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Abstract. We derive an algorithmic way to pass from a triangulation to a

homology basis of a (Riemann) surface. The procedure will work for any

surfaces with �nite triangulations. We will apply this construction to Riemann

surfaces to show that every compact hyperbolic Riemann surface X has a

homology basis consisting of curves whose lengths are bounded linearly by the

genus g of X and by the homological systole.

This work got started by comments presented by Y. Imayoshi (see [9]) in

his lecture at the 37th Taniguchi Symposium which took place in Katinkulta

near Kajaani, Finland, in 1995.

1. Introduction

The topology of a surface X is determined by the combinatorial structure of any

of its triangulations. Here we apply that observation to the study of the homology

of a compact Riemann surface of genus g; g > 1.

Given a triangulated Riemann surface X it appears possible that a homology

basis for X can be built out of closed curves that are unions of edges of the triangles.

The formation of these curves may be quite complicated. It appears also possible

that the curves forming a homology basis can be chosen in such a way that any

edge of any triangle of the triangulation appears at most twice in any given curve

of the homology basis. This means that every curve in the homology basis consists

of at most 2n1 = 3n2 edges. Here n1 is the number of edges of the triangulation

and n2 the number of triangles.

Now if the Riemann surfaceX does not have short geodesics, then one can always

�nd a triangulation of X for which the lengths of the edges are universally bounded

and for which n2 � Cg, where C is a constant that will be speci�ed below. This

means that a Riemann surface which does not have short geodesics always carries

a homology basis consisting of curves whose lengths are linearly bounded by the

genus.

In order to prove the above we derive an algorithmic way to obtain an explicit

canonical homology basis for a triangulated Riemann surface X . By a canonical

homology basis we mean any family of homologically non-trivial simple closed curves

�1; �1; : : : ; �g; �g , onX such that each �i intersects �i in exactly one point and such

that no other intersections occur. The method leads to a homology basis whose

curves are unions of at most n2=2 edges of the triangulation.

The construction is general and can be applied to any topological surface. One

complication in the process is to make sure that we �nd curves satisfying the re-

quired intersection property.
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As indicated above, we apply this construction to �nd a short canonical homology

basis for a compact Riemann surface together with the Poincar�e metric of constant

curvature �1. Such homology bases are important for numerical computations on

Riemann surfaces.

In [6] we have shown that given a family P of simple closed geodesics on X that

decomposesX into three-holed spheres then one can �nd such a canonical homology

basis where �1; : : : ; �g belong to P and where any �i intersects P at most 2g � 2

times. The bound 2g � 2 is the best possible one. If we combine this with Bers'

partitioning theorem ([1], [5]) then we also get an upper bound of the lengths of

�1; �1; : : : ; �g; �g , with respect to the hyperbolic metric. That bound is of order g2

and it also depends on the homological systole (see below).

Starting with a suitable triangulation rather than with a pants decomposition

we show, as indicated above, that there always exists a canonical homology basis

consisting of curves whose lengths are bounded linearly by the genus.

To state the result let us introduce the following terminology. The homological

systole � = �(X) is the length of a shortest homologically non-trivial simple closed

geodesic  on X (there may be several such curves). Any homology basis must

contain at least one curve that intersects  transversely. By the Collar Theorem

([3], [4], [7]), this curve becomes long if the length of  is small. Our result is now

as follows,

Theorem 1. Let X be a compact Riemann surface of genus g with homological

systole �. There exists a canonical homology basis on X such that any curve has

length

` < (g � 1)(45 + 6 arcsinh( 2
�
)):(2)

The constants 45 and 6 are not optimal. We point out, however, that in the

example given in [6], any homology basis must contain at least one curve whose

length exceeds (g�1)(2+2 arcsinh( 2
�
)). For convenience we repeat this example at

the end of the paper. Hence the result obtained here is of the best possible order

of magnitude.

2. From triangulations to homology

Consider a triangulation T of a surface X . Let V be the set of vertices of T and

let G be the graph whose vertex set is V and whose edges are the edges occurring in

T. On G we select a spanning tree, i.e. a connected subgraph � as shown in Fig. 1

which has the same vertices as G but which is such that no non-trivial closed edge

path occurs.

A spanning tree can be obtained by the following procedure. First one selects an

edge which does not separate G into two parts, and erases this edge from G. If on

the remaining graph there is again a non-separating edge then one erases this one

also, and so on. Note that � has jV j � 1 edges where jV j is the number of vertices

of V .

In the next step we construct a fundamental polygon for X using the triangu-

lation. For this we cut X open along all the edges of �. Since � is a tree this

produces a connected surface Xg of signature (g; 1). On Xg the triangulation has

now the property that all vertices lie on the boundary. Let us denote by E the set

of all edges of G which are not subsets of the boundary of Xg . We now iteratively
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Figure 1. A spanning tree

cut open Xg along certain edges of E until we get the desired polygon. This can

be done by the following procedure.

First we look for an edge u 2 E which does not separate Xg into two parts.

Such an edge exists because Xg has Euler characteristic � = 2� 2g � 1. We recall

that u has both end points on the boundary of Xg . Cutting Xg open along u we

therefore obtain a connected surface X 0

g with Euler characteristic �0 = �+1. Since

Xg is orientable, X
0

g has two connected boundary components, say !0 and !00. Let

us denote by u0 and u00 the two copies of u on the boundary of X 0

g, the notation

being such that u0 � !0 and u00 � !00.

Next, we look for an edge v 2 E that connects !0 with !00. To see that such

an edge exists we consider a continuous curve c going from !0 to !00. The initial

point of c lies on a triangle which has a vertex on !0; the end point of c lies on a

triangle which has a vertex on !00. If the initial triangle has a vertex on !00 also,

we are done. Otherwise we go along c until we reach for the �rst time a triangle

which does not have all three vertices on !0. This triangle shares a vertex with the

preceding one and, therefore, has an edge v going from !0 to !00.

Cutting X 0

g open along v we obtain a connected surface Xg�1 which has now

again a connected boundary, say ! and which has Euler characteristic �0 + 1. Let

us denote by v0 and v00 the two copies of v on !. Note that along ! the pair v0; v00

is separated by the pair u0; u00.

Since Xg�1 has signature (g � 1; 1) we can repeat the procedure to obtain suc-

cessively Xg�2, Xg�3, etc. until the fundamental polygon, X0, is reached after g

steps.

u01 u001v01 v001

�1
�1

!0

X0

Figure 2. Constructing the homology basis

For the convenience of later reference we remark next that the triangulation

of X induces a triangulation of X0 with all the vertices on the boundary of X0.
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The following observation now follows from the fact that X0 can be modelled as a

polygon in the plane.

Lemma 3. The boundary of the fundamental polygon X0 for the Riemann surface

X consists of n2 + 2 edges of the triangulation of X.

The construction of the homology basis is now fairly easy. Starting on X0 we

let u01; u
00

1 and v01; v
00

1 be the sides on the boundary !0 of X0 obtained when X1 was

cut open. We draw a curve �1 in a small neighborhood of !0 from a point of u01 to

an equivalent point of u001 (with respect to the pasting) and then a similar curve �1
from some point of v01 to the corresponding point of v

00

1 as shown in Fig. 2. Then we

paste the pairs u01; u
00

1 and v01; v
00

1 together again to obtain X1 on which �1 and �1
are now a pair of simple closed curves intersecting each other in exactly one point.

In the same way we may now continue on X1, then on X2, and so on. Since

on each Xk the curves �k+1; �k+1 can be drawn arbitrarily close to the boundary

they do not intersect the preceding curves. Hence, the curve system obtained in

this way has the required intersection properties.

3. Length estimates for surfaces without short geodesics

To �nd a short homology basis using the construction of Section 2 we need to

start with a triangulation whose triangles are not too small. Such a triangulation

can be found if the Riemann surface X does not have short closed geodesic curves.

We use the following result from [4], pages 116{121, respectively[2], which goes back

to [8], [10] and others.

Lemma 4. Let X be a compact Riemann surface of genus g � 2 such that the

length of the shortest closed geodesic is greater or equal ln 4. Then there exists a

geodesic triangulation T on X with the following properties

1. All triangles of T have sidelengths between ln 2 and 2 ln 2.

2. The number of triangles in T is at most 64(g � 1).

(The statement for T in [4] is that the triangles have area � 0:196. Since X has

area 4�(g � 1) this yields (2).)

As a preparation for the length estimates observe �rst that in drawing �1 and

�1 in Section 2 we have two choices for the directions along !0. By choosing them

properly we can achieve that the curves have lengths < 1

2
`(!0). Likewise, we may

choose the directions such that �1, respectively �1, is homotopic to an edge path

of G consisting of at most 1

2
j!0j � 1 edges, where j!0j is the number of sides of !0.

For Riemann surfaces X of genus g; g � 2, without short geodesics we now have

the following result.

Theorem 5. Assume that the Riemann surface X has no geodesics shorter than

ln 4, then it has a canonical homology basis consisting of simple closed curves of

length less than 45(g � 1).

Observe that this result implies Theorem 1 for surfaces without short (closed)

geodesics.

Proof. To estimate the lengths we note that X0 is triangulated with n2 � 64(g�1)

triangles. By Lemma 3, the boundary !0 consists of n2 +2 edges. The boundaries

of the Xk have fewer edges. As any edge has length � ln 4, all �k and �k have, by

the remarks preceding the lemma, length � ln 4( 1
2
j!0j � 1) < 45(g � 1). �
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This proves Theorem 1 for surfaces without short geodesics. In this proof, the

fact that the decomposition of X consisted of triangles was not used in an essential

way and only played a role in the estimate of the number of edges. If we use any

other cell decomposition D instead, say with n2 cells and n1 edges, then the proof

works as well. The change in the arithmetic is that now the boundary !0 of X0 has

2(n1 � n2 + 1) edges. Hence, we have the following combinatorial result, where we

include the case g = 1.

Theorem 6. Let D be a cell decomposition of a compact orientable surface M of

genus g � 1 with n2 cells and n1 edges. Then there exists a canonical homology

basis for M such that any curve in this basis is homotopic to an edge path of D

having at most n1 � n2 edges.

4. The general case

In the neighborhood of a short geodesic the triangulation of the preceding section

cannot be applied, and we need a slightly di�erent cell decomposition of X .

Let  be a simple closed short geodesic of X and consider the following set known

as the collar around ,

C = fx 2 X j dist(x; ) < wg;

where w , the width of the collar, is de�ned by the condition sinhw sinh
1

2
`() = 1.

By the collar theorem ([7], [3], [4]), C is a topological cylinder. Furthermore, any

closed geodesic intersecting  transversely must cross C from one end to the other

and therefore has length at least 2w . As short geodesics have length � ln 4, this

implies that the short geodesics are pairwise disjoint. Moreover, also by the collar

theorem, for any distinct short geodesics , 0 the collars C and C0 are disjoint.

A

B

A0

B0

c c0


C

R

a

Figure 3. Collar around 

For any short  a domain R � C as shown in Fig. 3 will be used which is de�ned

as follows. The four vertices A;A0; B;B0 have distance 1

2
ln 2 from the boundary

of C ; the geodesic segments in C from A to A0 and from B to B0 intersect 

orthogonally and in opposite points. The two minimal geodesics from A to B form

a simple closed curve c homotopic to ; the minimal geodesics from A0 to B0 form

a similar curve c0 . Now R is the cylindrical domain bounded by c and c0 .

If R is cut open along the geodesic segment a from A to A0, then it becomes

a geodesic hexagon.

It is shown in [4, p. 116], that X with the interiors of all R removed can be

triangulated such that properties (1), (2) as in Lemma 4 hold. This allows us to

use the procedure of the preceding section with only minor modi�cations. First

of all we want to avoid intersections with the separating short geodesics. To this
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end we remove, for any short geodesic , the interior of R from X . The resulting

surface falls into connected components S1; : : : ; Sp with signatures (hi;mi) such

that h1 + � � � + hp = g, and we now consider one of them, say S with signature

(h;m).

Let c1; : : : ; cm be the boundary components of S, and 1; : : : ; n the non-separ-

ating short geodesics of S. We triangulate the closure of S n (R1 [ � � � [ Rn) as

mentioned above with triangles of sidelengths between ln 2 and ln 4. Next we let G

be the graph whose vertices are the vertices of the triangulation and whose edges

are the edges of the triangulation plus the geodesic arcs a1 ; : : : ; an which cut the

R1 ; : : : ; Rn into hexagons (see Fig. 3). Since S has boundary, the spanning tree

as used in the preceding section needs a minor modi�cation. We take a connected

subgraph � of G which has the following properties instead :

1. any vertex of G is a vertex of �;

2. any edge of G that lies on the boundary of S is an edge of �;

3. any edge of � that does not lie on the boundary of S separates � into two

parts.

This is almost a tree, in fact, � becomes a tree if the cycles c1; : : : ; cm are removed

from it.

Cutting S open along the edges of � not lying on the boundary we obtain a

connected surface Sh which has only one boundary component. Moreover, the

triangles and hexagons yield a cell decomposition of Sh all of whose vertices lie on

the boundary. Hence, the construction of the preceding section can be carried out

on Sh. As Sh has signature (h; 1) we obtain a homology basis �1; �1; : : : ; �h; �h
(modulo the boundary) of S.

The bases of S = S1; : : : ; Sp taken together yield our homology basis for X .

To estimate the length of a curve � in this basis let us assume that X has q

non-separating short geodesics. These are pairwise non-homotopic, and therefore

q � 3g�3. The domains R around these geodesics are pairwise disjoint and by [4,

pp. 116{117], each of them has surface area larger than 2. This implies that the

number t of all triangles in the cell decomposition of X satis�es t � 64(g�1)�10q.

Consider now again the above component S and let S0 be the fundamental poly-

gon obtained in the �nal step of opening it up. The part of the cell decomposition

that lies on S0 consists of n
0

2 � t triangles and of q0 � q hexagons. As all vertices of

this decomposition lie on the boundary of S0, the number of edges in the interior

of S0 is n
0

2 � 1. Each hexagon is obtained by cutting open some R along the arc

a ; it has four sides of length � ln 4 belonging to the boundary of R , plus two

\long" sides corresponding to a . The long sides are shorter than 2w , where in

turn w � arcsinh( 2
�
). By construction, all long sides lie on the boundary of S0.

Hence, the boundary of S0 has 2q0 long sides and 3n02 + 4q0 � 2(n02 � 1) triangle

sides. Reviewing all inequalities we get the following estimate for any curve � in

our homology basis,

`(�) � (32(g � 1)� 3q) ln 4 + 2q arcsinh( 2
�
):(7)

As q � 3g � 3, this completes the proof of Theorem 1.

Example 8. For comparison we briey review here the example given in [6]. The

surface, N , is obtained by pasting together g � 1 copies 
1; : : : ;
g�1 of a building

block 
 of signature (1; 2) as shown in Fig. 4, where 
 itself is obtained by pasting
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L R
Qg�1 Q1 Q2

Figure 4. A surface of genus g

together two pairs of pants with boundary geodesics of equal lengths ". By hyper-

bolic trigonometry, the distance between the two boundary geodesics of 
 = 
1
equals

dist(L; R) = 4 arcsinh
cosh("=4)

sinh("=2)
:

On N , the geodesic L is non-separating. Hence, if B is a canonical homology basis

for N , then B contains at least one curve � such that L and � have non-zero

intersection number. If we cut open N along L, then on the resulting surface N 0

there must be an arc of � connecting the two boundary components of N 0 with

each other. This implies that `(�) � (g � 1) dist(L; R).

For small values of " we have " = � = �(N) and the lower bound for `(�)

is approximately 4(g � 1) arcsinh( 2
�
). If we take " = ln 4, then N has no short

geodesics and `(�) > 4:58(g � 1).
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