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Modeling Power Grids  
 

-- not so easy  



Why study power grids? 

Motivation: 
•  Society relies heavily on power grid performance 
•  Modern & future power grids are large, complex, integrated 
•  Vulnerability to natural disasters, hostility, software failure 
•  Network theory is in rapid development 



Goal 
• Stop cascading failures by  

– partitioning a power grid into parts that are  
• weakly connected 
• nearly self-sufficient in power 

 Example: Floridian high-voltage power grid 

Weight Matrix for the Florida Grid 

wij=
#of linesbetweenverticesi and j
normalizedgeographical distance



Florida High-voltage  
Transmission Grid 

    Weight matrix W 
    The weight of a connection is 

proportional to the number of 
parallel connecting lines between 
two vertices. Connections are 
represented by dots, with strengths 
from high=red to low=blue.  

Florida electric power grid map 
Network of 84 vertices  
including 31 generators  



Building a model power grid 
that we can play with 

• Geographically embedded network 
• Scale such that area density of vertices is unity 

(N vertices in square of side N1/2 ) 
• Proportion of power plants (Florida: 31/84) 
 

 
Degree distribution 
 

Edge-length distribution 
 

<edge length> = 1.09 



Building a model power grid, 2 
• Generating capacities 
• Power demand of loads 

• Use degree as proxy 
 
 
 

Generating capacity vs degree 

Florida power plants 



Building “Random Florida” 
1. Place N=84 vertices randomly in square of 

side N1/2. (One point per unit area.) 
2. Choose 31 last vertices as generators.  
3. Create degree distribution with  
  <k> = 2M/N = 4.76 using stub method: 

• Connect <k>N stubs (half-edges) randomly to 
the N vertices: 
 
 
 
 

• Connect the stubs randomly in pairs: 
 





4. Assign “edge energy” E(ij) equal to length of 
edge ij, and “cool” the system of edges to 
 favor shorter ones: 

• Randomly choose two different edges, ij and kl. 
• Calculate E(ij,kl) = E(ij) + E(kl). 
• Interchange j and l and calculate the energy of 

the new edge pair, E(il,kj).  
• Accept new edge pair with Metropolis probability:  

 
 
 

• Repeat until Energy becomes stationary.  
• Select representative “equilibrium” configuration 

as your “Random Florida” 
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Modularity: 
 
 
 w is the total weight 
 wi is the weighted number of edges connecting to 

node i or the weight of node i. 
  δ(C(i),C(j)) equals 1 if i and j are in the same 

cluster, 0 otherwise. 
 One wants to maximize Q while minimizing 

In/Out currents. Thus the Quality measure E to 
maximize is: 
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Partitioning of “Random FL” 



Partitioning Algorithm 
• Bottom-up procedure resembling Real-Space 

Renormaliztion Group (RSRG) in stat-mech.  
1. Scan over all load vertices i and connect each to its 

nearest generator j (i.e., 8 loads i connect to generator j 
such that Rij = Min.) 

2. Run Monte Carlo Simulated Annealing, trying to move 
each original load to neighboring cluster to maximize E.  

3. Build new network with each old cluster as a new vertex. 
4. Separate new vertices into super-generators (I > 0) and 

super-loads (I < 0).  
5. Return to 1. (But note, in MC, the original (small) 

vertices are moved, not the “supervertices.”  



Monte Carlo Simulated Annealing 
 Randomly select a peripheral load  
• Randomly select a neighboring 
 cluster to move it to 
 Calculate ΔE  
 If ΔE > 0 provisionally accept the move 
 If ΔE < 0 provisionally accept the move with 
 probability e(ΔE/T) 

 Check that acceptance will not break the cluster, 
and permanently accept if OK.  
 Otherwise, reject.  

 Decrease T and repeat 
 When T~0 reset to initial T  
 Save configuration with Max E 

 

Moveable load 



In/Out Current Vector 
Before and After MC 



Run 5 



4 Before MC 4 After MC 

8 clusters 

Max E for run 

E = 0.80 

Run 5 



5 Before MC 5 After MC 

4 clusters 

E = -0.16 

Run 5 



Model. Run F 

Florida. Run 5 



1 After MC 2 After MC 

31 clusters 
E = 0.09 

Run F 

17 clusters 
E = 0.59 



Scaling it up 
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64 clusters 35 clusters 

21 clusters 13 clusters 
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10 clusters 9 clusters 



Remarks and Conclusions 
 
 Developed simple model power-grids that enable 

us to experiment with partitioning algorithms on 
grids with different characteristics.  

 Used network theory to partition the model 
power-grid network taking into account the 
generating power of each of the power plants. 

 Used MC simulated annealing to optimize the 
resulting clusters for better internal connectivity 
and power self-sufficiency. 

 The approach can be scaled to larger grids. 



Thank you,  
Yousuff! 
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