,
1
4
,
3
4
,
1
8
,
5
8
,
3
8
,
7
8
,⋯

The random-permuted van der Corput sequence is:

߶ ݊ ൌ
ሺܽሻߪ
ܾ

ሺܽଵሻߪ
ܾଶ

 ⋯
ሺܽሻߪ
ܾାଵ

Where ߪ is a random permutation on the digit set ሼ0, … , ܾ െ 1ሽ.
The permuted Halton sequence is obtained from scrambled van
der Corput sequences in the usual way.

There is a well-known defect of the Halton sequence: in higher
dimensions, certain components of the sequence exhibit very
poor uniformity. This phenomenon is sometimes described as
high correlation between higher bases.

Observing this deficiency of the Halton sequence, different
appropriately chosen permutations to scramble digits were
introduced.

Parallel computing on GPU

Nodes: ,ଵ ,ଶ …

Want ܯ estimates ேߠ
 ൌ ଵ

ே
∑ ݂

 ,݉ ൌ 1,… ே.ܯ,
ୀଵ

Sequential computing versus “counter-based” computing

London interbank offered rate (LIBOR) model

The dynamics of the forward LIBOR rates follow a system of SDEs:

ௗሺ௧ሻ

ሺ௧ሻ
ൌ ∑

ఋೕሺ௧ሻೕሺ௧ሻሻఙሺ௧ሻ⊺ఙೕሺ௧ሻ

ଵାఋೕೕሺ௧ሻ
ݐ݀ ߪ ݐ ⊺ ݐ ܹ݀ ݐ , 0 ݐ ܶ, ݊ ൌ 1,… ܯ,

ୀఎሺ௧ሻ ,

where ሻݐሺܮ is the forward rate at time ݐ over the period ሾ ܶ, ܶାଵ], ߪ is volatility and ߜ denotes the lengths of the intervals between
maturities.

Fix a time grid 0 ൌ ݐ ൏ ଵݐ ൏ ⋯ ൏ ݐ ൏ ାଵݐ to simulate the LIBOR market model. Take ݐ ൌ ܶ so the simulation goes directly from one
maturity date to the next. Assuming a constant volatility ߪ in the simulation:

ܮ ାଵݐ ൌ ܮ ݐ ܮሺߤ ݐ , ሻݐ ܮ ݐ ାଵݐ െ ݐ ܮ ݐ ାଵݐ െ ߪݐ ݐ ⊺ܼାଵ,

where ߤ ܮ ݐ , ݐ ൌ ∑
ఋೕሺ௧ሻ	ೕሺ௧ሻఙሺ௧ሻ⊺ఙೕሺ௧ሻ

ଵାఋೕೕሺ௧ሻ

ୀఎሺ௧ሻ and ܼଵ, ܼଶ, … are independent ܰሺ0, ሻܫ random vectors in Թௗ. Here hats are used to identify

discretized variables.

Speedup

von Neumann-Kakutani transformationn ܶ: 0, 1 → 0, 1 , is
constructed inductively, by a splitting and stacking process.

• The orbit of 0 under ܶ is the van der Corput sequence

• The orbit of any ݔ ∈ 0, 1 is a QMC sequence

• Choose ݔ at random from ܷ 0, 1 to obtain random-start
Halton sequence

Problems:

• Pricing collateralized mortgage obligations (CMO)

• Caplet pricing with LIBOR market model

Computing environment:

• CPU: Intel i7-2630QM

• GPU: Nvidia GeForce GT 540M

Sequences used:

Rasrap, Philox, XORWOW, Twister, Sobol’

