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Abstract
The uncertainty of temperature prediction from the heat flux error is estimated using first and
Second Order Adjoint equations. The adjoint codes developed for the inverse heat transfer
problems provide the uncertainty estimation for the corresponding forward problems.
Numerical tests corroborate the feasibility of fast uncertainty estimation using Hessian
maximum eigenvalue obtained via second order adjoint  equations.

Nomenclature
Hij-Hessian
Q — heat flux
∆T — temperature variation

ε -discrepancy

σ- input data error standard deviation

χ - thermal conductivity

λ- eigenvalue

ρ -density

Ψ-first order adjoint variable

∆Ψ- second order adjoint variable

* Corresponding Author



2

Introduction
The estimation of solution uncertainty from the input data error is of  interest when

heat transfer problems are solved. For this purpose, both  Monte-Carlo methods and
sensitivity equations are suitable. Nevertheless, algorithms providing both the result and its
uncertainty are a rarity in practice due to the high computational burden involved in their
solution.

The present paper is concerned with providing a computationally cheap estimation of
temperature solution uncertainty from the  heat flux error. The uncertainty is estimated from
the Hessian spectrum, which is calculated by First Order Adjoint (FOA) equations commonly
used for Inverse Heat Transfer problems or by using the Second Order Adjoint (SOA)
equations.

Uncertainty Estimation via Hessian Calculation
Consider the uncertainty estimation using the one-dimensional thermal conduction

equation (forward problem) as an example.
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Initial conditions: T(0,X)=T0(X); (t,X)∈ (0<t<tf; 0<X<1); (2)

The boundary (X=1) is subjected to the heat flux Qw(t), which contains the error δQ.
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Other boundary is thermally insulated.
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We search for the uncertainty of temperature prediction T(t) on this boundary.
We pose the problem as  an optimization statement formally coinciding with the

inverse boundary heat conduction problem [1]. As the measure of uncertainty, we consider the
discrepancy between  exact and noisy solutions given by :
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The finite dimensional  analogue for the discrepancy assumes  the form:
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where N is the number of heat flux time nodes (i.e. parameters, containing the error).

For small errors (in vicinity of exact solution) the discrepancy gradient is close to zero
and the discrepancy ε  is determined by the Hessian.
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The averaged (over δQ) error < >= < >ε δ δ1

2
H Q Qij i j  is determined as ε=0.5HijDQij     (Dqij

is the correlation matrix of the heat flux error). For non-correlated error (DQ=diag(σi
2))

ε=0.5Hiiσi
2. If the data error is constant and equal to σ, the uncertainty of the result is

determined by the trace of the Hessian ε=0.5Hiiσ2 (here the summation is performed over the
repeating index).

The direct differentiation of the discrepancy ε provides the  calculation of the Hessian
requiring  N2 forward problem runs, which  is highly computationally inefficient. It is well
known that the adjoint problem provides the most efficient way for carrying out the gradient
calculation. So, it is quite natural to extend  this approach for Hessian calculation. The
straightforward way  to proceed is  via direct numerical differentiation of the  gradient
obtained from the first order adjoint problem [1] (where a is the differentiation parameter).

HdQ=(grad(Q+adQ)-grad(Q))/a (7)

There exists another approach to Hessian action calculation based on the second order adjoint
approach [2],[5]. Here we consider both variants of the  Hessian action calculation using
adjoint equations from inverse conduction problems [1] as a basis.

Let us consider the adjoint problem for discrepancy gradient calculation in some detail
(although the derivation may be found elsewhere in Alekseev and Navon [4]) since these
transformations will turn out to be useful for deriving the  second order adjoint statements.
First, we form the Lagrangian L(Qw,T,Ψ)
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This Lagrangian is equal to discrepancy (5) on a solution of Eq. (1): ))((),),(( tQTtQL ww δε=Ψ .
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Tangent  linear problem
Second, we perturb the  boundary condition by ∆Qw. By subtracting the undisturbed

solution we obtain the tangent linear  problem.
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With initial conditions:
∆T(0,X)=0;

and boundary conditions
∂
∂
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Further, we use Eqs. (9-11) for the calculation of  the Lagrangian (8) variation.
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Our purpose is to find Ψ(t,x) such that

∆ ∆L Q grad dtw

t

= ∫ ( ) ;ε

while all other first order terms are equal to zero. Integrating Eq. (12) by parts and  taking into
account the initial and boundary conditions (9-11) gives
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First Order Adjoint problem
If the function Ψ satisfies the following equation
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The discrepancy gradient may be obtained from the above expression:

grad(ε)=-Ψ(t,1); (19)

Equations (14-17) form the First Order Adjoint problem. The gradient is calculated by
the solution of the forward and adjoint problems. The adjoint problem is solved backward in
the time direction. This algorithm provides the gradient for an  approximate computational
cost of  about  double that of the  solution of the heat conduction equation (the relative cost
equals 2).

Having  the gradient available at our disposal, the Hessian action may be computed by
numerical differences using Eq. (7), then the Hessian relative  computational cost is 2N.
However, if the parameter of differentiation a is poorly chosen, a low  Hessian accuracy may
result due to computing the difference between two small values. The Hessian may be
computed  more accurately via the alternative approach  that we discuss below.

Second Order Adjoint Problem
Let us form the problem tangent to adjoint one (14-17) and, according to [2], denote it

as the Second Order Adjoint problem:
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With boundary conditions:
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And initial condition:
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t t f= = 0 (23)

Because
Ψ(Q+∆Q)= Ψ(Q)+∆Ψ

and
∇ε Q+∆Q=∇εQ+∇ 

2ε∆Q

accounting
∇ε=-Ψ(t,1)

The Hessian action by the vector ∆Q equals

H∆Q=∇ 
2ε∆Q=-∆Ψ(t,1) (24)

Thus, in order to obtain  the Hessian action by vector ∆Q, we sequentially  solve the
following four initial-boundary problems:
1. Forward problem, Eqs. (1-4) (where time is increasing)
2. First Order Adjoint problem, Eqs. (14-17) (where time is decreasing)
3. Tangent problem, Eqs. (9-11) (time is increasing)
4. Second Order Adjoint Problem, Eqs. (20-23) (time is decreasing)

In order to find the Hessian, the calculations for N orts should be performed, so the
HessianÕs  computational cost equals 4N.

Numerical Tests
The calculations of the Hessian are performed using the differentiation of First Order

Adjoint problem as well as by using the solution of the Second Order Adjoint problem. The
same finite-difference algorithm (first order accuracy in time and second order in space) is used
for all problems under consideration. The test problem contains 28 time nodes for the heat flux
interpolation, 20 cells in space, the specimen thickness being  0.003 m, the  specific
conductivity equals χ=4.18*10-4 kW/(mK), and the specific volume heat is _ρ=2090
kJ/(m3K). The heat flux is presented in Figure 1, and the temperature at the measurement point
is provided in Figure 2. The comparison of the  calculated Hessians  shows that the direct
differentiation causes a  higher symmetry violation compared with the second order approach.
The eigenvalues, computed via FOA (H1) and SOA (H2) (Eqs. (3) and (25), correspondingly)
are presented in Table 1.
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Table 1
j 1 2 3 4 5 6 7 8 9 10 11-17 18
H1 5590 644 217 100 54.8 30.4 19.6 11.3 6.6 4.47 É. 0
H2 6060 640 212 97.2 51.7 30.1 18.2 11.3 7.6 5.07 É. 0.145

The problem under the consideration has nonnegative eigenvalues due to the
uniqueness of the  Inverse Boundary Heat Conduction Problem [1]. Some eigenvalues should
be close to zero due to the ill posedness of this problem. ( See [3] for an in depth discussion
on rank deficient and discrete ill-posed problems). Both methods yield a number of small
negative eigenvalues, although the  Second Order Adjoint problem yields a significantly smaller
number of such eigenvalues. Nevertheless, from the viewpoint of uncertainty estimation, the
largest eigenvalues are of interest and they practically coincide. The trace of the Hessian Hij for
FOA equals 7073, whereas for SOA it equals 6952. The rapid decrease of eigenvalues (Table
1) should be emphasized. Thereafter, we can use only maximum eigenvalue for uncertainty
estimation ε≈0.5λmaxσ2. The iterative calculation of the maximum eigenvalue λmax may require
a  significantly smaller number of PDE solutions in comparison with the  total Hessian
calculation. The iterations for obtaining the maximum eigenvalue have the  form

 Xm+1=AXm; λ=max(Xm+1)/max(Xm).

 In the present case seven iterations yield  a λmax value of about 6423 (total spectrum

for FOA provides λmax =5590, for SOA λmax =6060).

The estimation of the temperature uncertainty ε for normally distributed input data

error of dispersion σ=0.01 via Hessian trace (ε=0.5Hiiσ2, FOA and SOA), maximum

eigenvalue (0.5λmaxσ2), and averaging over the ensemble of 200 calculations are presented in
the Table 2.

Table 2
First order adjoint H1 Second order adjoint H2 λmax averaged

ε 0.354 0.345 0.32 0.326

Discussion
The total information regarding uncertainties in present problem (standard deviation of

temperature at a  certain point X) may be calculated (in the linear event) using sensitivities

<δT2>=Sik<dQkdQl>Sil, S
T t X

Qik
i

k

= ∂
∂ τ

( , )

( )
. The calculation of sensitivity implies the solution

of a PDE system of higher order in comparison with the forward problem and requires  storing
multidimensional results. For small errors, the Fisher information matrix [1] (composed from
sensitivities) approximate Hessian that provides correlation of sensitivity approach and the
above-considered method.
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If we are interested in the time averaged temperature at a certain point (or another
temperature functional), the adjoint approach may turn out to be more efficient from
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computer memory viewpoint. If the HessianÕs eigenvalues decrease rapidly, fast uncertainty
estimation via the maximum eigenvalue is feasible.

For  estimation of uncertainty, the FOA differentiation is more advantageous
compared with the SOA, because it is much simpler while  providing  similar accuracy for
large eigenvalues. The SOA solution is preferable if we need an  accurate calculation, for
example, for the  estimation of correctness subspace or for problem uniqueness.

Conclusion
The uncertainty of temperature from heat flux error may be estimated via First Order

Adjoint equations, which are commonly used in Inverse Heat Transfer Problems, or via
Second Order Adjoint equations. The adjoint codes developed for Inverse Heat Transfer may
be directly used for the uncertainty estimation of the corresponding forward problems. The
time computational cost is proportional to the input data dimension with the coefficient of
about 2 or 4.

Numerical tests corroborate the feasibility of fast uncertainty estimation using Hessian
maximum eigenvalue calculated in an iterative manner.
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Figure Captions
Figure 1.
Heat flux on boundary in time dependence.

Figure 2.
The time variation of temperature at the  point of uncertainty estimation.
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