
A perfectly matched layer approach to the linearized

shallow water equations models

I.M. Navon∗

Department of Mathematics and

Computational Science and Information Technology

Florida State University

Tallahassee, FL 32306-4130

Email: navon@csit.fsu.edu

B. Neta

Naval Postgraduate School

Department of Mathematics

Monterey, CA 93943

M.Y. Hussaini

Computational Science and Information Technology

Florida State University

Tallahassee, FL 32306-4120

December 4, 2003

∗Corresponding author

1



Abstract

A limited-area model of linearized shallow water equations (SWE) on an f -plane

for a rectangular domain is considered. The rectangular domain is extended to include

the so-called perfectly matched layer (PML) as an absorbing boundary condition.

Following the proponent of the original method, the equations are obtained in this layer

by splitting the shallow water equations in the coordinate directions and introducing

the absorption coefficients. The performance of the PML as an absorbing boundary

treatment is demonstrated using a commonly employed bell-shaped Gaussian initially

introduced at the center of the rectangular physical domain.

Three typical cases are studied:

• A stationary Gaussian where adjustment waves radiate out of the area.

• A geostrophically balanced disturbance being advected through the boundary

parallel to the PML. This advective case has an analytical solution allowing us

to compare forecasts.

• The same bell being advected at an angle of 45 degrees so that it leaves the

domain through a corner.

For the purpose of comparison, a reference solution is obtained on a fine grid on

the extended domain with the characteristic boundary conditions. We also compute

the r.m.s. difference between the 48-hour forecast and the analytical solution as well as

the 48-hour evolution of the mean absolute divergence which is related to geostrophic

balance. We found that the PML equations for the linearized shallow water equations

on an f -plane support unstable solutions when the mean flow is not unidirectional.

Use of a damping term consisting of a 9-point smoother added to the discretized

PML equations stabilizes the PML equations. The reflection/transmission is analyzed

along with the case of instability for glancing propagation of the bell disturbance. A
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numerical illustration is provided showing that the stabilized PML for glancing bell

propagation performs well with the addition of the damping term.
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1 Introduction

In a limited-area numerical weather prediction model, the lateral boundaries are not physical

boundaries, and they require artificial boundary conditions so that the problem is well-posed

and the solution in the limited area remains uncontaminated and consistent with the global

solution. As such the treatment of lateral boundaries with the non-reflecting or absorbing

boundary conditions has been the subject of continuing interest since the early days of

numerical weather prediction.

Several good reviews are available on the topic of both physical and artificial boundary

conditions (Givoli and Harari, 1998; Turkel, 1983; Givoli, 1991; Mcdonald, 1997; and

Tsynkov, 1998). Givoli and Harari (1998) have edited a special issue of Computer Methods

in Applied Mechanics and Engineering on the subject of boundary conditions for exterior

wave propagation problems. Turkel (1983) provided an early review on the outflow boundary

conditions in the context of computational aerodynamics. Givoli (1991) reviews nonreflecting

boundary conditions for the wave problems, discusses local and nonlocal boundary conditions

for physical and artificial boundaries in the context of problems from different disciplines.

McDonald’s (1997) review is confined to lateral boundary conditions for operational regional

forecast models. Kalnay (2001) presents the state of art of limited area boundary conditions

as used in meteorology. The most comprehensive survey to date of artificial boundary

conditions is due to Tsynkov (1998). He provides a comparative assessment of the current

methods for constructing the artificial boundary conditions and divides them into two

categories – local and global artificial boundary conditions. Global artificial boundary

conditions are so called because they involve integral transforms along the artificial boundary.

For example, the approaches of Givoli and Keller (1989) typify the global artificial boundary

conditions. Such boundary conditions seem to work only in specific geometries. In addition,

discretization by a finite element method results in the filling of dense blocks in an otherwise

sparse system. On the other hand, local artificial boundary conditions preserve the sparsity of
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the problem, e.g. Sommerfeld radiation condition and the traditional characteristic boundary

conditions. Typical examples of local approaches to artificial boundary conditions are those

of Gustafsson and Sundström (1978) and Engquist and Majda (1977, 1979). The so-called

transparent boundary conditions of McDonald (2001a, 2001b, 2002) and of Holstad and Lie

(2001) and Lie (2001) applied to the shallow water equations also belong to this category.

The buffer/sponge layer consists in surrounding the truncated physical domain with a

zone in which non-physical equations are employed to filter or damp incident waves so that

there is minimal reflection into the physical domain of interest (see Kar and Turco, 1995).

The boundary relaxation scheme of Davies (1976, 1983) is such an approach, and it is most

frequently used for limited area forecasting using mesoscale model.

The perfectly matched layer (PML) method recently introduced by Berenger (1994) as

an absorbing boundary condition in the context of electromagnetic wave propagation has the

property of absorbing incident waves irrespective of their frequency and orientation. The

parameters of the PML are chosen such that the wave either never reaches the external

boundary, or, even if it reaches the boundary and reflects back, its amplitude is negligibly

small by the time it reaches the interface between the absorbing layer and interior domain.

Hu (1996a) was the first to apply the PML approach to aeroacoustic problems using the

linearized Euler equations then (1996b) extending his work to nonuniform mean flow for the

nonlinear Euler equations. (Clement, 1996; Karni, 1996; R. Kosloff and D. Kosloff,1986;

Collino, 1997; Hayder et al., 1999; Hayder and Atkins, 1997). The work of Hayder et al.

(1999) is the first to demonstrate the viability of the PML method in the applications! to

nonlinear Euler equations. A preliminary work of Darblade et al. (1997) implements the

PML method to the linearized shallow water equations model in oceanography.

Hu (2001) presents a new stable PML formulation for the linearized Euler equations in

unsplit physical variables and provides a modification to render the proposed scheme strongly

well-posed by the addition of arbitrarily small terms. Abarbanel and Gottlieb (1997) provide
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the general mathematical analysis of the PML method while Abarbanel et al (1999) provide

a well posed version of PML for advective acoustics. Abarbanel and Gottlieb (1998) provide

the mathematical framework for use of PML in computational acoustics. The well posedness

of PML for linearized Euler equation and for the Cauchy problem is discussed in Rahmouni

(2000) and Metral and Vacus (1999), respectively. The PML approach has been shown to

provide significantly better accuracy than most other artificial boundary conditions in many

applications.

The paper is organized as follows. In section 2, we introduce the PML approach to the

linearized two-dimensional shallow-water equations on an f -plane for the purpose of analysis.

Using a MAPLE symbolic manipulator we obtain a dispersion relation for the linearized PML

split shallow water equations system.

In Chapter 3 we provide a description of the numerical testing using a widely employed

bell shape Gaussian (McDonald, 2000) at the center of the domain. The first test consists

of an adjustment case which is not in geostrophic balance and we compare the PML results

with its known asymptotic solution.

We then proceed to test an advective case of the bell shape Gaussian propagating in

parallel to the PML. This case has an analytical solution with which we can compare our

forecasts in terms of rms error as well as the vanishing of the mean absolute divergence.

Note that since the system is in geostrophic balance, the analytical divergence on a constant

f plane is always zero.

This is followed by a test of propagation of the bell shaped Gaussian at an angle with

the PML yielding unstable solutions of the PML equations, (see also Hu, 1996a; Tam et al.,

1998). An analysis is carried out to understand and explain the underlying reasons for the

instability. Application of a 9-point Laplacian filter stabilizes the PML.
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2 The perfectly matched layer methodology

In this section we will briefly present the framework of the PML method for the linearized

shallow-water (S-W) equations on an f -plane.

2.1 Linearized S-W equations on an f plane

The 2-D linearized shallow water model on an f -plane is of the form

∂

∂t
u + U

∂

∂x
u + V

∂

∂y
u +

∂

∂x
φ− fv = 0 (1)

∂

∂t
v + U

∂

∂x
v + V

∂

∂y
v +

∂

∂y
φ + fu = 0 (2)

∂

∂t
φ + U

∂

∂x
φ + V

∂

∂y
φ + Φ(

∂u

∂x
+

∂v

∂y
) = 0 (3)

where U = Umean and V = Vmean are constants and Φ is the mean geopotential height. If

we put V = 0, f = 0, and scale the geopotential, we get the linearized Euler equations used

by Hu (1996b). Thus the results of Hu (1996b) are applicable to this form of the linearized

S-W equations (not including Coriolis).

2.2 The split-PML linearized shallow water equations on the f

plane

The inclusion of the Coriolis factor in the linearized shallow-water equations about (U, V )

requires the following modification of the PML split form given by Hu (1996b):
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∂u1

∂t
+ U

∂u

∂x
+

∂φ

∂x
= −σxu1

∂u2

∂t
+ V

∂u

∂y
= −σyu2

∂u3

∂t
− fv = 0

∂v1

∂t
+ U

∂v

∂x
= −σxv1

∂v2

∂t
+ V

∂v

∂y
+

∂φ

∂y
= −σyv2

∂v3

∂t
+ fu = 0

∂φ1

∂t
+ Φ

∂u

∂x
+ U

∂φ

∂x
= −σxφ1

∂φ2

∂t
+ Φ

∂v

∂y
+ V

∂φ

∂y
= −σyφ2

(4)

In the above the coefficients σx and σy have been introduced for the absorption of waves

in the PML. We will refer to them as absorption coefficients in this work and they will be

assumed to be non negative. In general, these coefficients are not constant, see later, but

in the analysis in this section will assume constant absorption coefficients. We notice that

when

σx = σy = 0 (5)

we are reduced to the original linearized 2-D shallow-water equations with

u = u1 + u2 + u3 (6)

v = v1 + v2 + v3 (7)

φ = φ1 + φ2 (8)

The spatial derivatives involve only the total fields of u, v and φ which are assumed to be

continuous at the interface between the interior domain and the PML. Two types of interfaces
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are being created, namely, the interfaces between the interior domain and the PML domain

and those between two adjacent PML domains, see the following diagram.

PML (0, σy) (σx, σy)
(0, 0) (σx, 0)

interior PML

A similar approach was used for the linearized shallow-water equations in oceanography

by Darblade et al. (1997). If we use the split suggested by Hu (1996a), the linearized system

will have a solution u2 = 0 and thus as if we didn’t split the u variable in the PML.

The dispersion relation (see Darblade, 1997) between possibly complex wavevector

(kx, ky) and possibly complex frequency ω can be obtained (using MAPLE symbolic

manipulator)

−ω2W 3
xW 3

y Z
[
Φ(X2 + Y 2)− F 2 + Z2

]
= 0 (9)

where

Z = 1 + iUX (10)

Wx = σx − iω, Wy = σy − iω (11)

X =
kx

Wx

, Y =
ky

Wy

, F =
f

ω
. (12)

These equations imply that Wx and Wy are not zero, but the vanishing of these variables is

included in (9). In the case we include the terms with V , the dispersion relation will be the

same except for Z which will depend on V as follows

Z = 1 + iUX + iV Y. (13)

The solution of the dispersion equation (9) can have stable and unstable solutions.

2.3 Reflection and transmission at an interface between two do-

mains

We quote here the necessary conditions for perfect transmission of plane waves at the

interface between 2 distinct domains, D1, and D2. This includes the interface between

the interior limited area domain and the PML domain, see Darblade (1997).
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The linearized S-W equations can be viewed as the split field PML linearized S-W

equations with both absorption coefficients being zero across an interface normal to x and y

between an interior domain and a PML domain.

Following Darblade (1997), we let the interface Γ between the two domains D1 and D2

be a line x = x0. Let σxi
, σyi

, i = 1, 2 be the absorption coefficients in the x, y directions in

Di. The variables u, v, φ are continuous across the interface Γ. The necessary conditions for

the perfect transmission at the interface of plane wave in the form

ψ = Ψ0 ei(kxx+kyy−ωt)

where ψ = (u1, u2, u3, v1, v2, v3, φ1, φ2) is the solution of (4) if

1. The triplet (ω, kx, ky) satisfies the dispersion equation (9)

2. The amplitudes Ψ0 are the solution of the linear homogeneous system for which the

determinant is the dispersion equation (9).

The sufficient condition for perfect transmission is σy1 = σy2 . Note that if the interface is

parallel to the y axis, the condition becomes σx1 = σx2 .

3 Numerical testing

A 2-D linearized shallow-water equations solver based on the explicit time differencing

scheme of Miller-Pearce is used (see Appendix of Miller and Pearce, 1974). This scheme

is implemented on a non-staggered grid but provides a fair comparison since all methods are

tested using the same discretization. The scheme has a CFL stability condition

∆t ≤
√

(∆x)2 + (∆y)2

√
Φ
√

2

Spatial differencing of the linearized shallow water equations was carried out on a rectangular

domain of 141×141 grid points, with a uniform spatial horizontal grid length of ∆x = ∆y =
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100km. We used values of H = hav = 5000m and a time step of ∆t = 120sec. At the

outer boundary of the PML domain we apply characteristic boundary conditions. On the

boundary line we imposed φ − √
Φ vN at all points and vT at the inflow points, where vN

and vT are the outward normal and tangential components of velocity, respectively.

We compared the results with a control simulation computed on a much larger domain of

400 by 400 grid points which is not affected by the boundary conditions for the integration

time span. The PML domain contains points (x, y) such that 50 < |x|/∆x < 70 and

50 < |y|/∆y < 70.

3.1 Testing Adjustment case

We investigated the permeability of the boundaries for the PML case for the linearized

shallow-water equations. The initial state considered is with ∇φ(x, y, 0) 6= 0 and u(x, y, 0) =

v(x, y, 0) = 0. Since the system is not in geostrophic balance, the system radiates adjustment

gravity waves and it will adjust to a balanced state given by the stream function ψ(x, y) which

satisfies the equation
(

∂2

∂x2
+

∂2

∂y2
− f 2

Φ

)
ψ(x, y) = −f 2

Φ
φ(x, y, 0) (14)

See Gill (1982, section 7.2.2) for details and McDonald (2002). For all our numerical tests

we used ∆x = ∆y = 100km and Lx = Ly = 10, 000km. In all the tests conducted, we used

Φ = (5000m) g, and φ̂ = (500m) g. The experiment starts with a bell-shaped Gaussian at

the center of the domain

φ(x, y, 0) = Φ + φ̂ exp



−

[
x− Lx/2

Lx/10

]2


 exp



−

[
y − Ly/2

Ly/10

]2


 (15)

with u(x, y, 0) = v(x, y, 0) = 0 and the advecting velocities U, V are also set to zero. The

adjustment process radiates away gravity waves from the center of the domain.

The absorption coefficients are varied gradually inside the PML. Typically, one uses

σx = σm

∣∣∣∣
x− x`

D

∣∣∣∣
γ

, σy = σm

∣∣∣∣
y − y`

D

∣∣∣∣
γ

, (16)
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where x`, y` denote the location where the PML starts, D is the depth of the layer, γ is a

constant (see Hu, 1996b). A PML of depth of only 20∆x, was used where the parameters

governing the spatial variation of σx, σy for the absorbing layer were γ = 3 and σm = 0.0018.

The asymptotic state arrived at by solving the balance equation (14) is compared as in

McDonald (2002) with the 48-hour forecasts to assess the transparency of the boundaries.

We display in Fig. 1 various stages of the adjustment process showing that h(x, y, t) is

always circularly symmetric. At the top left plot we show the initial condition, a Gaussian

bell at the center of the domain. At the top right plot one can see the solution after 6 hours.

The bottom plot gives the solution after 42 hours. The rms differences between a 48-hour

forecast and the asymptotic solution given by the balanced state are provided in Table 1.

This balanced state arrived at by solving (14) with φ(x, y, 0) given by (15) and ψ = (5000m)g

on the boundary is not displayed, but visually identical to the 48 hour forecast shown in the

bottom plot of Figure 1.

These results show that the boundaries are almost transparent to the adjustment waves,

that is, the waves exit without reflection. The forecast is almost identical to the the

asymptotic balanced state described in McDonald (2002).

A graph of the mean absolute divergence (in sec−1) multiplied by 108 is displayed for the

propagation of the bell-shaped Gaussian for the case of adjustment is provided in Fig. 2.

The absolute value of divergence is displayed for the small domain with PML case, small

domain without PML and large domain. The results of PML case and the large domain

are practically indistinguishable for up to t = 48 hours. The case of no PML shows large

deviations starting at t = 14 hours but later settles to the common value at about t = 42

hours.
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3.2 Testing Advection with PML

The linearized shallow water equations are given by (1)-(3) and have an analytic solution

describing advection of a bell-shaped Gaussian with constant velocity (U, V ) starting from

center of domain at position (xc, yc). Thus we have an analytical solution to compare

propagation of the Gaussian using the PML approach. The analytical solution for the bell-

shaped Gaussian takes the form

φ(x, y, t) = Φ + φ̂ exp



−

[
x− xc − Ut

Lx/10

]2


 exp



−

[
y − yc − V t

Ly/10

]2


 (17)

with (u, v) in geostrophic balance. As mentioned by McDonald (2002) the analytic

divergence is zero, and so this provides an additional test of the efficacy of the scheme

used.

We tested the split PML for 2 cases, one is a wave propagating parallel to the x-axis and

the other at an angle of 45◦ with it.

1. Propagation parallel to the PML x axis

PML of 20 grid points, U = 50m/sec, σm = .0018, γ = 3, f plane and θ = 30◦ where

θ is the latitude at which the Coriolis factor is calculated. A plot of the evolution of

the advection of the bell-shaped Gaussian out of the area using the PML is provided.

We display it for a period of integration of 39 hours in Fig. 3. The figure shows that

h(x, y, t) is approximately a decaying translating Gaussian. We see that the PML layer

is very effective and performs well as an absorbing boundary condition. The root-mean

squared difference between the 48 hour forecast and the analytical solution is provided

in Table 2.

A graph of the mean absolute divergence (in sec−1) multiplied by 108 for the prop-

agation of the bell-shaped Gaussian for the case of propagation parallel to the PML

is presented in Fig. 4. The results of all 3 cases coincide for the first 32 hours. The

results of the PML coincide with those of the large domain for the 48 hour forecast
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whereas the results in the small region without PML show a big increase as the bell

reaches the boundary (Fig. 4). As the bell reaches the boundary, the mean absolute

divergence for the case without PML drastically increase, while the other two cases

tend to nondivergence as in the analytical solution.

2. Propagation of bell-shaped Gaussian at an angle of 45◦

We start with the bell-shaped Gaussian at the center of the domain and advect it so that

it exits through a corner, i.e. (xc, yc) = (Lx/2, Ly/2) and (U, V ) = (50m/sec, 50m/sec)

thus ensuring that the Gaussian exits at the corner defined by (Lx, Ly).

In the implementation of the PML as an absorbing boundary condition we used a

σ curve very similar to that used by Tam et al. (1998). The σ curve (see Fig. 8)

starts with a value of σ = 0 at the fifth mesh point from the interface between the

computational domain and the PML. It is then followed by 8 mesh points where a

cubic spline curve is used until the full value of σx = σy = σm is attained . This was

important for the case where artificial damping was used in the case where the bell

was propagating at an angle.

We present graphically the generation of instabilities in the PML for this case. As

a cure to instabilities manifested (confined) primarily to short waves, we applied a

9-point smoother in the PML

uij ←
1∑

k=−1

1∑

`=−1

ui+k j+`

22+|k|+|`| (18)

Figure 5 shows the propagation of the Gaussian bell at an angle of 45◦. We have shown

the solution at 24 and 36 hours. The intial solution is the same as in top left of Figure 3.

Since the advection speed is 50m/sec in each direction, the Gaussian bell is travelling along

the diagonal from the center of the domain. Compare top left plot of Figure 5 to top right

plot of Figure 3. Figure 7 shows the 2-D plot of the Gaussian bell propagating at an angle

with and without a 9-point smoother after 60 hours of forecast. Without the smoother the
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growth of the excited unstable solution spreads back into the interior computational domain

(bottom plot of Fig. 7) whereas using artificial damping provided by the 9 point Laplacian

is effective in suppressing the instabilities of the PML equations. This filter continuously

damps the instabilities once they propagate into the PML (top right plot of Fig. 7).

A graph of the mean absolute divergence (in sec−1) multiplied by 108 for the propagation

of the bell-shaped Gaussian for the case of propagation at an angle of 45◦ to the PML is

presented in Fig. 6. The results agree up to t = 34 hours and then display small variations

probably due to use of 9-point smoother.

4 Summary and conclusions

In this paper we have described and implemented the PML split equations approach for the

linearized shallow water equations based on an explicit Miller-Pearce scheme finite difference

discretization (see Appendix of Miller and Pearce, 1974).

The split PML approach was tested for its efficiency as an absorbing boundary condition

for the linearized shallow water equations using three different scenarios. First we tested

permeability of the PML absorbing boundary conditions to adjustment waves. Measured

against an asymptotic balanced state we found small rms errors for the 48-hour forecast in

the same range as those found by Mc Donald (2002). The rms between the 48h forecast

and the asymptotic solution are only slightly larger than those obtained in the best case of

McDonald (2002). This may be attributed to our use of a grid-A model.

In a second scenario we tested the split-PML for advection of the bell shape - viewed

as a geostrophically balanced sharp pseudo-meteorological feature (McDonald, 2002) for 2

separate cases, both starting with a bell-shaped Gaussian at the center of the computational

domain.

a) the mean flow is parallel to the PML layer.

b) propagation at an angle of 45◦ exiting through a corner.
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An analysis similar to that of Tam et al. (1998) finds that in such case (i.e. propagation

at an angle, when the mean flow is not unidirectional) the split PML for linearized shallow

water equations supports unstable solutions. Application of a 9-point Laplacian filter

stabilizes the PML. Our numerical experiments show that the stabilized PML performs

well as an absorbing boundary condition for the linearized shallow water equations including

the Coriolis factor. Our results compare well with those obtained by Mc Donald (2002) for

the same case.

The research carried out here has a natural extension to the formulation of boundary

conditions for advanced mesoscale models, such as the MM5 and the new MRF models,

and may improve upon the combination of nudging and sponge layer presently used in such

models. Work with PML in the framework of mesoscale models will mean that gravity waves

can not only leave the domain but also enter it without hindrance (McDonald, 2003).

Our results are encouraging and constitute a step towards using the PML absorbing

boundary conditions for full 3D atmospheric and ocean models. One avenue to achieve

this goal is to implement the PML boundary conditions to a 3D multi-layer shallow water

equations model as a way to proceed towards full 3D models. This can be done for the

linearized hydrostatic equations by carrying out a normal mode decomposition yielding a

shallow water equation for each vertical mode.

Development of a non-split version of both the linearized and the nonlinear version of

the shallow water equations based on ideas put forward by Abarbanel and Gottlieb (1998),

Abarbanel et al. (1999) and Hesthaven (1998) is presently also being investigated.
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Captions

Fig. 1 The adjustment of a bell shape using PML absorbing boundary condition: on the

top left at 0 hour, on the top right at 24 hour forecast and on the bottom at 42 hour

forecast.

Fig. 2 Graph of the mean absolute divergence (in sec−1) for the adjustment case multiplied

by 108. Case of no PML, large computational domain and a PML of 20 gridpoints

thickness are displayed (in red, green and blue respectively).

Fig. 3 The advection of a bell shape out of computational domain moving parallel to PML

x-direction: on the top left at 0 hour and top right at 24 hour forecast, on the bottom

left at 36 hour and bottom right at 39 hour forecast.

Fig. 4 Graph of the mean absolute divergence (in sec−1) for the case of advection of a bell

shape out of computational domain moving parallel to PML multiplied by 108. Case

of no PML, large computational domain and a PML of 20 gridpoints thickness are

displayed (in red, green and blue respectively).

Fig. 5 The advection of a bell shape out of computational domain moving at angle of 45

degrees to PML x-direction: on the left at 24 hour and on the right at 36 hour forecast.

Fig. 6 Graph of the mean absolute divergence (in sec−1) for the case of advection of a

bell shape out of computational domain moving at an angle of 45◦ to PML multiplied

by 108. Case of no PML, large computational domain and a PML of 20 gridpoints

thickness are displayed (in red, green and blue respectively).

Fig. 7 The advection of the bell shape (2-D) out of the computational domain moving at

an angle of 45◦ to PML: on the top left at 20 hour, on the top right at 60 hour forecast

using 9 point filter. Simulation showing damping of unstable waves. On the bottom

22



at 60 hour forecast without using the 9 point filter. Simulation showing propagation

of unstable waves in the PML.

Fig. 8 Distribution of sigma within PML layer for the case of bell propagation at an angle

of 45◦
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Table Captions

Table 1 Root-mean squared differences between a 48-hour forecast and the asymptotic

solution given by the balanced state.

Table 2 Root-mean squared difference between the 48 hour forecast and the analytical

solution.
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Figure 1: The adjustment of a bell shape using PML absorbing boundary condition: on the

top left at 0 hour, on the top right at 24 hour forecast and on the bottom at 42 hour forecast.



Figure 2: Graph of the mean absolute divergence (in sec−1) for the adjustment case multiplied

by 108. Case of no PML, large computational domain and a PML of 20 gridpoints thickness

are displayed (in red, green and blue respectively).
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Figure 3: The advection of a bell shape out of computational domain moving parallel to

PML x-direction: on the top left at 0 hour and top right at 24 hour forecast, on the bottom

left at 36 hour and bottom right at 39 hour forecast.



Figure 4: Graph of the mean absolute divergence (in sec−1) for the case of advection of a

bell shape out of computational domain moving parallel to PML multiplied by 108. Case of

no PML, large computational domain and a PML of 20 gridpoints thickness are displayed

(in red, green and blue respectively).
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Figure 5: The advection of a bell shape out of computational domain moving at angle of 45

degrees to PML x-direction: on the left at 24 hour and on the right at 36 hour forecast.



Figure 6: Graph of the mean absolute divergence (in sec−1) for the case of advection of a

bell shape out of computational domain moving at an angle of 45◦ to PML multiplied by

108. Case of no PML, large computational domain and a PML of 20 gridpoints thickness

are displayed (in red, green and blue respectively).



Figure 7: The advection of the bell shape (2-D) out of the computational domain moving

at an angle of 45◦ to PML: on the top left at 20 hour, on the top right at 60 hour forecast

using 9 point filter. Simulation showing damping of unstable waves. On the bottom at 60

hour forecast without using the 9 point filter. Simulation showing propagation of unstable

waves in the PML.
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Figure 8: Distribution of sigma within PML layer for the case of bell propagation at an angle

of 45◦



Table 1: Root-mean squared differences between a 48-hour forecast and the asymptotic

solution given by the balanced state.

rms for h rms for u rms for v

0.64 0.01 0.01



Table 2: Root-mean squared difference between the 48 hour forecast and the analytical

solution.

rms for h rms for u rms for v

2.27 0.30 0.50


