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1. Introduction

A compact Riemann surface of genus g, g > 1, can be decomposed into pairs of

pants, i.e., into three hole spheres, by cutting the surface along 3g�3 simple closed

non{intersecting geodesic curves. These curves can always be chosen in such a way

that their hyperbolic lengths are bounded by 21g ([7]).

First length controlled decompositions of Riemann surfaces into pairs of pants

were found by Lipman Bers ([3]). His method did, however, yield a bound that was

much larger than the above mentioned 21g.

The same question can be asked about homology bases of Riemann surfaces: is

it possible to estimate lengths of closed geodesic curves constituting a basis for the

homology of a given genus g, g > 1, Riemann surface? More precisely, one would

like to �nd a canonical homology basis �1; �1; : : : ; �g; �g consisting of curves that

are as short as possible.

A canonical homology basis is characterized by the property that the curves �j
and �j are simple closed curves, each �j intersects �j exactly at one point, and

there are no other intersection points. Such bases are needed when computing

period matrices of Riemann surfaces, or when forming a fundamental domain for

a uniformizing group. If the curves �j and �j are short, then the sides of the

corresponding fundamental domain are also short. This, on the other hand, has

potential applications to various computational problems.

After having posed the problem of �nding a short homology basis for a given

Riemann surface, one observes immediately, that it is not possible to �nd a universal

bound that would depend only on the genus of the Riemann surface in question.

For if 
 is a short non{separating simple closed geodesic curve, then any homology

basis contains a curve that intersects 
. By the Collar Theorem ([6]), any such

curve is necessarily long (cf. also Example 3). As the length of 
 goes to zero, the

length of any closed intersecting curve grows towards in�nity. Hence one cannot

�nd any length controlled homology basis in which the bound for the lengths of the

curves would depend only on the genus.

This leads one to de�ne the homological systole of a Riemann surface as the

minimal length of simple closed non{separating geodesic curves. The main result

of this paper is that one can always �nd a homology basis consisting of curves whose

lengths are bounded by an expression depending only on the homological systole

and on the genus of the Riemann surface.
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More precisely, we prove, in Section 3:

Theorem 7. Let X be a compact Riemann surface of genus g � 2 which has a

partition with longest geodesic of length L and whose homological systole is ". Then

there exists a canonical homology basis f�1; �1; : : : ; �g ; �gg on X such that any �i
belongs to the partition and the length `(�i), of any curve �i, satis�es

`(�i) � (2g � 2)(2L+ 2arcsinh 4

"
)(1)

Observe that in the above the constant L can be replaced by 21g to get a bound

that depends only on the genus g and on the homological systole " of the Riemann

surface in question.

Bounds for the lengths of individual homologically trivial and non trivial shortest

closed curves have been studied for quite a long time. The name \systole" for such

curves is due to Berger [1]. We refer to Gromov [10] and [9] for a broad bibliography

on the subject and for a large number of new results. For systoles in connection

with the Schottky problem we refer to [4], for systoles in connection with arithmetic

Fuchsian groups we refer to [12]. As for curve systems , short partitions have been

investigated in [2], [3], [5], [7], [13], [14], [15].

2. Homology bases and partitions

In this section we study homology bases and partitions from a purely topological

point of view. We begin with the following de�nition.

A topologically marked pair of pants is a compact bordered surface Y of signature

(0; 3) with boundary curves c1, c2, c3 together with three pairwise disjoint simple

arcs p12, p13, p23, where pij has its initial point on ci, its end point on cj and all

other points in the interior of Y . We call these arcs connectors . In the �nal section,

where Y carries again a hyperbolic metric with geodesic boundary, the connectors

will be the usual common perpendiculars decomposing Y into right angled geodesic

hexagons.

A topologically marked pants decomposition of a compact orientable surface X

of genus g � 2 is a partition P of X with topologically marked pairs of pants.

Formally, P is understood as the set formed by the 3g � 3 partitioning curves and

the 2g�2 pairs of pants. For the rest of this section we shall now assume that such

a partition P is given on X .

As no metric is speci�ed on X , there is no measure of shortness of curves. How-

ever, one can do the following. We shall say that a simple arc � on X is elementary

if � is contained in one of the pairs of pants Yk of P and satis�es the subsequent

conditions. A curve will then be considered combinatorially \short" if it can be

decomposed into a sequence of elementary arcs where, moreover, the number of

these arcs is \small".

We denote by �� the interior of �, that is, the arc without its end points. The

conditions for � on Yk are as follows.

1. The end points of � lie on the boundary of Yk and �� is contained in the interior

of Yk.

2. �� intersects p12 [ p23 [ p31 in at most two points.

As a limit case we also accept the connectors pij themselves as elementary arcs.

If the end points of � lie on di�erent boundary components of of Yk, we shall say

that � is of type I . If the end points lie on the same boundary component and �

is not homotopic to an arc on the boundary, then � is of type II . Finally, if � is
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Figure 1. Elementary arcs.

homotopic to an arc on the boundary of Yk then we shall say that � is trivial . Fig.

1 shows some cases, the dotted lines are the connectors.

For any closed curve c on X which is the union of non overlapping elementary

arcs the number of these arcs will be denoted by `
P
(c). We shall call `

P
(c) the

combinatorial length of c.

We now show that there exist combinatorially short homology bases.

Theorem 1. There exists a canonical homology basis �1, �1, : : : , �g , �g on X

with the following properties.

1. Each �i belongs to P .

2. Each �i satis�es `P(�i) � 2g � 2.

3. No �i intersects a seperating curve of P .

Proof. If P contains a separating curve �, we cut X open along � to obtain two

bordered surfaces �0, �00 of signatures (g0; 1) and (g00; 1) respectively, with g0+g00 =

g. If one of the components �0 or �00 is again separated by some curve in P , then we

cut the component open along this curve, and so on. After �nitely many steps we

obtain surfaces �1; : : : ;�n of signatures (g1;m1); : : : ; (gn;mn), where g1+� � �+gn =

g and where for k = 1; : : : ; n, no curve of P in the interior of �k separates �k. (If

the above � does not exist, then n = 1 and �1 = X .) This preliminary procedure

will guarantee point (3) of the theorem.

Now let �k be one of the components with gk 6= 0 and denote, by Pk, the pants

decomposition of �k induced by P . We cut �k open along a non separating curve

of Pk into a connected surface �1k of signature (gk � 1;mk + 2). If gk � 1 6= 0 then

Pk contains a curve not separating �1k and we cut �1k open along it to obtain a

surface �2k of signature (gk� 2;mk+4), and so on. This procedure yields a surface

Sk of signature (0;mk +2gk) tesselated with 2gk � 2+mk pairs of pants of P . We

now denote by Pk the corresponding pants decomposition of Sk. The combinatorial

scheme of Pk is a three regular graph Gk without closed edge paths. Gk hasmk+2gk
half edges and 2gk +mk � 3 edges.

Since Gk has no closed edge paths (i.e. Gk is a tree), the surface Sk may be

reconstructed out of the pants in Pk by starting with a �rst pair of pants, say

Y1, then paste the neighboring pair of pants Y2 along the corresponding boundary

component of Y1, say along 
1, to obtain a surface of signature (0; 4) as shown in

Fig.2, then paste Y3 along 
2 to get a surface of signature (0; 5), and so on. Sk is

�nished after 2gk +mk � 3 steps.

The procedure thus described allows us to construct a sequence of curves on Sk
which we shall call a boundary lane and which is obtained inductively as follows (see

Fig.2). On Y1 the boundary lane is formed by the three arcs p12, p13, p23. On Y1[Y2
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Figure 2. Constructing the boundary lane.
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Figure 3. Domains of signature (0; 4) along the boundary lane.

we connect the pij of Y1 and the p0kl of Y2 which meet 
1 by inserting two disjoint

arcs on 
1. The four curves obtained up to now yield the boundary lane on Y1[Y2.

This is shown by the four dotted arcs on the right hand side in Fig.2. Proceeding

in this way for each new pair of pants which is added, we obtain a boundary lane

on Sk which is a union L = �1 + � � �+ �q , q = mk +2gk, of pairwise disjoint simple

arcs, where �1 goes from a �rst boundary component of Sk to a second one, �2 goes

from the second boundary component to a third one, etc. Finally, �q goes back

to the �rst boundary component. Since Sk has genus 0, L separates Sk into two

topological disks Zk and �Zk. Observe that with an arbitrarily small homotopy L

may be deformed such that the deformed lane consists of 3(2gk +mk � 2) arcs of

type I. Fig.3 shows part of L schematically together with additional curves which

we de�ne next.

For i = 1; : : : ; gk, we denote by ai and a0i the pair of boundary components of

Sk which were obtained at step i during the cutting process (i.e. pasting together

ai and a0i for i = 1; : : : ; gk yields �k). Then we draw for each i = 1; : : : ; gk + 1 a

closed curve !̂i which goes along L and surrounds each boundary curve c of Sk in

the following way. If c is none of the aj , a
0

j , then !̂i goes around c in Zk. If c is aj
or a0j and i � j, then !̂i goes around c in Zk as well. If c is aj or a

0

j and i > j, then

!̂i goes around c in �Zk. The !̂i consist of arcs of L and of arcs on the boundary of

Sk.
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Now we use small homotopies to deform each !̂i into a closed curve !i contained

in the interior of Sk such that !1; : : : ; !gk+1 are pairwise disjoint and such that

each !i is a union of elementary arcs. It is not diÆcult to check that this is possible

except for the case where Sk consists of a single pair of pants. In this particular

case the !i are homotopic to one of the boundary components and we shall say

that they \consist of 0 elementary arcs".

Since Sk consists of 2gk + mk � 2 pairs of pants and has 2gk + mk boundary

components none of which is intersected by the !i, we can perform the above

homotopies such that any !i consists of

3(2gk +mk � 2)� (2gk +mk) = 4gk + 2mk � 6

elementary arcs (where some of them may be trivial arcs).

The curves are shown in Fig. 3 where !1 is the lowest curve, !2 is above !1, !3 is

above !2, etc. For i = 1; : : : ; gk, the four curves !i, !i+1, ai and a
0

i bound a domain


i of signature (0; 4) as shown by the shaded area. The domains 
1; : : : ;
gk do

not overlap each other.

For each i we draw a curve bi in 
i going from a point on ai to an equivalent

point (with respect to the pasting) on a0i. Taking the shorter of the two paths along

L from ai to a
0

i we achieve that bi consists of at most 2gk+mk�2 elementary arcs.

Since the 
i do not overlap, the bi are pairwise disjoint. It follows that on �k

the ai and bi are closed curves with the intersection properties as required for a

canonical homology basis. Since 2gk+mk�2 � 2g�2 , this proves the theorem. �

Observing that the constructions and length estimates in the preceding proof

depend only on the components �k we actually have the following more detailed

version of Theorem 1, where we also admit surfaces with boundary.

For the statement of the theorem we note that for a bordered surface S of

signature (g;m) a canonical homology basis is a curve system �1; �1; : : : ; �g ; �g,

�1; : : : ; �m�1, where �1; : : : ; �m�1 are boundary components and �1; �1; : : : ; �g ; �g
have the con�guration of a canonical homology basis on a compact unbordered

surface of genus g.

Theorem 2. Let P be a pants decomposition of the compact orientable surface

� of signature (g;m), g � 1, denote by �1; : : : ;�n the components obtained by

cutting � open along all separating curves occurring in P , and let #�k be the

number of pairs of pants of P in �k, k = 1; : : : ; n. Then there exists a canonical

homology basis �1; �1; : : : ; �g ; �g ; �1; : : : ; �m�1 on � such that

1. �1; : : : ; �g and �1; : : : ; �m�1 belong to P .

2. each �i is contained in some �k and satis�es `
P
(�i) � #�k. �

We point out that the upper bound 2g � 2 in Theorem 1 for the combinatorial

length of all �k is the best possible. For this we consider the following.

Example 3. Start with a pair of pants all of whose boundary geodesics have the

same length " and paste two copies of it together in order to obtain a surface 


of signature (1; 2) with boundary components 
L and 
R. Then take g � 1 copies


1; : : : ;
g�1 of 
 with respective boundary geodesics 
L;i, 
R;i, i = 1; : : : ; g � 1.

We construct a \necklace" N out of these copies by pasting 
i to 
i+1 along


R;i and 
L;i+1, for i = 1; : : : ; g � 2 and by pasting 
g�1 to 
1 along 
R;g�1 and


L;1. The resulting surface N has genus g. We let 
1; : : : ; 
g�1 be the geodesics in

N obtained from 
R;1; : : : ; 
R;g�1 respectively. They are all non separating.
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Figure 4. Arc of type II on a pair of pants

If B is a canonical homology basis on N then by the lemma below, at least one

curve b 2 B has intersection number (b; 
1) 6= 0. On the surface N 0 obtained by

cutting N open along 
1 the curve b is cut into a number of arcs, one of which

connects the two boundary components with each other. This follows from the fact

that (b; 
1) 6= 0. We conclude that b crosses at least 2g � 2 times a pair of pants.

Lemma 4. Let B be a homology basis on a compact orientable surface X . For any

non separating simple closed curve c on X there exists b 2 B with (b; c) 6= 0.

Proof. Otherwise (c; �) = 0 for any cycle �, but c is non separating and there exists

a cycle c0 with (c; c0) = 1. �

3. Length estimates

Let us now derive metric length estimates. All partitioning curves are assumed

to be closed geodesics, and on any pair of pants the connectors are the common

perpendiculars between the boundary geodesics.

Replacing the curves constructed in the preceding section by geodesics in their

homotopy classes we obtain short homology bases in the sense of the hyperbolic

metric. In order to get length estimates we proceed as follows. First we replace any

elementary arc of the given curve by a homotopic arc with the same end points.

By the minimal intersection property of geodesics, this new arc is also elementary

and we shall give a length estimate for it in Proposition 5. Thus we have a piece-

wise geodesic curve with controlled length and the smooth closed geodesic in its

homotopy class is then even shorter.

Proposition 5. Let Y be a pair of pants such that all boundary geodesics have

lengths between " and L, where 0 < " � L. Then any elementary geodesic arc �

on Y has length `(�) � 2L+ 2arcsinh 4

"
.

Proof. The three common perpendiculars pij between the boundary geodesics 
1,


2, 
3 of Y decompose Y into two isometric right angled hyperbolic geodesic

hexagons G and G0 (cf. [6]), where G has the succession of sides a1, p12, a2, p23,

a3, p13. With these symbols we shall also denote the lengths of the sides.

Consider an elementary geodesic arc � on Y . If � is trivial then � is a simple arc

on the boundary and has length less than L.
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Now let � be of type II with end points on 
1 as shown in Fig. 4. � is homotopic

with �xed end points to a piecewise geodesic curve c0Bc00, where c0 and c00 are arcs

on 
1 and B is the arc of length 2b formed by the common orthogonals on G and

G0 from 
1 to p23. Since the interior of � intersects the union p12[p23[p13 at most

twice, the total length of c and c0 is at most `(
1) � L. From the trigonometry of

hexagons (cf. [6]) it follows that b becomes maximal when 
1 assumes the minimal

length " and 
2 and 
3 assume the maximal length L. In this extremal case b is given

by the formula cosh L
2
= sinh b sinh "

4
. After some calculus involving monotonicity

of derivatives we then get

b �
L

2
+ arcsinh

4

"
:(2)

This settles the length estimate for arcs of type II, so let � be of type I, say with

end points on 
2 and 
3.

Here � is homotopic with �xed end points to the piecewise geodesic curve c2p23c3,

where c2, c3 are arcs on 
2, 
3 respectively. The length of p23 becomes maximal

when 
2 and 
3 have length " and 
1 has length L. In this extremal case we have

the formula cosh L
4
= sinh "

2
sinh 1

2
p23 from which we deduce the inequality

p23 �
L

2
+ 2 arcsinh

2

"
:(3)

If � intersects p23 then the interior of � intersects p12 [ p13 at most once. Hence

the total length of c2 and c3 is at most
3

2
L and we are done in this case. If � does

not intersect p23 then the total length of c2 and c3 may reach 2L so that we must

re�ne the estimates a bit. Using the trigonometric formulas for hexagons we get

cosh � = g(c2; c3; a1), where

g(x; y; z) =
ch 2x ch 2y

shx sh y
(ch z + chx ch y)� sh 2x sh 2y:

An elementary argument now shows that for any x; y with "
2
� x; y � L

2
we have

g(x; y; L
2
) � 2L+ arcsinh 4

"
. �

Example 6. If in Example 3 we take pairs of pants with all boundary geodesics

of length ", then the distance � between two boundary geodesics of a pair of pants

satis�es sh �
2
sh "

2
= ch "

4
. It follows that any homology basis on the surface N

constructed in the example has at least one curve of length � 4(g � 1) arcsinh 2

"
.

Hence, in certain cases the upper bound in Theorem 7 is close to optimal.

Theorem 1 and Proposition 5 yield now:

Theorem 7. Let X be a compact Riemann surface of genus g � 2 which has a

partition with longest geodesic of length L and whose homological systole is ". Then

there exists a canonical homology basis f�1; �1; : : : ; �g ; �gg on X such that any �i
belongs to the partition and the length `(�i), of any curve �i, satis�es

`(�i) � (2g � 2)(2L+ 2arcsinh 4

"
)(4)
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