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Recent Motivating Work

I Volume preserving Moment-of-Fluid reconstruction for
multiple materials. Moment of Fluid method for deforming
boundary problems (Ahn and Shashkov, JCP 2007; Ahn and
Shashkov, JCP 2009).

I variable density cell centered pressure projection (Kwatra, Su,
Gretarsson, Fedkiw 2009)
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Flow through diesel nozzle with moving valve



Flow through diesel nozzle with moving valve



Simulation of Flow through diesel nozzle with moving valve



AMR grid



Six hole diesel nozzle

Pressure (bar)!

Figure: Snapshot of a simulation of liquid injection in a Bosch six-hole
vertical diesel nozzle. Effective fine grid resolution 640x640x256.



Microfluidics
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Vortex Rings
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Vortex Rings
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Background

I Shock capturing (ENO) - Shu, Osher, JCP 1989

I Front capturing (LS) - Sussman, Smereka, Osher, JCP 1994

I Conservative LS - Olsson, Kreiss, Zahedi, JCP 2007

I Front tracking - Unverdi, Tryggvason, JCP 1992

I VOF - Kothe, Brackbill, Zemach, JCP 1992

I CLSVOF - Sussman, Puckett; Sussman, Smith, Hussaini, et al.

I CLSVOF - Stern

I Particle LS - Enright, Fedkiw

I Refined LS - Herrmann, Pitsch



Grid



We propose Semi-Lagrangian technique for multimaterial problems,
in contrast to a finite volume technique which is (in 1D, u is
constant):

ρ̄i =
1

∆x

∫ xi+1/2

xi−1/2

ρ(x)dx

d ρ̄i (t)

dt
= −

f (ρ−i+1/2, ρ
+
i+1/2)− f (ρ−i−1/2, ρ

+
i−1/2)

∆x

where d/dt discretized using high order TVD preserving RK and
ρi+1/2 derived from a high order ENO or WENO reconstruction.



Results motivating SL instead of Finite volume



Results motivating MOF/VOF instead of ENO/WENO
reconstruction



Results motivating MOF/VOF instead of ENO/WENO
reconstruction



Governing Equations

ρ(φ)
Du

Dt
= −∇p +∇ · (2µ(φ)D)− σκ(φ)∇H(φ) + ρ(φ)g ẑ

∇ · u = 0

Dφ

Dt
= 0

H(φ) =

{
1 φ ≥ 0
0 φ < 0

ρ(φ) = ρLH(φ) + ρG (1− H(φ)),

µ(φ) = µLH(φ) + µG (1− H(φ)),

κ(φ) = ∇ · ∇φ
|∇φ|

,

D =
∇u + (∇u)T

2
,



Splitting of advection terms from the pressure terms

Kwatra, Su, Gretarsson (JCP, 2009)

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρuu) = −∇p

(ρE )t +∇ · (ρuE ) = −∇ · (up)



Splitting of advection terms from the pressure terms

Kwatra, Su, Gretarsson (JCP, 2009)
solve the following equations to get ρn+1, u∗, and E ∗. These
equations are solved using a directionally split method in which ρ
at material boundaries is derived from the multimaterial MOF
reconstruction.

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρuu) = 0

(ρE )t +∇ · (ρuE ) = 0



Splitting of advection terms from the pressure terms

pn+1 − p∗

∆t
= −ρc2∇ · u

un+1 = u∗ −∆t
∇p

ρn+1

pn+1

ρc2∆t2
−∇ · ∇pn+1

ρn+1
=

p∗

ρc2∆t2
− 1

∆t
∇ · u∗



Splitting of advection terms from the pressure terms

un+1
i+1/2 = u∗i+1/2 −∆t

pn+1
i+1 − pn+1

i

ρi+1/2∆x

un+1
i = u∗i −∆t

pn+1
i+1/2 − pn+1

i−1/2

ρi ∆x

(ρE )n+1 = (ρE )∗ −∆t∇ · (un+1pn+1)



CLSMOF (illustration of Piecewise linear reconstruction)



Multimaterial MOF reconstruction

I For cell i − 1, slope of Red (solid) cut determined first, then
slope of green (fluid 1) cut determined second. Blue material
occupies remaining unfilled region.

I For cell i , slope of blue (fluid 2) cut determined first. Green
material occupies remaining unfilled region.



Multimaterial MOF reconstruction

Slope of Red (solid) cut determined first, then slope of green (fluid
1) cut determined second. Blue material occupies remaining
unfilled region.



MOF optimization problem
n̂ points into the material being reconstructed. The starting guess
is n̂ = xref−xunfilled

||xref−xunfilled || .

{x ∈ R3|n̂ · (x− xi ,j ,k ) + b = 0}

|Fref(n̂, b)− FA(n̂, b)| = 0

EMOF = ‖xref − xA(n̂, b)‖2

EMOF (Φ∗,Θ∗) = ‖f (Φ∗,Θ∗)‖2 = min
(Φ,Θ)

‖f (Φ,Θ)‖2,

f : R2 → R3, f (Φ,Θ) = (xref − xA(Φ,Θ))

Constrained optimization problem solved using the Gauss-Newton
method.



Gauss-Newton minimization algorithm

0. initial angles: (Φ0,Θ0). Tolerance: tol = 10−8∆x .

while not converged

1. find bk (Φk ,Θk ).

2. find the centroid xk (bk ,Φk ,Θk )

3. find the Jacobian matrix Jk of f evaluated in (Φk ,Θk ) and
fk = f (Φk ,Θk )

4. stop if one of the following three conditions is fulfilled:
I ‖JT

k · fk‖ ≤ tol · 10−2∆x
I ‖fk‖ < tol
I k = 11

else continue

5. solve the linear least squares problem: find sk ∈ R2 such that

‖Jksk + fk‖2 = min
s∈R2
‖Jks + fk‖2

by means of the normal equations. (JT
k Jksk = JT

k fk )

6. update the angles: (Φk+1,Θk+1) = (Φk ,Θk ) + sk

7. k := k + 1



Property of MOF reconstruction

xref

Ax

Figure: The reference centroid, xref , does not coincide with the exact
centroid, xA, for a parabolic interface cutting the cell. The difference
between the two centroids is proportional to the curvature.



Backwards Tracing

A = xi−1/2 − ui−1/2∆t

B = xi−1/2

C = xi+1/2 − ui+1/2∆t



Backwards Tracing (before and after)

A = xi−1/2 − ui−1/2∆t B = xi−1/2 C = xi+1/2 − ui+1/2∆t

D = xi−1/2 E = Ji (xi−1/2) F = xi+1/2



Backwards Tracing - conserved variables

AKA “Eulerian Implicit”

ρ̄i ,j ,k =
1

∆x∆y∆z

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

ρ(x , y , z)dzdydx

WLOG, drop j and k subscripts.

ρ̄n+1
i =

∑i+1
i ′=i−1

∫
ΩD

i ∩Ωi′
ρn

i ′(x)dx

∆x



Backwards Tracing - volume fraction

AKA “Eulerian Implicit” (Scardovelli and Zaleski, Le Chenedac and
Pitsch)

Fi ,j ,k =
1

∆x∆y∆z

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

H(φ(x , y , z))dzdydx

H(φ) = 1 if φ ≥ 0 (i.e. (x , y , z) inside the material being
advected).

φn+1
i ′ = φn

i ′(J
−1
i (x), y , z)

F n+1
i =

∑i+1
i ′=i−1

∫
Ji (ΩD

i ∩Ωi′ )
H(φn+1

i ′ (x , y , z))dxdydz

∆x∆y∆z



Backwards Tracing - centroid

AKA “Eulerian Implicit”

xact
i ,j ,k =

1

Fi ,j ,k ∆x∆y∆z

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

xH(φ(x , y , z))dzdydx

H(φ) = 1 if φ ≥ 0 (i.e. (x , y , z) inside the material being
advected).

φn+1
i ′ = φn

i ′(J
−1
i (x), y , z)

xn+1
i =

∑i+1
i ′=i−1

∫
Ji (ΩD

i ∩Ωi′ )
xH(φn+1

i ′ (x , y , z))dxdydz

F n+1
i ∆x∆y∆z



Backwards Tracing - mapping function

Ωi = [xi−1/2, xi+1/2]

ΩD
i = [xi−1/2 − ui−1/2∆t, xi+1/2 − ui+1/2∆t]

ΩT
i = [xi−1/2, xi+1/2]



Backwards Tracing - mapping function

Let Ji (x) = Ax + B be a function which maps from cell i
departure region to cell i target region. For backwards tracing,

Ji (xi−1/2 − ui−1/2∆t) = A(xi−1/2 − ui−1/2∆t) + B = xi−1/2

Ji (xi+1/2 − ui+1/2∆t) = A(xi+1/2 − ui+1/2∆t) + B = xi+1/2

A =
1

1− (ui+1/2 − ui−1/2) ∆t
∆x

B = xi−1/2 − A(xi−1/2 − ui−1/2∆t)

As long as u∆t < ∆x/2, the mapping has an inverse.



Backwards Tracing - inverse mapping function

Let J−1
i (x) be the inverse map which is a function which maps

from cell i target region to cell i departure region. If
Ji (x) = Ax + B, then

J−1
i (x) =

1

A
x − B

A

Let Ω−1 = J−1
i (Ω) be the inverse map which finds the region Ω−1

which maps to Ω under the definition of Ji . In otherwords,

Ω = [a, b]

Ω−1 = J−1
i (Ω) = [J−1

i (a), J−1
i (b)]



Backwards Tracing - mapping function to find target region

Likewise, Ji (Ω) is defined as the target region that the region Ω
maps to:

Ω = [a, b]

Ji (Ω) = [Ji (a), Ji (b)]



Backwards Tracing - interface advection defined by
mapping

Given a local level set function,

φn
i ′(x , y , z) = n · (x− xi ′) + α,

After advection, we have

φn+1
i ′ (x , y , z) = φn

i ′(J
−1
i (x), y , z) =

n1(
x

A
− B

A
− xi ′) + n2(y − yj ′) + n3(z − zk ′) =

n1

A
(x − Ji (xi ′)) + n2(y − yj ′) + n3(z − zk ′) + α



Forwards Tracing

A = J−1
i−1(xi−1/2) B = xi−1/2 C = J−1

i (xi+1/2)

Ji−1 and Ji define the mappings of cells i − 1 and i contents
forward, respectively.



Forwards Tracing (before and after)

A = J−1
i−1(xi−1/2) B = xi−1/2 C = J−1

i (xi+1/2)

D = xi−1/2 E = Ji (xi−1/2) F = xi+1/2



Forwards Tracing - conserved variables

AKA “Lagrangian Explicit”

ρ̄i =
1

∆x

∫ xi+1/2

xi−1/2

ρ(x)dx

ρ̄n+1
i =

∑i+1
i ′=i−1

∫
J−1

i′ (ΩT
i′∩Ωi )

ρn
i ′(x)dx

∆x



Forwards Tracing - volume fraction

AKA “Lagrangian Explicit” (Scardovelli and Zaleski, Le Chenedac
and Pitsch)

Fi ,j ,k =
1

∆x∆y∆z

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

H(φ(x , y , z))dzdydx

H(φ) = 1 if φ ≥ 0 (i.e. (x , y , z) inside the material being
advected).

φn+1
i ′ (x , y , z) = φn

i ′(J
−1
i ′ (x), y , z)

F n+1
i =

∑i+1
i ′=i−1

∫
Ωi∩ΩT

i′
H(φn+1

i ′ (x , y , z))dxdydz

∆x∆y∆z



Forwards Tracing - centroid

AKA “Lagrangian Explicit”

xact
i ,j ,k =

1

Fi ,j ,k ∆x∆y∆z

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

xH(φ(x , y , z))dzdydx

H(φ) = 1 if φ ≥ 0 (i.e. (x , y , z) inside the material being
advected).

φn+1
i ′ (x , y , z) = φn

i ′(J
−1
i ′ (x), y , z)

xn+1
i =

∑i+1
i ′=i−1

∫
Ωi∩ΩT

i′
xH(φn+1

i ′ (x , y , z))dxdydz

F n+1
i ∆x∆y∆z



Forwards Tracing - mapping function

Ωi = [xi−1/2, xi+1/2]

ΩT
i = [xi−1/2 + ui−1/2∆t, xi+1/2 + ui+1/2∆t]

ΩD
i = [xi−1/2, xi+1/2]



Forwards Tracing - mapping function

Let Ji (x) = Ax + B be a function which maps from cell i
departure region to cell i target region. For forwards tracing,

Ji (xi−1/2) = Axi−1/2 + B = xi−1/2 + ui−1/2∆t

Ji (xi+1/2) = Axi+1/2 + B = xi+1/2 + ui+1/2∆t

A = 1 + (ui+1/2 − ui−1/2)
∆t

∆x
B = xi−1/2 + ui−1/2∆t − Axi−1/2

As long as u∆t < ∆x/2, A is positive.



Forwards Tracing - inverse mapping function

Let J−1
i (x) be the inverse map which is a function which maps

from cell i target region to cell i departure region. If
Ji (x) = Ax + B, then

J−1
i (x) =

1

A
x − B

A

Let Ω−1 = J−1
i (Ω) be the inverse map which finds the region Ω−1

which maps to Ω under the definition of Ji . In otherwords,

Ω = [a, b]

Ω−1 = J−1
i (Ω) = [J−1

i (a), J−1
i (b)]



Forwards Tracing - mapping function to find target region

Likewise, Ji (Ω) is defined as the target region that the region Ω
maps to:

Ω = [a, b]

Ji (Ω) = [Ji (a), Ji (b)]



Forwards Tracing - advection of interface reconstruction by
defined mapping

Given a local level set function,

φn
i ′(x , y , z) = n · (x− xi ′) + α,

After forward advection, we have

φn+1
i ′ (x , y , z) = φn

i ′(J
−1
i ′ (x), y , z) =

n1(
x

A
− B

A
− xi ′) + n2(y − yj ′) + n3(z − zk ′) =

n1

A
(x − Ji ′(xi ′)) + n2(y − yj ′) + n3(z − zk ′) + α



DS Semi-Lagrangian discretization - Strang Splitting

1. x direction; backwards projection. (Eulerian Implicit)

2. y direction; forwards projection. (Lagrangian Explicit)

3. z direction; backwards projection. (Eulerian Implicit)

4. z direction; forwards projection. (Lagrangian Explicit)

5. y direction; backwards projection. (Eulerian Implicit)

6. x direction; forwards projection. (Lagrangian Explicit)



2D volume conserved exactly



reversible single vortex



2D Unsplit MOF, reversible vortex T=1/2

RK2, backwards tracing:

Figure: single vortex problem (T = 1/2) 64× 64 midway through the
simulation and at the end. Shape deforms back to a circle. Two
materials. At t = T = 1/2, symmetric difference error is 7.4E − 5
(operator split symmetric difference error: 14.3E − 5)



2D Unsplit multimaterial MOF, reversible vortex T=1/2

RK2, backwards tracing:

Figure: single vortex problem (T = 1/2) 64× 64 midway through the
simulation and at the end. Shape deforms back to a circle. Three
materials. Initially, Material 1 (red) is the left half of the circle, Material
2 (green) is the right half, and Material 3 (blue) is the space outside the
circle. At t = T = 1/2, symmetric difference error is 9.6E − 5 for
material 1, 10.1E − 5 for material 2, and 14.8E − 5 for material 3.



3D Unsplit MOF, reversible vortex T=3

RK2, backwards tracing:

Figure: 3D single vortex problem (T = 3) 64× 64× 64 midway through
the simulation and at the end. Shape deforms back to a sphere. Two
materials. At t = T = 3, symmetric difference error is 0.00189 (operator
split symmetric difference error: 0.00202)



3D Unsplit multimaterial MOF, reversible vortex T=3

RK2, backwards tracing:

Figure: single vortex problem (T = 3) 64× 64× 64 midway through the
simulation and at the end. Shape deforms back to a sphere. Three
materials. Initially, Material 1 (red) is the left half of the sphere, and
Material 2 (green) is the right half. At t = T = 3, symmetric difference
error is 0.00158 for material 1, 0.00104 for material 2, and 0.00188 for
material 3.



Rotating Notched disk (Zalesak’s problem)



Rotating Letter “A”



Rising gas bubble in liquid

Figure: Left: condition 1 Right: condition 3

Figure: Left: condition 4 Right: condition 6



Surface tension driven vibrations of a drop



Oscillating Cylinder



Cylinder falling into a pool of liquid



Impinging jets - same material



Impinging jets - different materials



Future work

The multimaterial MOF representation enables more accurate
simulation of:

I multimaterial flows with minimal volume fluctuation -
capturing corners and filaments.

I surface tension and contact line effects.

I simulating transport on deforming surfaces.

I predicting mass transfer on deforming surfaces.

I predicting boundary layer effects on underresolved grids.

Improvements are still being made to the multimaterial MOF
scheme in accelerating the multimaterial MOF reconstruction and
unsplit multimaterial MOF advection algorithm. Adding the
capability to robustly simulate compressible
multiphase/multimaterial flows is one priority now.


