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Geometric Filtering for Subspace Tracking �

Anuj Srivastava y Eric Klassen z

Abstract

We address the problem of tracking principal subspaces using ideas from nonlinear �ltering.

The subspaces are represented by their complex projection-matrices, and time-varying subspaces

correspond to trajectories on the Grassmann manifold. Under a Bayesian approach, we impose

a smooth prior on the velocities associated with the subspace motion. This prior combined with

any standard likelihood function forms a posterior density on the Grassmannian, for �ltering and

estimation. Using a sequential Monte Carlo method, a recursive nonlinear tracking algorithm is

derived and some implementation results are presented.

Keywords: Subspace tracking, Grassmannian, sequential Monte Carlo, particle �ltering, homoge-
neous spaces, principal components
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1 Introduction

Principal-component analysis (PCA), or estimation of principal subspaces, of a large-dimensional
observation space, is of interest in many signal and image processing applications. A simple example
is the problem of estimating the m-dimensional principal subspace of the sample covariance matrix
K = 1

p

Pp
i=1 yiy

y
i , where yi 2 ICn are the observation vectors, and y denotes the conjugate transpose

(0 � m � n <1 are integers). Consider an extension in which the observations re
ect a time-varying
system and therefore the principal subspace is also changing in time. Let Yt = [yt;1 yt;2 : : : yt;p]; yt;i 2
ICn be the set of p observations (p being much smaller than n), collected in a small interval around
time t. Then, the time-varying sample covariance matrix is given by

Kt =
1

p

pX
i=1

yt;i y
y
t;i ; yt;i 2 ICn : (1)

The observations yt;i span a complex vector space of n complex dimensions and the problem is now
modi�ed to tracking the sequence of m-dimensional principal subspaces of Kt. This paper studies
the problem of tracking m principal components using limited observations from a time-varying n-
dimensional system.

A number of approaches have been presented in the literature for estimating subspaces and
also tracking their variations in time, with applications in signal processing (see [10, 25, 7] and
the references therein). One focus of the subspace-related research has been the improvement in
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computational speed for a given accuracy in estimation, especially for adaptive systems [6, 20, 1, 19,
14]. Another focus is on investigating fundamental representations and resulting formulations which
can lead to improved estimators but perhaps at an added computational cost. As an example, a
natural way to represent subspaces is as elements of the Grassmann manifold, the set of all (�xed-
dimensional) subspaces of a larger space ([5, 8, 11, 9]). A recent paper [23] presents a Bayesian
framework for estimating subspaces as elements of complex Grassmann manifold. For a speci�c
choice of distance function on Grassmannian, an MMSE estimator is de�ned and evaluated for a
given posterior.

An important issue in subspace tracking is that, at any given time, there may not be a su�cient
number of observations for estimating each of the individual subspaces to a required precision.
A related possibility is that the observations are too noisy to provide a reliable estimate at each
observation time. A natural choice, in such problems relating to time-series estimation, is to utilize
a temporal structure, in order to compensate for the lack of excess observations or to account for a
large noise level. More formally, the idea is to utilize a Bayesian framework and to derive a prior
probability model, on the underlying time series, which encourages smoother trajectories. As an
example, in subspace tracking, one possible prior is that which penalizes coarser subspace trajectories
and emphasizes smoother trajectories. An even stronger prior can be imposed if the velocities,
rather than the subspaces (displacements) themselves, are assumed to vary smoothly in time. In the
group-theoretic representations, this has often been accomplished by equating the time derivatives of
elements of the Lie algebra (they relate to the velocities) to white noise. For example in [18, 24], in the
context of tracking airplanes using remote sensing, the rates of change in rotational and translational
velocities (or equivalently the driving torques and forces) are treated as white noise. This procedure
imposes a physics-based, smooth prior on airplane trajectories and leads to Bayesian �ltering for
airplane tracking. Similar to that analysis, an important result in this paper is the derivation of a
dynamics-based smoothing prior on the subspace trajectories.

Our motivation for subspace tracking comes from array signal processing where the time-varying
principal subspace, associated with the sensor measurements, is tracked. A class of signal processing
algorithms, for transmitter tracking and beamforming, rely on estimating the principal subspace
spanned by the observation vectors. Consider the situation in which an array of sensors is receiving
signals trasmitted by a number of moving transmitters. Due to transmitter motion, there may
not be enough sensor measurements at each time to accurately estimate the individual subspaces
using likelihood-based techniques. Therefore, a prior supporting smooth changes in the principal
subspace may prove useful. This prior is physically motivated since smooth changes in transmitters'
locations lead to smooth variation in the resulting subspaces, with a few exceptions. A classical
exception is the case when a transmitter disappears from the receiver's view perhaps due to an
obstruction, and the signal subspace changes in rank. In most cases, however, sensor physics supports
smooth relative variations. As an example, consider a 4-element uniform, linear sensor array (at half
wavelength spacing) receiving narrowband signals from two moving transmitters, as shown in Figure
1 left panel. The dominant subspace (for m = 2 and n = 4) has the projection matrix given by
Pt = D(�t)(D(�t)

yD(�t))
�1D(�t)

y, where D(�t) is the 4�2 complex matrix composed of the direction
vectors for transmitters' locations at time t. Shown in the middle panel of Figure 1 are the trajectories
taken by the two transmitters, with respect to the linear array, and plotted in the right panel is the
distance kPt � P0k, where k � k stands for the Frobenious norm. As the picture suggests, for smooth
transmitter trajectories the resulting subspace rotations is observed to be smooth.

In this paper, we pursue a geometric approach to Bayesian subspace tracking, using observa-
tions from a time-varying system. A posterior density has components from (i) a prior density,
and (ii) a data likelihood function. Allowing for any general likelihood function, from popular
maximum-likelihood type approaches, we focus on deriving a prior density which establishes a tem-
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Figure 1: Left panel: array con�guration for tracking signal sources; middle panel: the angles of
arrival as functions of time; right panel: changes in the signal subspace due to source motion.

poral structure on the rotating subspaces. For this purpose, we study the intrinsic geometry of the
Grassmanian, to learn various representations of the subspaces. Let G be the Grassmann manifold of
all m-dimensional complex subspaces of ICn. Any element of this manifold (i.e. any subspace of ICn)
can be represented by its projection operator (uniquely) or by a set of orthonormal basis elements
(non-uniquely). Using representation via projection matrices, we analyze the velocity vector asso-
ciated with the trajectories on Grassmanian. To de�ne velocity, we �rst characterize the geodesic
curve connecting any two points on this manifold. Since the Grassmannian is a quotient space of a
larger unitary group, modulo two smaller rotations, this geodesic is made explicit by lifting it to a
particular geodesic in the unitary group. Furthermore, the tangents to the lifted geodesic curve in
the unitary group relate to the velocities associated with moving subspaces. This de�nition is then
utilized to impose a prior on the subspace rotation, by equating the rate of change of velocities with
white noise. A combination of this prior with any standard likelihood function sets up the Bayesian
�ltering problem.

Once the representations are chosen, velocities are de�ned and the probabilities are imposed, the
focus shifts to solving for estimates, given the observations. In view of the inherent nonlinearities
present in the model, and the problem formulation on curved manifolds, the classical Kalman-�ltering
framework does not apply. A number of solutions including the extended Kalman �lters, interacting
multiple models [2], multiple hypothesis tests, and their combinations [27], have been suggested. An
MCMC-based sampling procedure for �ltering and smoothing is presented in [18]. Here, we take
a random sampling approach for computation of (approximate) MMSE estimates. This procedure,
based on particle �ltering or the sequential Monte Carlo method, involves sampling from the prior
and resampling them according to their likelihoods, in order to generate samples from the posterior,
at each observation time. These samples are then averaged to compute the estimates. This emerging
family of techniques have been discussed in [12, 3, 16], and a related idea is presented in [18].

Section 2 studies the geometry of Grassmannian in order to de�ne the motion parameters (dis-
placements, velocities) associated with the subspace rotation, and imposes a smooth Markovian
prior on the subspace trajectories. Section 3 states a Bayesian nonlinear �ltering formulation of the
tracking problem and presents a sequential Monte Carlo method for generating MMSE solutions.
Some simulation results illustrating the algorithm, for a generic problem in subspace tracking and a
particular problem in array signal subspace tracking, are presented in Section 4.
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2 Representation of Subspace Motion

Subspace estimation and tracking are well studied problems in the signal processing literature. Even
though these problems are naturally posed in terms of manifold-valued parameters, the use of geo-
metric techniques has only been recent [5, 8, 11, 9, 23] . In a recent paper [23], we have presented a
geometric approach to estimating a single subspace, as an element of a complex Grassmann manifold;
we have chosen to represent a point on this manifold by the projection matrix associated with that
subspace. In this paper, our goal is to analyze and estimate trajectories, on Grassmann manifold,
associated with dynamic systems and changing subspaces. We study the geometric representations
of subspaces leading up to a Bayesian formulation of the subspace tracking problem. One reason to
study the intrinsic geometry of Grassmanians is to de�ne the motion parameters such as displace-

ments and velocities for piecewise-geodesic trajectories on these manifolds. These de�nitions are
analogous to the Euclidean case in that the velocities are determined by the tangent vectors along
the geodesics connecting the observed points. At �rst we introduce the geometry of the Grassmannian
and then explicitly characterize the geodesics.

2.1 Geometry of Grassmannian

Let V be an n-dimensional complex vector space equipped with a Hermitian inner product. Assuming
0 � m � n < 1, denote by G the Grassmanian of all m-dimensional subspaces of V (please refer
to [15] p. 133 Ex. 2.4 for a detailed introduction). By �xing m;n throughout the paper, we avoid
adding su�xes to index the set G. Using an orthonormal basis fv1; v2; : : : ; vng for V , identify V
with ICn, the set of n � 1 column vectors over IC. Each point of G can be identi�ed with a unique
n� n matrix of orthogonal projection onto that m-dimensional subspace of V . Let IP be the set of
Hermitian symmetric, idempotent n� n complex matrices of rank m; IP is the set of all projection
matrices and is di�eomorphic to G. G (or IP ) is a compact manfold of complex dimension m(n�m).
The subspace spanned by the vectors fv1; v2; : : : vmg is identi�ed with the projection matrix Q where

Q =

"
Im 0
0 0

#
; and Im is an m�m identity matrix. (2)

Q is �xed throughout the paper. Let U(n) be the Lie group of all n� n complex unitary matrices.

Its subgroup H = U(m)� U(n�m), of U(n), is the set of matrices of the form

"
Ua 0
0 Ub

#
, where

Ua 2 U(m) and Ub 2 U(n �m). There is a one-to-one correspondence between the quotient space
U(n)=H and the Grassmanian G (or IP ) (see [15] p.134). The left coset, containing a point U 2 U(n),
can be explicitly stated as UH = fU ~U : ~U 2 Hg � U(n). The correspondence between the left cosets
(elements of U(n)=H) and the projection matrices (elements of IP ) is given by UH 7! UQU y, for any
U 2 U(n). Denote the projection map from U(n) to IP by � : U(n) 7! IP; �(U) = UQU y. Under
�, each left coset projects to a point in IP . Denote this set by ��1(P ) (notice that ��1(P ) � UH
whenever UQU y = P ).

Remark 1: An element of ��1(P ) is a unitary matrix, whose �rst m columns form an orthonormal
basis of the subspace whose projection is P . Note that the n� n identity matrix I is an element of
��1(Q), and therefore, ��1(Q) is nothing but H.

The group U(n) acts on the vector space V (from left) by the usual matrix-vector multiplication
(please refer to [4] p. 90 Def 7.1 for a de�nition and some examples of group action). U(n) acts
transitively on IP from the left, according to the mapping: P 7! U �P � UPU y; for U 2 U(n); P 2
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IP . The transitive group action implies that IP = fU � Q : U 2 U(n)g. Note that � is invariant to
the group action: �(U � U1) = U � �(U1), for all U; U1 2 U(n).

It can be shown that the Lie algebra of U(n) is U , the space of n�n, Hermitian skew-symmetric
matrices (see for example [26] p. 107). Similarly, let H denote the Lie sub-algebra of the subgroup
H:

H =

("
Ya 0
0 Yb

#
2 ICn�n : Ya 2 ICm�m; Yb 2 IC(n�m)�(n�m) are Hermitian skew-symmetric

)
:

LetM be the orthogonal complement of H in U . M is given by

M =

("
0 A
�Ay 0

#
2 ICn�n : A 2 ICm(n�m)

)
: (3)

As a compact Lie group, U(n) comes equipped with a unique bi-invariant Riemannian metric, which

is inherited by IP . On U , this metric is just the inner product hY1 ; Y2i = trace(Y1Y
y
2 ). Since

hUY1 ; UY2i = hY1 ; Y2i, for any U 2 U(n), this metric is invariant to the left translation generated
by the group action.

2.2 Geodesics on Grassmannians

Eventually we are interested in estimating trajectories on IP using sensor measurements taken at
discrete times. To discretize an underlying trajectory along the observation points, we approximate
it by a piecewise-geodesic curve. This corresponds to connecting the values attained at observation
times by geodesics. Therefore, we are interested in an explicit description of the geodesic connecting
any two given points on IP . One characterization of geodesics on Grassmanian comes from the
following result. De�ne the exponential of a square matrix using the in�nite series, if it converges,
as exp(A) = I +A+ A2

2! +
A3

3! + : : :.

Proposition 1 The geodesics in IP passing through the point Q (at time t = 0) are of the type

� : (��; �) 7! IP; �(t) = exp(tX) �Q = exp(tX)Q exp(�tX) ;

for some X 2M, where the set M is speci�ed in Eqn. 3.

Proof: Please refer to [13] (p. 221. Ex 2(i)) for technical details. We will provide a sketch of the
proof here. Let � be the geodesic in IP connecting Q (at t = 0) with P (at t = 1). Geodesics in IP are
made explicit via the corresponding geodesics in U(n), since IP can be identi�ed with the quotient
space U(n)=H. The geodesics in U(n), passing through a point U 2 U(n), are the one-parameter
subgroups of the type �(t) = exp(tX) �U for any X 2 U . The geodesic � (in U(n)) projects down to
a geodesic � (in IP ) if and only if � is orthogonal to each coset that it intersects. On the other hand,
invariance of the metric implies that if � is orthogonal to one coset, then it is orthogonal to each and
every coset it intersects. In particular, if � passes through I (at t = 0), it should be orthogonal to
H (or _�(0) ? H). For �(t) = exp(tX) � I, this condition implies that X belongs to the orthogonal
complement of H in U , namely M. Finally, the projection of � to IP gives �, using the invariance
of �,

�(t) = �(�(t)) = �(exp(tX) � I) = exp(tX) � �(I)
= exp(tX) �Q = exp(tX)Q exp(�tX) :

In view of this result, we �rst restrict to �nding the geodesics connecting Q to some point P 2 IP ,
and later extend it to arbitrary two points in IP . Let � : (��; �) 7! IP be a geodesic in IP such that
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�(0) = Q and �(1) = P . According to Proposition 1, � is completely speci�ed by an X 2 M such
that exp(X) �Q = exp(X)Q exp(�X) = P . Therefore, the problem of �nding � becomes:

Problem 1: Given a point P 2 IP , �nd an X 2 M such that exp(X)Q exp(�X) = P and then set
�(t) = exp(tX) �Q.
Note that for this X, exp(X) 2 ��1(P ). The following theorem provides an algorithm for �nding
this X, but �rst we motivate it by a simple example.

Example 1: Consider a two-dimensional vector space V . Let hv1 ; w1i be an ordered

basis for V and Q =

"
1 0
0 0

#
is the projection matrix associated with the subspace

spanned by v1. Let P denote (the projection matrix of) the one-dimensional subspace
spanned by cos(�)v1 + sin(�)w1. Then,

P =

"
cos(�) � sin(�)
sin(�) cos(�)

# "
1 0
0 0

# "
cos(�) sin(�)
� sin(�) cos(�)

#
=

"
cos2(�) cos(�) sin(�)

cos(�) sin(�) sin2(�)

#
2 IP :

A simple calculation shows that the eigenvalues of the di�erence Q � P are sin(�) and
� sin(�), with the relation

Q� P =W�W y ; where � =

"
sin(�) 0
0 � sin(�)

#
; (4)

and where the columns of W are eigenvectors of Q � P corresponding to sin(�) and
� sin(�), respectively. Since Q � P is Hermitian symmetric, W can be taken to be a
unitary matrix. We require that if w1; w2 are the columns of W , then Qw1 and Qw2

should be positive real multiples of each other. This can be achieved simply by multiplying
w1 by an appropriate unit complex number. Returning to the task of �nding a geodesic
connecting Q to P , as per Problem 1, we have to �nd an X such that P = exp(X) � Q.
It follows that this X is given by

X =W
W y; and exp(X) =W exp(
)W y; where 
 =

"
0 ��
� 0

#
: (5)

In the 2� 2 case W
W y = 
.

This example suggests a role for the eigen decomposition of Q� P in �nding the X.

Theorem 1 For a point P 2 IP , let B =W�W y be the eigen decomposition of B = Q� P . Then,
1. the eigen-values of B (or the diagonal entries of �) are either 0's or occur in pairs of the form

(�j ;��j), where 0 < �j � 1. If needed, modify W such that Qwj and Qwj0
are positive real

multiple of each other, where wj, wj0 are the columns of W corresponding to the eigenvalues

�j and ��j, respectively.
2. Let 
 be a n� n matrix derived from � in the following way: replace the 2� 2 blocks"

� 0
0 ��

#
by

"
0 � sin�1(�)

sin�1(�) 0

#
;

with the remaining entries staying zeros. Then, X is given by X =W
W y 2M.
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3. The matrix exp(X), can be computed using W ~
W y 2 U(n), where ~
 is formed from � by

replacing: (i) the zeros in the diagonal by ones, and (ii) the 2� 2 blocks"
� 0
0 ��

#
by

" p
1� �2 ��
�

p
1� �2

#
:

Proof: Please refer to the Appendix.
We note that for certain points in IP , the matrix X, and therefore, the resulting geodesic may not be
unique. In the context of subspace tracking, these pairs occur with negligible probability, and hence
are ignored. Also, note that the computational cost of calculating X is essentially that of �nding the
eigen-decomposition of Q� P .
Remark 2: exp(X) is the \best rotation" from Q to P . In addition to exp(X) 2 ��1(P ), among
all the elements of ��1(P ), exp(X) is the nearest to I in terms of their geodesic distances.

The next step is to generalize to the problem of �nding a geodesic between arbitrary two points
P1; P2 in IP . The basic idea is to rotate these points to Q and P (for some P 2 IP ), respectively

and apply earlier steps. Let U1 2 ��1(P1) (that is, P1 = U1QU
y
1) and de�ne P = U y

1P2U1. Then,
using Theorem 1, we can �nd an X such that �(t) = exp(tX) �Q is a geodesic from Q to P . De�ne
a shifted geodesic ~� according to ~�(t) = U1 � �(t); ~�(t) is the desired geodesic in IP such that
~�(0) = P1 and ~�(1) = P2. Furthermore, the \best possible" rotation from P1 to P2, denoted by

U , can be found as follows: P1 = U1QU
y
1 , P2 = U1PU

y
1 , and P = exp(X)Q exp(�X) imply that

P2 = UP1U
y; where U = U1 exp(X)U y

1 . The element X is dependent on the choice of U1 but
the matrix U is independent of U1. In our tracking procedure, we will make an arbitrary choice
for rotation U1 at the initial time and the rotations for all the following times will be speci�ed
accordingly.

Now we are ready to de�ne the motion parameters such as the displacement and the velocity in
going from P1 to P2 in unit time. As stated above, we can calculate a matrix X which de�nes a
geodesic ~� from P1 to P2. Remember that X is an element of M (M is de�ned in Eqn. 3) and
therefore has only 2m(n�m) degrees of freedom in the form of the submatrix A in the upper-right
corner of X. We de�ne the entries of A = X(1 : m;n + 1 : m) as the velocities in rotating from
P1 to P2 in unit time. A similar characterization of the geodescis and velocities on Grassmannian
is suggested in [9]. The matrix exp(X) denotes the displacement between P1 and P2. In summary,
given arbitrary P1 and P2 we can �nd the velocity matrix as per above discussion. Conversely, for
a point P1 2 IP , and a given m � (n �m) complex matrix A, we can �nd the point P2 2 IP , that
is reached in unit time by starting at P1 and having the velocity A. This can be accomplished as
follows. Let U1 be any element of ��1(P1). First, form an n� n Hermitian skew-symmetric matrix

according to X =

"
0 A
�Ay 0

#
, compute U = U1 exp(X)U y

1 , and then set P2 = UP1U
y. Also, note

that U2 = U1 exp(X) is an element of ��1(P2).

2.3 Prior on Subspace Trajectories

Having de�ned the displacement and the velocity matrix between two arbitrary points in IP , we
consider a trajectory on IP and impose probabilities on the velocities in such a way that the smoother
trajectories are more probable than the coarser trajectories. As stated earlier, we discretize smooth
trajectories by piecewise-geodesic curves; these curves are completely speci�ed by an initial point
P1 2 IP (with a choice of U1 2 ��1(P1)) and the successive velocities A1; A2; : : : ; At 2 ICm(n�m). We
impose a conditional prior density on At, given At�1, which favors an At with values similar to those

7



of At�1. Let fPt : t = 1; 2; : : :g be a discrete-time process in IP . For each pair (Pt�1; Pt); t = 2; 3; : : :,
let At�1 be the submatrix of velocities, as de�ned in the last section. To impose a prior density
which results in smoother trajectories, we utilize the dynamic model:

At = At�1 + �t�1; t = 2; 3; : : : ; (6)

where �t�1 is a m� (n�m) matrix of i.i.d complex normals (real, imaginary parts are i.i.d normal
with mean zero and variance �2p). �p is the measure of deviation in values of At, away from a given
value of At�1. The conditional density on At, conditioned on the previous velocity At�1, is given by

f(AtjAt�1) = (
1

2��2
)m(n�m) exp(� 1

�2
kAt �At�1k2) ; t = 2; 3; : : : : (7)

As described later, the tracking algorithm will not require the explicit functional form of the prior
density; it will depend only on the samples generated from this density. In a Markovian time-series
analysis, often there is a standard characterization of a time-varying posterior density, in a convenient
recursive form. This characterization relates an underlying Markov process to its observations at
each observation time via a pair of �ltering equations. To retain the Markov property, we study the
�ltering problem on the joint space of subspaces and velocities. De�ne the subspace-velocity pair
Jt = (Pt; At�1) 2 (IP � ICm(n�m)), for each time t. Jt is a discrete-time Markov process. For the
purpose of de�ning the velocities At's, we will keep track of the corresponding Ut's in ��1(Pt)'s.
Notice that for a given value of the pair Jt�1 = (Pt�1; At�2), only one of the components in Jt, either
Pt or At�1, is random; given one the other is completely speci�ed. This setup leads to the prior
density on the joint (Markov) process:

f(JtjJt�1) = f(At�1jAt�2)f(PtjAt�1; Pt�1; At�2)

= f(At�1jAt�2)�P 0
t
(Pt) where P 0

t =Wt�1Pt�1W
y
t�1

and Wt = Ut�1 exp(Xt�1)U
y
t�1; Xt�1 =

"
0 At�1

�Ay
t�1 0

#
;

for any Ut�1 2 ��1(Pt�1). For the next time step, Ut = Ut�1 exp(Xt�1) 2 ��1(Pt). The following
algorithm speci�es a procedure to sample from the conditional prior f(JtjJt�1):

Algorithm 1 For some t = 2; 3; : : : ; we are given the values for J
(i)
t�1 and points U

(i)
t�1 2 ��1(P

(i)
t�1).

For i = 1; 2; : : : ;M :

1. Generate a sample of A
(i)
t�1, given A

(i)
t�2, according to Eqn. 6.

2. For each sample of A
(i)
t�1, set X

(i)
t�1 =

"
0 A

(i)
t�1

�(A(i)
t�1)

y 0

#
, and calculate P

(i)
t according to

P
(i)
t =W

(i)
t�1P

(i)
t�1(W

(i)
t�1)

y; for W
(i)
t�1 = U

(i)
t�1 exp(X

(i)
t�1)(U

(i)
t�1)

y.

3. De�ne the sampled subspace-velocity pair J
(i)
t = (P

(i)
t ; A

(i)
t�1). Set U

(i)
t = U

(i)
t�1 exp(X

(i)
t�1).

3 Bayesian Nonlinear Filtering

Now we have a prior density on piecewise-geodesic trajectories in IP that favors smoother trajectories.
Combining this prior with a likelihood function, we formulate a posterior density on IP and pose the
�ltering problem.
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3.1 Filtering Problem

We start by formulating the problem of subspace tracking as a problem in Bayesian nonlinear �ltering.
For the discrete observation times t = 1; 2; : : :, the subspace trajectory is given by the sequence
P1; P2; : : : 2 IP , and let the observation sequence be given by Y1; Y2; : : : 2 ICnp. A precise problem
statement for the �lter is:

Problem 2: Given the observation sequence Y1:t = fY1; : : : ; Ytg, estimate the sequence P1:t =
fP1; : : : ; Ptg 2 IP t using a minimum mean-squared error (MMSE) criterion.

As t increases, the underlying parameter space (IP t) grows and the joint posterior, on P1; : : : ; Pt,
changes at each time as the new observation is recorded. Solving for the mean of the joint posterior
(or the MMSE estimate) at each time, while the parameter space is growing, is a di�cult problem.
Recent papers [12, 3, 16, 21], describe an e�cient procedure, called particle �ltering or sequential
Monte Carlo method, to solve such Bayesian problems. This procedure is a greedy method in that
it restricts estimation to only the parameters at the last time t and utilizes a Monte Carlo technique
to sample from the posterior probability associated only with Pt. It does not utilize the current
measurement, say Yt, to improve the estimation of previous states P1 to Pt�1.

Remark 3: Previous estimates (P̂1; : : : ; P̂t�1) remained unchanged in the estimation steps performed
at time t. In return, it provides faster speed with a possibility of real-time implementations. One
consequence is that a tracking algorithm based on this procedure is useful (beyond a likelihood-based
method) mostly when the noise is intermittent. If the noise level is consistently high, a procedure
which involves both �ltering and smoothing will be needed, at the added computational cost incurred
in smoothing.

The Monte Carlo idea is to approximate the posterior density of Pt by a large number of samples
drawn from it. Having obtained the samples, any estimate of Pt (MMSE, MAP, MAE etc.) can be
approximated using sample averages. An example, described in [23], is a MMSE estimate of Pt given
by

P̂t = ÛtQ(Ût)
y ; where Gt = Ût�(Ût)

y is the SVD of Gt =

Z
IP
Ptf(PtjY1:t)
(dPt) ; (8)

and where f(PtjY1:t) is the posterior density of Pt given all the observations up to time t. Therefore,
using the Monte Carlo idea, the samples generated from f(PtjY1:t) can be used to approximate this
integral, and then the MMSE estimate can be computed using SVD. Computational e�ciency of
these sequential methods comes from the recursion that takes samples from the posterior density of
Pt�1 and generates samples from the posterior density of Pt. We develop such a formulation for the
subspace tracking problem.

The �ltering equations, on the joint space of subspace-velocity pair, are, for t = 2; 3; : : :

f(JtjY1:t�1) =

Z
IP�ICm(n�m)

f(JtjJt�1)f(Jt�1jY1:t�1)
(dJt�1) ; (9)

f(JtjY1:t) =
f(YtjJt)f(JtjY1:t�1)

f(YtjY1:t�1)
: (10)

Eqn. 9 is called the prediction equation and Eqn. 10 is called the update equation. The denominator
in Eqn. 10 is di�cult to compute and, for a given observation set, is a constant; we will denote it by
Zt � f(YtjY1:t�1). One distinct advantage of the Monte Carlo approaches is that this normalizing
constant need not be explictly evaluated. This relationship between Eqns. 9 and 10 suggests a
recursive form for the solutions derived from the posteriors f(Jt�1jY1:t�1) and f(JtjY1:t). That is,
given samples from f(Jt�1jY1:t�1) it is possible to e�ciently generate samples from f(JtjY1:t), instead
of directly sampling from f(JtjY1:t), which may be complicated and computationally expensive.
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Before we present an algorithm for the recursive sampling, we specify a posterior density. As described
later, the algorithm requires two components from the posterior: (i) an ability to sample from the
prior f(JtjJt�1) for a given value of Jt�1, and (ii) the functional form of the likelihood function
f(YtjJt).

3.2 Likelihood Function

In principle, this framework allows for any standard likelihood function relating the unknown pa-
rameter and the observed data. The two examples that we consider are:

1. In a generic case, let D 2 ICn�m be a unitary matrix (DyD = I) and let the observation be
modeled as:

Yt = PtD + �t 2 ICn�m; t = 1; 2; : : : ; (11)

where �t 2 ICn�m is additive noise and fPtg is the unknown trajectory on IP . If �t has i.i.d
normal elements (with independent real and imaginary parts) with mean zero and variance �2,

the likelihood function is f(YtjJt) = 1
Lt

exp( 1
�2
(trace(PtYtY

y
t ))), Lt is the normalizer.

2. In the case of array signal processing, the sensor observations are modeled as superpositions of
signals received from multiple transmitters and the ambient noise. Let there be n sensors andm
signal transmitters (m � n), and the angular location vector is denoted by �t = [�1;t; : : : ; �m;t] 2
[0; �]m. The observation vector is given by:

yt;i = D(�t)st + �t;i; i = 1; 2; : : : ; p 2 ICn ; (12)

where D(�t) = [d(�1;t); : : : ; d(�m;t)] 2 ICn�m, for d(�) = [1 exp(�j�) exp(�j2�) : : : exp(�j(n�
1)�)]T , � = � cos(�). st is them-vector of signal amplitudes and, as earlier, �t;i is i:i:d: complex
normal noise. If Kt is the sample covariance, as de�ned in Eqn. 1, the likelihood function is
given by f(YtjJt) = 1

Lt
exp( 1

�2
(trace(KtPt))), where Lt is the normalizer. This normalizer need

not be speci�ed in Monte Carlo based inference.

3.3 Sequential Monte Carlo Approach

Our concern is to �nd the MMSE estimate of Pt given the observations Y1:t, for each t. Taking a
Monte Carlo simulation approach, we �rst generate samples from the posterior f(JtjY1:t), extract
the subspace components from the joint samples, and then compute sample averages to approximate
the integral in Eqn. 8. In view of the complicated relationship between Jt and the observation set,
Y1:t, it is di�cult and often ine�cient to sample directly from the posterior f(JtjY1:t).

A recursive formulation, which takes samples from f(Jt�1jY1:t�1) and generates the samples from
f(JtjY1:t) in an e�cient fashion, is desirable. We accomplish this task using ideas from sequential
methods and importance sampling. Assume that, at the observation time t� 1, we have a set of M

samples from the posterior, St�1 = fJ (i)
t�1 : i = 1; 2; : : : ;Mg ; J

(i)
t�1 � f(Jt�1jY1:t�1). Following are

the steps which utilize elements of St�1 to generate the set St.

1. Prediction: The �rst step is to sample from f(JtjY1:t�1) given the samples from f(Jt�1jY1:t�1).
We take a compositional approach by treating f(JtjY1:t�1) as a mixture density. According to
Eqn. 9, f(JtjY1:t�1) is the integral of the product of a marginal and a conditional density.

This implies that, for each element J
(i)
t�1 2 St�1, by generating a sample from the conditional,

f(JtjJ (i)
t�1), we can generate a sample from f(JtjY1:t�1). Of course, this method is practical

only when there is an e�cient technique to sample from the prior density f(JtjJt�1). In our

10



case, this is accomplished using Algorithm 1. Now we have samples f ~J (i)
t g from f(JtjY1:t�1);

similar to the Kalman-�ltering notation these samples are called predictions.

2. Resampling: Given these predictions, the next step is to generate samples from the posterior
f(JtjY1:t). For this, we utilize the notion of importance sampling in the following way. The
samples from the prior (f(JtjY1:t�1)) are resampled (see reference [16]) according to the prob-

abilities that are proportional to the likelihoods f(Ytj ~J (i)
t ). Form a discrete probability mass

function on the set f ~J (i)
t : i = 1; 2; : : : ;Mg according to

�t;i =
f(Ytj ~J (i)

t )PM
j=1 f(Ytj ~J (j)

t )
; and set �t = [�t;1 �t;2 : : : �t;M ] : (13)

Then, resample M values from the set f ~J (1)
t ; ~J

(2)
t ; : : : ; ~J

(M)
t g according to the mass function

�t. These values are the desired samples from the posterior f(JtjY1:t). The resampled set is

denoted by St = fJ (i)
t : i = 1; 2; : : : ;Mg; J

(i)
t � f(JtjY1:t). It must be remarked that after

resampling, the indices (i) are renamed so that the sequence J
(i)
t�1; J

(i)
t ; J

(i)
t+1; : : :, for the same i,

may not be consistent anymore. In other words, it is possible that the velocity A
(i)
t�1 does not

take P
(i)
t�1 to P

(i)
t in a unit time. This inconsistency has no bearing on the estimation procedure

since the past samples are not used in estimating future parameters, only the current samples
are used.

3. Averaging: Now that we have M samples from the posterior f(JtjY1:t), we can average them
appropriately to approximate the MMSE estimate of Pt. As described in the paper [23], the
MMSE estimate, of Pt, is given by Eqn. 8. Using Monte Carlo sampling, we approximate E
by

Ĝt;M =
1

M

MX
i=1

P
(i)
t 2 ICn�n ; (14)

and compute SVD of Ĝt;M to obtain the MMSE estimate P̂t;M .

In numerous papers, the ergodic properties of sequential Monte Carlo samples has been studied. It
has been shown that the elements of the set St are exact samples from the posterior and the ergodic
result (that is, sample averages converge to the expected values as the sample size gets larger) holds.
It should be noted that due to the resampling step, the resulting samples are not independent of
each other.

Error Analysis: There are two sources of error in this tracking procedure. First, there is the
sampling error in estimating Gt by a �nite sample mean Ĝt;M and it is quanti�ed by the variance
of the estimator. One can use the delta method to asymptotically estimate this variance (see for
example [17]) and probabilistically bound the resulting sampling error. Conversely, the same result
can also be used for sample size determination, for a desired estimation performance. The second
source of error is due to the di�erence between the underlying true value Pt and its exact MMSE
estimate obtained from Gt. This error can been quanti�ed using Hilbert-Schmidt lower bounds
(HSB) (see [23] for reference) on errors for estimation on matrix Lie groups. HSB is a lower bound
on the expected squared error, and is achieved by the MMSE estimate de�ned in Eqns. 8 and 8.
Another way to lower bound this error is using Cramer-Rao derivation as described in [22].
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3.4 Algorithm

In this section, we write a step-by-step procedure for subspace tracking. Assume that for any time

t�1 we have the samples fJ (i)
t�1 : i = 1; 2; : : : ;Mg � f(Jt�1jY1:t�1). The following algorithm outlines

the steps to generate the samples at time t, and then, to estimate P̂t;M .

Algorithm 2 1. Sample Conditional: Draw f ~J (i)
t ; i = 1; 2; : : : ;Mg from the conditional prior

according to Algorithm 1.

2. Importance Weights: Compute the probability mass function �
(i)
t , i = 1; 2 : : : ;M , according

to Eqn. 13.

3. Resampling: Generate M samples from the set f ~J (i)
t ; i = 1; 2; : : : ;Mg with the associated

probabilities f�(i)t ; i = 1; 2; : : : ;Mg. Denote these samples by fJ (i)
t ; i = 1; 2; : : : ;Mg.

4. MMSE Averaging: Calculate the sample average Ĝt;M according to Eqn. 14 and compute

the subspace estimate P̂t;M using the SVD of Ĝt;M . Set t t+ 1 and go to step 1.

A schematic diagram of the algorithm is shown in Figure 2.

Prediction Resampling
J
(i)
t-1

J
(i)
t

~

Yt

Averaging
Pt,M
^

J
(i)
t

J
(1)
t

J(M)t

t = t+1

Figure 2: Schematic diagram of a Bayesian �lter for subspace tracking.

4 Simulation Results

In this section, we present some experimental results on subspace tracking. These experiments are
of two types, corresponding to the two data models given in Eqns. 11 and 12. According to Remark
3, in these experiments we restrict to the situations with intermittent noise, i.e. the additive noise
has two levels: corresponding to � and 1000�. For any t, the data contains either low or high noise
randomly, with probability 0.5 each.

In the diplays, each plot shows the estimation error kPt � P̂k for three di�erent estimation
procedures. First, the error associated with the maximum-likelihood estimate (MLE), obtained by
SVD of the covariance matrix Kt, is shown in the broken line. The error resulting from an adaptive
procedure, relying on the SVD of the matrix Rt = 
Kt + (1 � 
)Kt�1, is shown in the dotted line
(for 
 = 0:3). Finally, the estimation error for tracking resulting from Algorithm 2 is plotted in bold.
Since the prior is based on smooth velocities, MLEs at t = 1; 2 are used to initialize the algorithm
and Bayes' �lter starts at t = 3.

1. First, consider a generic problem in subspace estimation, with the observation model given by
Eqn. 11 for n = 4 and m = 2. D is chosen to be a �xed n �m unitary matrix. Let P1 = Q
(U1 = I) be the initial point, and A1 2 ICm(n�m) be some initial velocity. Successive velocities,
A2; A3; : : : ; are generated using the dynamic model given in Eqn. 6. The velocities give rise to
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a subspace trajectory according to Step 2 of Algorithm 1. For each time t, the observations are
generated according to the model given in Eqn. 11, and are used in Algorithm 2 to calculate
the estimates.

In the following results we generated random trajectories on IP using the prior energy at
�p = 0:001 and the noise energy at � = 0:0002. Shown in Figure 3 are the tracking results
for four sample trajectories. To quantify the change in the underlying subspaces, kPt � P0k is
plotted using the cross marks. These curves show that the smoothness constraint imposed in
form of the prior helps guard against intermittent noise.
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Figure 3: Estimation error versus time of three methods: MLE (broken line), adaptive �ltering
(dotted line) and the Bayesian �ltering (solid line). Actual motion in the underling subspace is
quanti�ed by plotting kPt � P0k using crosses.

2. Consider the problem of subspace estimation using a narrowband, uniform linear-array (ULA)
consisting of �ve elements at half-wavelength spacing each (n = 5) (similar to Figure 1).
Furthermore, assume that there are three signal transmitters (m = 3) moving with respect
to the array, and transmitting signals that are received at the sensor according to the data
model in Eqn. 12. For these experiments, the transmitter motion is generated according to
the equation: for i = 1; 2; : : : ;m

�i;t = [�i;t�1 + #i;t�1]mod �
; where #i;t�1 = #i;t�2 + ui ;

and where ui � N(0; �2p). The initial conditions, �1;0; : : : �m;0, are chosen uniformly between
[0; �). The lower panels of Figure 4 show some example trajectories of the transmitter motion
according to this model for t = 1; 2; : : : ; 50. For each �t = [�1;t; : : : ; �m;t], the observation
vector yi;t calculated according to Eqn. 12, with p = m. As earlier, the additive noise standard
deviation is either � or 1000�, selected randomly with equal probability. For each t, m data
vectors are generated and utilized to compute the sample covariance matrix Kt according to
Eqn. 1. The tracking algorithm then estimates P̂t;M for M = 200 at each time t.
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Shown in Figure 4 are the estimation results in form of the estimation error kP̂t � Ptk as
a function of time, for three sample trajectories of the transmitter motion (�p = 0:001 and
� = 0:0003). The estimation error associated with the MLE is plotted in the broken line,
the error associated with the adaptive tracking is plotted in the dotted line, and the error for
Bayesian tracking is depicted by the solid line. Similar to the earlier experiment, the prior on
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Figure 4: The upper panels plots the error in subspace tracking (kP̂t�Ptk) as a function of t for: (i)
MLE (broken line), (ii) adaptive tracking (dotted line), and (iii) Bayesian tracking (solid line). The
lower panels show the corresponding transmitter trajectories.

subspace motion improves tracking performance in the presence of intermittent noise.

Algorithm 2 is based on a greedy implementation of the Bayesian �lter: it estimates only the
current state based on the accumulated data. It gains in speed by �xing and not improving upon
the past estimates once the current data are observed. A slower algorithm for joint estimation of all
the states, using all the observations, is given in [18], and improvements are demonstrated even for
situations with consistently high observation noise.

In view of the added smoothness constraint, in form of the prior density, this Bayesian method
takes more computational e�ort than a standard likelihood based procedure. This cost is mostly
incurred in Step 1 of Algorithm 2 where the exponential of a n� n matrix is calculated for each of
the M samples.. The second reason for computational expense is the price paid for the ability to
handle arbitrary nonlinear densities. Thsi approach is applicable to a large class of posterior densities
on Grassmannian manifolds. In this nonlinear �lter, one generates M samples at each observation
time, for a large value of M . The total cost is linear in M .
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5 Conclusion

In this paper, we have proposed a geometric approach to tracking principal subspaces of the obser-
vations taken from time-varying systems. It relies on imposing a smooth variation in the velocities
associated with the subspace rotation. A recursive, computational technique to sample from the pos-
terior and to generate MMSE estimates is described. The computational complexity of this technique
remains to be investigated.
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A Proof of Theorem 1

Let ~P and ~Q be the m-dimensional subspaces of V , represented by projection matrices P and Q,
respectively. We prove the theorem in three steps: At �rst, we prove it for the case n = 2 and m = 1.
Next, we show that if there exists a basis of V such that ~P = exp(
) ~Q for a speci�c form of 
 2M,
then the theorem is just an extension of the n = 2, m = 1 case. And �nally, for any given ~P , we
show that there exists a basis of V such that the requirements of the second step are met.
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1. Start with the case where n = 2 and m = 1. Rule out the cases ~Q ? ~P and ~Q = ~P since they
are easy to handle. Let v1 be the unit vector in ~Q, then Pv1 is an element of ~P . Let w1 be
the unit vector in the real span of fv1; P v1g such that w1 � Pv1 > 0. Let �1 be the (positive)
angle between v1 and Pv1. As shown in Example 1 (Eqn. 4), Q � P can be decomposed as

W

"
�1 0
0 ��1

#
W y for �1 = sin(�1).

The resulting X 2M and exp(X) 2 U(n) are given in Eqn. 5.

2. In a general case of an arbitrary P 2 IP , we will essentially decompose V as orthonormal direct
sum of two-dimensional subspaces to obtain the best rotation from ~Q to ~P . The above result
will apply independently to each two-dimensional component. Let there be an orthonormal
basis of V of the form

fu1; : : : ; uk; v1; : : : ; vr; w1; : : : ; wr; x1; : : : ; xpg (15)

where k; r; p are three nonnegative integers such that k + 2r + p = n and k + r = m. Also,
let fu1; : : : ; uk; v1; : : : ; vrg be an orthonormal basis of ~Q. For �1; : : : ; �r positive real numbers,
de�ne an element of U by


 =

2
6664
0k 0 : : : 0

0 0r diag(�1; �2; : : : ; �r)
0 �diag(�1; �2; : : : ; �r) 0r 0

0 0 : : : 0p

3
7775 2 M ;

and de�ne a subspace ~P = exp(
) ~Q. We can also write ~P = spanfu1; : : : ; uk; cos(�1)v1 +
sin(�1)w1; : : : ; cos(�m)vm + sin(�m)wmg. u1; : : : uk is a basis of ( ~Q \ ~P ), and x1; : : : ; xp is a
basis of the space ( ~Q? \ ~P?). With respect to the basis given in Eqn. 15, we can factor the
rotation from ~Q to ~P into a sequence of 2 � 2 rotations in 2-planes orthogonal to each other.
The planes are spanned by vj; wj and the rotation angles are �j's. The results from Part 1
apply to each 2� 2 rotation independently. Therefore, the eigen decomposition of Q�P takes
the form

W

2
6664
0k 0 : : : 0

0 diag(�1; : : : ; �r) 0r 0
0 0r �diag(�1; : : : ; �r) 0

0 0 : : : 0p

3
7775W y ; �j = sin(�j) :

We require that the eigen vectors corresponding to the eigen values �j and ��j should project
to a positive real multiple of each other, when multiplied by Q. If �j 's are distinct, and wj and
wj0 are the eigen vectors corresponding to �j and ��j, this can be achieved by multiplying wj0

by an appropriate unit complex number. If several �j's are the same; for example, suppose
that �1 = : : : = �s =: �. Then the columns fw1; : : : ; wsg of W form an orthonormal basis
for the eigenspace of the eigenvalue �, while the columns fw10 ; : : : ; ws0g form an orthonormal
basis for the eigenspace of the eigenvalue ��. We will alter the columns fw10 ; : : : ; ws0g to
form a new basis for this eigenspace. For each i = 1 : : : ; s, there is a unique unit vector
yi 2 spanfw10 ; : : : ; ws0g with the property that Qyi and Qwi di�er from each other only by a
positive real multiple. For each such i, replace wi0 by yi. Continue to call the resulting matrix
W . Perform this procedure for each repeated �. This completes the necessary modi�cation of
W .
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Using the 2 � 2 example, X = W
W y is the desired X 2 M, and exp(X) = W exp(
)W y.
Therefore, if there exists a basis of V of the type given in Eqn. 15 such that ~Q and ~P can be
written in these speci�c forms, the result follows from two-dimensional analysis.

3. Next, we show that for any arbitrary projection matrix P 2 IP , there exists an orthonormal
basis of V of the form given in Eqn. 15. Let k = dim( ~Q \ ~P ) and p = dim( ~Q? \ ~P?). Choose
any orthonormal bases fu1; : : : ; ukg for ~Q \ ~P and fx1; : : : ; xpg for ~Q? \ ~P?:

Lemma 1 ker(Q� P ) = ( ~Q \ ~P )� ( ~Q? \ ~P?).

Proof: If v 2 ~Q\ ~P , then (Q�P )v = v� v = 0. If v 2 ( ~Q\ ~P )?, then (Q�P )v = 0� 0 = 0.
On the other hand, suppose (Q� P )v = 0. Then Qv = Pv 2 ~Q \ ~P . But, likewise, v �Qv =
v�Pv 2 ~Q?\ ~P? = ( ~Q+ ~P )?. Since v = Qv+(v�Qv), it follows that v 2 ( ~Q\ ~P )�( ~Q\ ~P )?,
proving the lemma. Furthermore, if we diagonalize Q�P , the multiplicity of 0 as an eigenvalue
will be precisely k + p.

For the remainder, replace V by the orthogonal complement in V of the subspace ( ~Q\ ~P )�( ~Q+
~P )?, ~P by the orthogonal complement in ~P of ~P \ ~Q, and ~Q by the orthogonal complement in ~Q
of ~P \ ~Q. Now, dim( ~P ) = dim( ~Q) = r and dim(V ) = 2r; ~P and ~Q are now transverse and span
V . Let SP and SQ denote the unit spheres in ~P and ~Q, respectively and let � = inffjv � wj :
v 2 SQ and w 2 SPg. Since SP and SQ are disjoint compact sets, � > 0 and there exist vectors
v 2 SQ and w 2 SP satisfying jv � wj = �. It follows that Pv is a positive real multiple of
w and Qw is a positive real multiple of v. Furthermore, the projection operators P and Q,
and hence their di�erence Q� P , all map the 2-dimensional subspace of V spanned by fv; wg
to itself. Call this subspace Z. We conclude that P and Q each restrict to rank 1 projection
operators on Z. From Example 1, the restriction of Q � P to Z has two eigenvalues sin(�1)
and � sin(�1), where �1 is the angle between the image of P and the image of Q (restricted to
Z). One of these images may be moved to the other by a rotation of angle �1 in the space Z.
Hence, we choose basis elements of Z as: Let v1 = v, and let w1 be the unique unit vector in
the real span of fv; wg such that (1) w1 ? v and (2) w1 � Pv > 0. To construct the rest of the
basis, inductively replace ~P , ~Q, and V by the orthogonal complement of Z in each of them,
and repeat this step procedure to �nd (v2; w2); : : : ; (vr; wr).
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