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Abstract

Comparing the location and size of functional brain activity across subjects is difficult
due to individual differences in folding patterns and functional foci are often buried
within cortical sulci. Cortical flat mapping is a tool which can address these problems
by taking advantage of the two-dimensional sheet topology of the cortical surface. Flat
mappings of the cortex assist in simplifying complex information and may reveal spatial
relationships in functional and anatomical data that were not previously apparent.
Metric and areal flattening algorithms have been central to brain flattening efforts to
date. However, it is mathematically impossible to flatten a curved surface in 3-space
without introducing metric and areal distortion. Nevertheless, the Riemann Mapping
Theorem of complex function theory implies that it is theoretically possible to preserve
conformal (angular) information under flattening. In this paper we present a novel
approach for creating flat maps of the brain that involves a computer realization of
the 150-year-old Riemann Mapping Theorem. This approach uses a circle packing
algorithm to compute an essentially unique (i.e. up to Möbius transformations), discrete
approximation of a conformal mapping from the cortical surface to the plane or the
sphere. Conformal maps are very versatile and offer a variety of visual presentations
and manipulations. Maps can be displayed in three geometries: the Euclidean and
hyperbolic planes, and the sphere. A wide variety of Möbius transformations can be
used to zoom and focus the maps in a particular region of interest. Conformal maps are
mathematically unique and canonical coordinate systems can also be specified on these
maps. Although conformal maps do not attempt to preserve linear or areal information,
locally they appear Euclidean. Conformal information allows shape to be preserved.
In this paper we describe our approach and present some of advantages of conformal
flattening using circle packings. We discuss the notion of a conformal structure on a
surface, and describe the three geometries of constant curvature surfaces where our
maps reside, as well as classical conformal automorphisms (Möbius transformations) of
these surfaces. We describe how circle packing can be used to obtain quasi-conformal
mappings of surfaces and demonstrate the advantages of this approach by producing
quasi-conformal flat maps with data from the Visible Man and from an MRI volume of
the human cerebellum.
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1. Introduction

The cortex of humans and other primates is a highly convoluted surface. The folds
(gyri) and fissures (sulci) of the brain vary in size and position from person to person.
This variability has made it difficult for medical researchers to analyze and compare
functional regions of the brain within and between subjects.

Non-invasive anatomical and functional data are available from a variety of modali-
ties, including magnetic resonance imaging (MRI), functional MRI (fMRI) and positron
emission tomography (PET) (see Toga and Mazziotta (1996) for a compilation of vari-
ous methods). A common approach to visualizing functional data is to project a focus
of activation on a two-dimensional cross-section or slice of a brain volume. However,
this approach suffers from a number of disadvantages due to the highly folded structure
of the cerebral cortex. Activated foci that appear close together on a two-dimensional
brain slice or 3D surface rendering may be quite far apart when visualized on the un-
folded cortical surface. In a given individual, foci are often buried within cortical sulci
and appear in a number of discrete slices, making it difficult to compare multiple foci
simultaneously. Comparing the location and size of functional activity across subjects
is difficult due to individual differences in folding patterns (Rehm et al., 1998).

To address some of these problems, a number of methods have been implemented
that take advantage of the two-dimensional sheet topology of the cortical surface. These
methods begin by reconstructing and then flattening the cortical surface. Flat map-
pings of the cortex assist in simplifying complex information and may reveal spatial
relationships in functional and anatomical data that were not previously apparent.
Traditionally, the complex surface of the cerebral cortex was reconstructed by trac-
ing contours from histological sections. Wire frames or sheets were created from the
contours and these were then aligned and stacked to reconstruct the surface (Rosa
et al., 1997). More recently, Van Essen and colleagues (Drury et al., 1996; Drury and
Van Essen, 1997; Van Essen and Drury, 1997; Van Essen et al., 1998) and Dale and
colleagues (Dale and Sereno, 1993; Dale et al., 1999; Fischl et al., 1999) have devel-
oped computational tools for this purpose. These tools generally work by attempting
to reduce the metric or areal distortion between the original surface and the flattened
surface.

Computational cortical surface reconstruction from MRI scans yields a polygonal
mesh representing the surface of the grey matter. This mesh generally contains topolog-
ical errors, such as holes and handles, which must be corrected before surface flattening
can begin. In order to reduce distortions during flattening, cuts are introduced in the
corrected mesh. The surface is then flattened by applying functions that adjust the
edge lengths forming the polygonal mesh, allowing the surface to unfold. Drury et al.
(1996) use longitudinal and torsional forces so that linear and angular distortions are
reduced while unfolding the surface. Fischl et al. (1999) use the gradient of a func-
tion incorporating geodesic distance and area so that linear and areal distortions are
reduced. These types of metric and areal flattening algorithms have been central to
brain flattening efforts to date.

Flat mapping traces at least to Ptolemy’s efforts to represent the earth’s surface on a
flat sheet of paper. Shortcomings were evident from antiquity, and attempts to preserve
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one or another geometric property underlay the myriad types of maps developed down
the ages. The mathematical issues are now much clearer and one can prove that it is
impossible to flatten curved 3D surfaces without introducing metric and areal distor-
tions (Polya, 1968). On the other hand, the Riemann Mapping Theorem of 1852 from
complex function theory showed that it is possible to preserve angular — technically,
conformal — information (Ahlfors, 1966). Knowing such maps exist is not enough as
coarse approximations were even impossible to calculate until recently, particularly for
surfaces as highly curved and complicated as the brain.

In this paper we present a novel approach for creating flat maps of the brain that
involves a computer realization of the 150-year-old Riemann Mapping Theorem. This
approach uses a circle packing algorithm to compute an essentially unique discrete ap-
proximation of a conformal map that carries the cortical surface into one of the classical
geometric spaces, the sphere, the plane, or the hyperbolic plane. Well-understood self-
maps of the target spaces, classical functions called Möbius transformations, preserve
conformal integrity yet allow one to navigate freely in the flat maps. The canonical
nature of the maps and the versatility provided by transformations are the principal
advantages of conformal flattening, and these persist in our discrete approximations.
For example, our hyperbolic flat maps have the potential for establishing self-consistent
coordinate systems since they all reside in a common setting, a disc, yet with Möbius
transformations one can instantly bring any region of interest into focus.

We illustrate our flat-mapping methods with two cortical surfaces: a human cere-
bellum and a human cerebrum. We begin in Section 2 with a brief description of the
cortical surface isolation techniques that we employed to obtain the triangulated corti-
cal surface reconstructions we use. In Section 3 we describe the notion of a conformal
structure on a surface, define conformal maps, and discuss the three classical surfaces of
constant curvature where our maps reside and their conformal automorphisms (Möbius
transformations). In Section 4 we describe how circle packing can be used to obtain
quasi-conformal mappings of surfaces, and in Section 5 we demonstrate the advantages
of this approach by producing quasi-conformal flat maps with data from the Visible
Man (The National Library of Medicine, 2000) and from an MRI volume of the human
cerebellum. Here we illustrate the versatility provided by the Möbius transformations.
We conclude by demonstrating the versatility of our approach and provide a discussion
of what we see as some of advantages of conformal flattening using circle packings.

2. Cortical Surface Isolation

In order to create a flattened map of a surface, we require a discrete representation of
that surface. For cortical data, the process of obtaining such a surface is an involved
and often tedious procedure. Each step in the process is the subject of numerous
publications which will not be discussed in detail here.

We use triangulated meshes as discrete representations of our surfaces. All current
flattening approaches, including our own, require a topologically correct surface, i.e.
a piecewise flat linear surface that triangulates a 2-dimensional sphere or disc. The
flat triangular faces are connected along edges. Each edge of the mesh is an interior
edge (contained in exactly two triangles) or a boundary edge (contained in exactly one
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triangle). If there is a boundary, it has only one boundary component; that is, there is
a single closed chain of boundary edges forming the boundary. Formally, this mesh is
an oriented surface that is topologically equivalent to a disc (when a boundary exists)
or a sphere (when there is no boundary). We illustrate our flat-mapping method using
two cortical surfaces.

Human cerebellar surface. A high-resolution T1-weighted MRI volume was ac-
quired (Holmes et al., 1996) and a strategy for isolating the cerebellum in a consistent
manner across subjects was developed (Rehm et al., 2000). The cerebrum, brainstem
and cerebellar peduncles were stripped away, producing a cerebellar volume defined by
a plane parallel to the posterior commisure-obex line and orthogonal to a plane passing
through the vermal midline. The result is an isolated cerebellum with angled cuts of
the brainstem peduncles analogous to those produced by dissection (Divernoy, 1995).
This volume was subsequently parcellated according to Schmahmann et al. (1999) and
labels (twelve lobes plus white matter) were assigned to each voxel.

To facilitate the production of a simply-connected smooth surface, the cerebellar
volume was heavily smoothed and an isosurface triangulated mesh of the surface was
created using a marching cubes algorithm (Lorensen and Cline, 1987; Schroeder et al.,
1998). The marching cubes algorithm is known to produce topological defects. These
were corrected semi-automatically using in-house software. The resulting surface, a
topological 2-sphere composed of 56,676 triangles and 28,340 vertices, was parcellated
as described above (Figure 1).

============
Figure 1 about here.
============

To create a planar flat map of a topological 2-sphere, a boundary must be introduced
into the surface to act as the boundary of the 2-disc under flattening. A boundary
corresponding to the white matter cut-plane and filled-in fourth ventricle was introduced
where the brainstem attaches to the cerebellum. Introducing the boundary resulted in
a surface topologically equivalent to a 2-disc. This surface and the uncut surface are
used in our surface flattening procedure.

Human cerebral surface. This surface corresponds to the right hemisphere of the
Visible Man data set (The National Library of Medicine, 2000). A surface reconstruc-
tion of this data was created by David Van Essen and Heather Drury at Washington
University and is described in Drury et al. (1996) and Drury and Van Essen (1997).
This surface, illustrated in Figure 2, was selected to demonstrate that our flattening
strategy applies equally well to any cortical surface. It contains 103,845 triangles and
52,360 vertices. The surface was parcellated into anatomically defined lobes and four
cuts have been introduced along various sulci to create a surface boundary. These extra
cuts were introduced by Van Essen and Drury in an effort to reduce length and areal
distortion in their flattening procedure.

============
Figure 2 about here.
============
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3. Conformal Maps and Surfaces of Constant Curvature

In this section we discuss surface geometry, conformal mapping, and our target sur-
faces, the sphere, plane, and disc. This is an overview: the interested reader will find
additional details in the Appendix.

In describing a surface S in 3-space, preliminary considerations include topology,
orientation, and smoothness. The surfaces of interest here are topological spheres or,
if they have boundary, topological discs (i.e. connected, oriented, genus zero and with,
respectively, no boundary or one boundary component) and can be thought of as a
wrinkled rubber sphere or a wrinkled rubber sheet, respectively. Each cortical surface
has an obvious “outward” direction giving it an orientation. Regarding smoothness,
our cortical “surfaces” are merely finite collections of data points from which we create
triangulated polyhedra. Treating these as piecewise smooth surfaces gives us a well-
developed language and full range of fundamental mathematical concepts and theory;
in particular, our surfaces inherit from R

3 a Riemannian metric.
The Riemannian metric on S determines the three main structures that are pertinent

to flattening: 1) metric structure, meaning lengths and areas; 2) curvature structure,
related to peaks, valleys, and folds of S; and 3) conformal structure, reflecting angles
between curves in S. The mathematical notions of length, area, curvature, and angle
on S all fit naturally with our native intuitions about these quantities. Note that we
use what is known as Gaussian curvature because it is intrinsic to the surface S and
doesn’t depend on knowing how S lives in 3-space.

The goal in flattening is to move data from a cortical surface to a potentially more
useful setting. A mapping between surfaces S1 and S2 is a one-to-one function f :
S1 −→ S2 identifying each point p of S1 with a corresponding point q = f(p) in S2; the
function f (alternately, the image f(S1) in S2) is called a map of S1. The target surfaces
for our maps are the three classical geometric surfaces represented by the (Riemann)
sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}, the Euclidean plane R2, and the
hyperbolic plane modeled as the unit disc D = {(x, y) ∈ R2 : x2 + y2 < 1}. These
spaces have well-known Riemannian metrics of constant Gaussian curvature +1, 0,
and −1, respectively. We generalize the term flat map of S to mean a map from S into
any one of these spaces of constant curvature.

Value is often attached to the metric structure S inherits from 3-space, and a mapping
which preserves distance is said to be an isometry. However, a surface with non-constant
Gaussian curvature cannot be mapped isometrically to a surface of constant Gaussian
curvature; that is, every flat mapping of a cortical surface necessarily introduces metric
distortion.

On the other hand, each of our surfaces S also inherits a complementary but less
familiar conformal structure related to angular data. A mapping is said to be conformal
if it preserves the angles (magnitude and orientation) between any two intersecting
curves in S. The Riemann Mapping Theorem (RMT) of 1852 (Ahlfors, 1966) asserts
that for every simply connected surface S having a conformal structure there is a
conformal map from S onto precisely one of S2, R2, or D. In our setting, every cortical
surface can be mapped conformally onto S2 or D depending on whether it is a topological
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sphere or disc, respectively. The RMT also asserts that such mappings are essentially
unique, meaning up to Möbius transformations, a well-defined class of normalizations
discussed in the Appendix. As for Euclidean maps, if S is a topological disc then it has
an astounding array of conformal maps; for example, one can deduce from the RMT
that S can be mapped conformally onto any region in R2 that is bounded by a simple
closed curve.

So the first advantage of conformal flat mapping is the guarantee of existence and
conditions for uniqueness. Additional advantages lie with the geometries of the classical
surfaces in which the maps reside. These surfaces are conveniently nested: D ⊂ R2, and
R

2 is routinely identified, under stereographic projection, with S2 punctured at the south
pole (see the Appendix). Moreover, it is convenient to identify R2 with the complex
plane C, so every point (x, y) ∈ R2 corresponds with a complex number z = x + iy.
This gives us the advantage of a complex arithmetic which can be used in any of the
three settings. Each target surface T has a rich family of (conformal) automorphisms,
one-to-one conformal maps from T onto itself; these form a mathematical group under
composition denoted by Aut(T ).

Looking at the surfaces separately we can highlight their main geometric features;
further details are given in Table 1 and in the Appendix.

The Sphere. S2 has constant Gaussian curvature +1. Circles are intersections of
planes with S2; geodesics are arcs of great circles. The automorphism group, Aut(S2),
is precisely the group M of all Möbius transformations of S2 (see Table 1). Though
automorphisms map circles to circles, they do not respect circle centers and geodesics.
Any triple of points of S2 can be mapped to any other triple by a unique element
of Aut(S2). In Figure 3(a), for instance, the north and south poles, N and S, and
an equatorial point E are marked and a familiar latitude/longitude grid is imposed.
Automorphisms yield Figures 3(b) and 3(c). In 3(b), S and N remained fixed while E
was shifted towards N, while in 3(c), S, N, and E were all moved to new locations.

============
Figure 3 about here.
============

The Plane. The Euclidean plane, identified now as C, has constant Gaussian cur-
vature zero. Aut(C) consists precisely of the affine maps (rotations, dilations, and/or
translations), so each automorphism will map circles to circles, centers to centers, and
geodesics to geodesics. The complex plane can be mapped to the surface of the sphere
using stereographic projection. This maps both circles and straight lines of C to circles
of S2.

The Disc. The hyperbolic plane is a geometric surface of constant Gaussian cur-
vature -1. There are many ways to represent it concretely; for us the most conve-
nient is the Poincarè disc model. Its point set is the open unit disc in C, namely
D = {z : |z| < 1}, and distances between two points are measured in the metric ρ de-

fined by ρ(z, w) =
1

2
log

(
|1− zw|+ |z − w|
|1− zw| − |z − w|

)
. The points of the unit circle, ∂D, while

not in the hyperbolic plane, can be regarded as an “ideal” boundary, and hyperbolic
distances grow as one approaches that boundary. Thus points z, w which appear to our
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“Euclidean” eyes as being close to one another can, if near ∂D, be separated by a huge
hyperbolic distance. In fact, any path running from a point of D to an ideal boundary
point will have infinite hyperbolic length (see Figure 4).

============
Figure 4 about here.
============

Hyperbolic circles correspond with Euclidean circles lying in D (though hyperbolic
centers and radii are distinct from Euclidean centers and radii). Hyperbolic geodesics
correspond with arcs of Euclidean circles which meet the unit circle ∂D in right angles.
Any Euclidean circle which is internally tangent to ∂D, called a horocycle, is treated
as a hyperbolic circle of infinite radius with the point of tangency as its (ideal) center.
Unlike in the other geometries, all automorphisms of D are isometries, so they preserve
hyperbolic circles, circle centers, and geodesics.

Figure 5 illustrates this geometry. Figure 5(a) displays several objects: a shaded
disc of hyperbolic radius 0.4 centered at the origin, a triple of mutually tangent circles
(including a horocycle) and the (hyperbolic) triangle formed by their centers, and a
centered polar-coordinate-style reference grid. Figures 5(b) and 5(c) show these same
objects after applying the automorphism φ : z 7→ (3z + 1)/(3 + z) once and twice,
respectively. In each image the shaded disc has the same hyperbolic radius, though our
Euclidean eyes see it as getting progressively smaller as it approaches the boundary.
Also the grid remains an orthogonal grid, but with a new “pole”.

============
Figure 5 about here.
============

Summary. The three classical geometries form a unified and nested hierarchy. They
are nested as sets, D ⊂ C ⊂ S2; their automorphisms are nested as subgroups of M,
Aut(D) < Aut(C) < Aut(S2) = M; and both the automorphisms and the inclusion
maps preserve circles. In particular, any set C which is a circle in one space will neces-
sarily be a circle in any of the other spaces which happens to contain it. Also, all the
geometries are “locally Euclidean”, meaning that at high magnification, the neighbor-
hood of any point looks Euclidean — small circles look like Euclidean circles, geodesics
look like Euclidean straight lines, and so forth. In other words, these geometries all
look locally like our familiar Euclidean world. Various properties of these geometric
surfaces are summarized in Table 1; see the Appendix for details.

============
Table 1 about here.

============

4. Computing Approximations to Conformal Maps Via Circle Packing

Conformal maps are guaranteed to exist by the RMT, but are impossible to compute
precisely — and until recently, have in fact not even been susceptible of approximation.
However, an area of mathematics known as circle packing, introduced in 1985 (Thurston,
1985), now provides a computational and theoretical framework we can exploit. The
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mathematical focus in this paper is on practical numerical approximations of conformal
maps via circle packing. The resulting “discrete conformal” maps have a controlled but
non-negligible level κ of conformal distortion — technically they are κ-quasiconformal,
as we describe in the Appendix. We note that while reducing this distortion is desirable,
the discrete conformal geometry of circle packing has such strong parallels to classical
conformal geometry in both theory and intuition that to a large degree the advantages
of conformal maps are already present in our discrete versions.

A circle packing is a configuration of circles with a specified pattern of tangencies.
Figure 6 shows some examples, but for us the underlying pattern will be associated
with a cortical surface S. In particular, S is presented as a triangular mesh that is
topologically equivalent to a sphere or disc. It is important to isolate the pattern of this
mesh from its geometry, so we describe the triangulation in terms of its combinatorics
K and its geometric realization V , where K is a (simplicial) complex representing the
connectivity of the vertices, edges, and faces while V is a set of vertex positions (points
in R3) defining the shape of the mesh. We write S = (K,V ).

============
Figure 6 about here.
============

Given K, a circle packing P for K in one of our target surfaces T is a collection
{cv} of circles in T , one for each vertex v of K, so that cv is tangent to cu whenever
〈v, u〉 is an edge of K and so that a triple 〈cv, cu, cw〉 of mutually tangent circles is
positively oriented in T whenever 〈v, u, w〉 is a positively oriented face of K. Such a
circle packing gives us a new triangulated surface S ′ lying in T where S ′ = (K,V ′),
i.e. the same combinatorics but a new set of vertex positions determined by the centers
of the circles. The induced triangulation S ′ of a packing is shown in Figure 7. The
new surface S ′ is the flat map of the original surface S. Since S and all the associated
packings share the same combinatorics, as encoded in K, each vertex of S corresponds
to a vertex v of K and hence to a circle cv of P . Thus the three vertices defining any
face of S may be identified with the three vertices defining a triangle in S ′, yielding a
surface map f : S −→ S ′. A map defined in this way will be called a discrete conformal
map.

============
Figure 7 about here.
============

Of course, our discrete conformal maps depend on the existence of circle packings
for given (extremely complicated) patterns K. Existence follows from results of Koebe,
Andreev, and Thurston (Koebe, 1936; Andre’ev, 1970; Thurston, 1997). If one treats K
as a type of discrete conformal structure on S, these may be formulated in parallel with
the classical theory. Thus the Discrete Riemann Mapping Theorem (DRMT) asserts
that for every simply connected triangulated surface S there is a discrete conformal map
from S onto precisely one of S2 or D. More precisely, if K is a topological sphere then
there exists a circle packing PK for K lying in S2 and PK is unique up to automorphisms
of S2, while if K is a topological disc, then there exists a circle packing PK for K
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lying in the hyperbolic plane D, the circles associated with boundary vertices of K are
horocycles, and PK is unique up to automorphisms of D.

The packing PK is called the maximal packing for K, and as noted is essentially
unique. When K is a topological disc, however, prescribing boundary radii leads to a
plethora of other discrete conformal maps. Indeed, if v1, · · · , vn denote the boundary
vertices of K, then the Circle Packing Theorem (CPT) (Beardon and Stephenson, 1990)
asserts that given any assignment of positive numbers r1, · · · , rn there exists a unique
(up to Euclidean isometry) circle packing P in R2 such that for each i, i = 1, · · · , n, the
boundary circle cvi of P has the assigned radius ri. The flexibility provided by these
Euclidean packings will be demonstrated in examples later.

The practical question of computing the circle packings guaranteed by the DRMT
occupies the remainder of this section, with further details provided in the Appendix.
The key is the collection R of radii for the circles, termed a packing label for K. Once
R is known, it is straightforward to construct (i.e. lay out) P .

The packing process refers to the methods used to compute (i.e. to approximate)
R, and the key is the extensive system of “flat” local compatibility conditions R must
satisfy. The curvature of a piecewise flat surface S is concentrated at its vertices. Any
interior vertex v of S has a chain of contiguous neighboring vertices that form the
triangular faces surrounding v. To “flatten” the surface at v thus requires adjustment
of these triangles so that the angles they form at v sum to 2π (360 degrees). If the
adjusted triangles are determined by circles and if their radii are recorded in a label
R = {rv}, then trigonometry provides a packing condition for flatness at v. In the
Euclidean setting, this condition is∑

〈v,u,w〉

arccos

{
(rv + ru)

2 + (rv + rw)2 − (ru + rw)2

2(rv + ru)(rv + rw)

}
= 2π,(1)

where this sum is over all faces 〈v, u, w〉 containing v. Analogous formulae apply in the
other geometries (see Table 1). R is a packing label if and only if the packing condition
holds at every interior v. There is (typically) no packing condition for boundary vertices,
which accounts for the extra degrees of freedom a boundary provides.

Computation of R uses an iterative process proposed by Thurston (1985) and refined
by recent work of Collins and Stephenson (2001). The idea behind the algorithm is
simple and elegant. A failure of equality in Equation 1 for a particular v can be
remedied by decreasing rv, the radius of v, if the angle sum is too small (i.e. less than
2π) or by increasing rv if the angle sum is too large (i.e. greater than 2π). Figures 8
and 9 illustrate how decreasing and increasing, respectfully, the radius of a circle can
lead to the correct packing condition with its neighbors.

============
Figure 8 about here.
============

============
Figure 9 about here.
============
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In practice, one starts a packing computation by assigning desired radii to boundary
vertices (if any) and arbitrary labels (i.e. putative radii) to interior vertices. One then
repeatedly readjusts the labels of the interior vertices, one at a time as described above,
until the packing conditions of (1) are (approximately) satisfied for all interior v. The
boundary radii (if any) do not change. There is a comprehensive theory guaranteeing
that the iterative scheme converges to a unique packing label R. Using the values in
R as radii, one lays out the circles to get the associated circle packing P in the target
surface T . The packing in turn determines the associated conformal map from S to T ,
giving a quasi-conformal flat map of S.

A few final comments are in order. There is no packing algorithm known to work in
the spherical setting: all spherical packings are computed in C or D and then stereo-
graphically projected to S2, as described in Section 5. The iterative computations we
have described are purely numeric, not geometric, meaning there is no coherent circle
packing possible until a sufficiently accurate approximation of the final packing label is
reached. Also note that although the packing algorithm involves “local” adjustments,
each depending only on a vertex v and its immediate neighbors, the theory tells us
that the consequences are ultimately global. This is, in fact, the discrete expression of
the rigidity inherent in all conformal structures and underlies the utility of the discrete
methods. Our group has adapted a software package called CirclePack created by
Stephenson that computes the packing radii in any of the three geometries and pro-
vides an interface for displaying and manipulating the resulting circle packings in any
of the three geometries.

5. Cortical Flat Maps

We illustrate the creation and manipulation of flat maps using the concrete surface
triangulations introduced in Section 2. Recall that after preprocessing, each complex
K is a topologically correct sphere or disc. One must exploit the connection with the
original 3D triangulated surface S, each point in the flat map being associated with a
point of S and vice versa. Fundamental information resides with the surface — land-
marks, standard region demarkations, surface distances, sulci, gyri, surface curvature,
etc. Certain aspects of this information can be transferred to the flat map, typically
using common color coding. A region or curve can be marked on the map, but relevant
data such as surface areas and lengths, curvatures, and other metric information, must
always be computed based on the connection to S.

The major computational effort in flattening with circle packings involves approx-
imation of the packing label for the underlying graph K. For small surfaces (under
50,000 vertices), this computation takes less than an hour on a Pentium II 400 MHz
PC. As the surface size increases, the computation times increases substantially. This
computation is a one-time task for a given data set and subsequent manipulations and
transformations occur in real-time. The visual presentation of a circle packing flat map
uses either the circles of the packing or the faces of the geometric triangulation induced
by the packing (see Figure 7). Color is used to encode additional information, such
as anatomical or functional data. The original 3D surface and flat maps in any of the
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geometries can be viewed simultaneously in neighboring windows. Points or regions
chosen on one can be highlighted on the other.

Euclidean Maps. The surface must be a topological disc to be flattened in R2.
When using this scheme for flattening, we assign to each boundary vertex w a label
equal to the average of half the lengths of the two boundary edges containing w on
the original surface. Because of the boundary conditions, the resulting flat map will
have the Euclidean lengths on the boundary preserved. CirclePack then computes
the unique packing label R for K having these prescribed labels for the boundary
radii. Circle packings roughly preserve conformal, not metric structure. We observe
that minimizing metric distortion on the boundary edges does not imply that metric
distortion is small in the interior also. In R2 transformations of the packings involve
the Möbius transformations of Aut(C), translations, dilations, and rotations, giving the
user options for arbitrary real-time renormalizations in CirclePack.

We consider the surfaces described in Section 2. The cerebellar surface acquired a
boundary when the brainstem was removed: 222 vertices/edges. The visible man data
contains a boundary of 873 vertices/edges. A normalization is required before laying
out the circles. For the cerebellum we have chosen to place the center of the horizontal
fissure at the origin and the base of the primary fissure vertically above the origin. The
flat maps for these surfaces are shown in Figure 10.

============
Figure 10 about here.
============

Hyperbolic Maps. This setting also requires that the surface be a topological disc.
We use CirclePack to compute the so-called maximal packing PK by simply assigning
the hyperbolic label∞ to all boundary radii and repacking the interior. The boundary
circles become horocycles in the final configuration. The cerebellum we packed in the
Euclidean setting is repacked in D in Figure 11, left; the same normalizations were
used for the origin and a point directly above the origin (on the positive y-axis). The
cerebrum is repacked and shown in Figure 12, left. Note that the enclosing outer circle
represents the boundary of D (the unit circle) and is not a circle of the packing.

============
Figure 11 about here.
============

============
Figure 12 about here.
============

There are two main features to highlight regarding hyperbolic flat maps. First, the
final packings all lie in a common setting (i.e. they are all disc-shaped), regardless of
data set sizes, normalizations, boundary, any ad hoc surface cuts, and so forth. This
simplifies one of the primary registration difficulties encountered with flat mappings
and presents the mapping in a standard setting consistent with gathering meaningful
statistics. Second is the rich group of rigid hyperbolic motions or Möbius transforma-
tions, Aut(D). The map center is of visual importance in D because there the map
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appears Euclidean with little hyperbolic distortion. CirclePack provides real-time in-
teraction to bring any interior circle to the origin, allowing the map focus to be changed.
Figures 11 and 12 show the effect. A reference coordinate system has been imposed
centered on a point p (Figure 11, left). A user interested in the region around the point
q simply selects that point with a mouse click, immediately transforming the image to
Figure 11, right. The transformed coordinate grid shows the effects, with the grid lines
still intersecting each other orthogonally. In other words, the view is akin to that in
a light microscope: the area of interest is brought to the center and what appears to
our Euclidean eyes as distortion is pushed to the periphery. Recall, however, that the
automorphisms are actually isometries, rigid motions in the hyperbolic sense, so these
changes in focal point have absolutely no effect on any intrinsic hyperbolic structures
needed for computations and statistics.

Spherical Maps. A topological sphere S cannot be mapped into R or D without
introducing cuts; however, there is an essentially unique conformal map to the sphere
S

2 which we approximate with discrete conformal maps. Since there is no packing
algorithm intrinsic to spherical geometry, we employ a mathematical trick. An arbitrary
vertex v0 and all edges containing it are removed (or punctured) from K, leaving a
topological discK∗. Its maximal circle packing PK∗ in D is computed and then projected
stereographically to the sphere; all its boundary circles are tangent to the equator (see
Figure 15(f)). The equator is introduced as the circle for v0, resulting in a spherical
circle packing for the original complex K. This circle packing is then normalized by an
appropriate automorphism of S2, after which the choice of v0 is immaterial.

Consider the data from Figure 1 which is a topological sphere. The automorphism
group of S2 allows one to choose three points for normalization, typically points for the
poles N and S and a point to be placed at E on the equator. Figure 13 displays the
spherical packing for the cerebellum with the precentral fissure mapped to N , the center
of the horizontal fissure mapped to S and the base of the primary fissure mapped to E.
Figure 13(a) is a typical view and Figure 13(b) rotates the sphere to display the location
of the brain stem which was the boundary used for the other flat maps. Figure 13(c)
illustrates the application of an automorphism.

============
Figure 13 about here.
============

Comparisons and Coordinate Systems. The normalizations required for dis-
playing circle packings provide a means for imposing canonical coordinate systems on
these flat maps. In the case of the Euclidean and hyperbolic maps, two points, such
as anatomical landmarks are required, while for spherical maps it is three points (two
poles and an equator). The normalizations discussed in the previous sections form the
basis for the coordinate grids on the flat maps in Figures 11 and 14.

It is instructive to compare the three flat maps associated with our cerebellar data.
In Figure 14 we focus the images from Figures 10, 11 and 13, respectively, on the region
near a common point, the base of the horizontal fissure. The coordinate reference grids
are also displayed. The boundary where the brain stem was removed has drastically
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different shapes in the three settings, but despite that one can see that the local struc-
tures in the interior are nearly identical in the three maps. The similarities would be
even more striking if we focused in on a smaller region. This interior integrity despite
the mapping modality is one of the key consequences of the conformal nature of the
maps.

============
Figure 14 about here.
============

6. Versatility of the Circle Packing Approach

Circle packings provide enormous flexibility and versatility for computing flat maps.
To demonstrate we will let S be the small, triangulated surface in 3-space pictured in
Figure 15(a), which is a simply connected patch from Figure 2. The complex K (211
triangles, 122 vertices including 31 boundary vertices/edges) is a topological disc, so it
has a variety of packings, as illustrated by Figure 15. Figure 15(b) displays the maximal
packing PK in D guaranteed by DRMT. Figures 15(c) and 15(d) are two Euclidean
packings of K, each with its induced triangulation for reference. In 15(c) the radii of the
boundary circles were set in advance so that the lengths of boundary edges would match
their lengths in S. Figure 15(d) illustrates an alternate type of boundary condition; here
the carrier was required to form a rectangle with four preselected boundary circles as
its corners. Projecting Figures 15(c) and 15(b) to the sphere gives the circle packings of
Figures 15(e) and 15(f), respectively; Figure 15(e) shows just the induced triangulation
(now spherical) and 15(f) suggests the geometry of stereographic projection.

============
Figure 15 about here.
============

The circle packing approach admits various novel boundary conditions for flat maps,
whether one is mapping the full surface or some chosen fragments. Packing a rectangular
shape with designated corner vertices as in Figure 15(d) is one example, and in this case
the ratio of the length to the width of the resulting rectangle (its conformal modulus)
can be shown to be uniquely determined by the conformal structure of S. We do not at
this time propose a scientific role for such conformal invariants nor for these alternative
packings, but the conformal structure on a surface involves some very subtle “shape”
information which may find its uses in the future.

7. Discussion

Our novel approach to flat-mapping cortical surfaces relies on the mathematical the-
ory of conformal maps. This offers a number of advantages over other strategies; namely,
guaranteed existence, uniqueness, and a rich theoretical framework. We use circle pack-
ing methods to define discrete conformal maps which both approximate conformal maps
and enjoy a parallel discrete theory. In particular, they exist and are unique by the
DRMT and the CPT, are computable, and can be manipulated in practice in the same
ways that conformal maps can be manipulated in theory. In addition, discrete con-
formal maps are κ-quasiconformal with bounds on the conformal distortion κ (see the
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Appendix). We are also able to refine the circle packing approach to produce closer
approximation to the true conformal surface. We are developing new theoretical com-
putational approaches for producing even closer approximations by preserving inversive
distance (a hyperbolic invariant) rather than circle tangency.

Conformal maps are versatile and offer a variety of visual presentations and manipula-
tions. Maps can be displayed in three geometries: the Euclidean and hyperbolic planes,
and the sphere. Each setting has different advantages depending on the requirements.
The three geometries are related and similarities between maps in one geometry and
another are readily apparent. In addition, a wide variety of Möbius transformations
can be used to zoom and focus the maps in a particular region of interest.

The Euclidean plane has the advantage of familiarity. As with flat maps produced
by other researchers (Drury et al., 1996; Fischl et al., 1999), the shape of this map
is largely determined by the length and number of edges in the chosen boundary and
will vary from map to map. The hyperbolic map, on the other hand, is always the
same disc shape, making it easier to compare maps. Although the hyperbolic metric
at first seems distorting, Möbius transformations allow the map focus to be changed
interactively, relegating the distortion to the map boundary. As with other flat mapping
approaches, an initial boundary cut is required to create the Euclidean and hyperbolic
maps, but the extraneous cuts along fissures used by other flat mapping methods are
not required here. Of course, the primary advantage of a spherical map is that it
requires no cuts at all.

Canonical coordinate systems can also be specified on these maps by identifying two
landmarks for Euclidean and hyperbolic maps, or three landmarks for the sphere. In
the case of the hyperbolic and spherical maps, identifying the same landmarks on other
hyperbolic or spherical maps automatically puts the maps in register. Additional warp-
ing is likely needed if fissures or lobes are to be aligned, but the underlying canonical
coordinate system can be carried along.

Conformal maps do not preserve the linear and areal information that may be im-
portant in gauging neuronal density and functional activation. But it must be pointed
out that even strategies keyed to the metric data can only minimize distortion locally
— global measurements will always be done by reference to the original surface. As
to any potential significance to conformal information in-and-of-itself, this is still open.
Nevertheless, a number of studies have suggested a conformal mapping between the
visual field and the visual cortex (Fischer, 1973; Tusa et al., 1978; Schwartz, 1980; Mur-
ray, 1989; Schwartz, 1994). Conformal maps appear Euclidean at the local level and
they do preserve subtle shape information which could well play a role in cortical stud-
ies. Taken along with their practical advantages, conformal maps thus may allow us
to better localize functional regions of activation in normal subjects and patients with
other hereditary diseases.

8. Software Availability

The software, CirclePack, which was used to create these flat maps is available from
<http://www.pet.med.va:8080/incweb>. A topologically correct triangulated surface
that is equivalent to a sphere or disc is required before using this software for conformal
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flattening. The software currently has been compiled to run under Linux, SunOS and
Solaris.
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Appendix A.

We provide background and additional details on the mathematics of surfaces, the
classical geometric spaces, conformal maps, and circle packings.

Primer on Surfaces. Our surfaces S are intended to be polyhedral topological spheres
or discs defined by triangular meshes. Typical topological problems — edges occurring
more than twice, disconnected pieces, etc. — are detected and repaired by examining
the surface complex K. So-called handles are more difficult, but can be detected using
topological invariants; a surface’s Euler characteristic χ(S) is defined by χ(S) = v −
e + t, where v, e, t are the numbers of vertices, edges, and triangles, respectively, in K
(Armstrong, 1983; Massey, 1967). The number m(S) of boundary components can be
computed from K. The genus g(S), the number of handles, satisfies χ(S) = 2−2g(S)−
m(S). Thus, assuming S has at most one boundary component and is topologically
correct, S is a topological sphere if and only if χ(S) = 2 and a topological disc if and
only if χ = 1. In addition, g(S) = 0.

Since our surfaces lie in 3-space and are piecewise flat, they inherit a Riemannian
metric from R

3. This endows S with the three main structures pertinent to flattening:
metric structure, curvature structure and conformal structure.

Metric Structure. The Riemannian metric ρ on S is defined by a differential element
of arclength ds. Integrating ds along a path gives its length, and the distance ρ(p, q) is
the length of the shortest path lying in S and connecting p to q. Double integration of
ds over a region Ω ⊂ S gives its area.

Curvature Structure. The curvature of S has to do with its shape in 3-space. We use
Gaussian curvature since it depends only on distances in S itself, not on how S lies in
R

3. A rounded region, say a hilltop, represents positive curvature (Figure 8(a)); a plain
or valley floor is flat, zero curvature; while a saddle point, such as a mountain pass, has
negative curvature (Figure 9(a)).

Since our surfaces are piecewise flat with triangular faces, the notion of curvature
requires some interpretation. All the nonzero curvature resides at the vertices. If v is
a vertex and T is the sum of the angles at v in all the triangles meeting at v, then
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curvature at v is defined to be 2π−T . Positive, zero, and negative curvature have their
familiar geometric interpretations. For example, a cone point composed of 5 equilateral
triangle faces has a total angle sum of 5π/3, giving positive curvature π/3. Six faces of
equilateral triangles demonstrates zero curvature (flat); and a saddle point composed
with 8 equilateral faces demonstrates negative curvature −2π/3.

Conformal structure. Given two smooth oriented curves γ1 and γ2 in S which cross
at a point p, the angle between γ1 and γ2 at p is the smallest turning angle in S which
will bring the tangent vector of γ1 at p to the tangent vector of γ2 at p. A mapping
f : S1 7→ S2 is said to be conformal if it preserves all such angles, both in magnitude
and orientation.

On piecewise flat surfaces there is a slight subtlety about the meaning of angles
between curves when they meet at a vertex v; namely, one needs a “market share”
or proportional interpretation. Suppose γ1 and γ2 intersect at v. As before, let T
denote the sum of the angles of all the triangles meeting at v. Sweeping the curve γ1

counterclockwise about v into γ2 within the surface accumulates some turning angle
β through these faces. The angle between γ1 and γ2 is not β, but rather is the ratio
α = 2πβ/T which measures β’s market share or proportion of T . This is really quite
natural: if β represents, say, a quarter of the total angle at v, β = (1

4
)T , then under

a conformal flattening one would expect the images of γ1 and γ2 to meet in the angle
α = (1

4
)2π = π/2, that is, in a right angle.

These interpretations of curvature and angle in the piecewise flat setting are entirely
standard. They are local, intrinsic to S, converge to the usual meanings when piecewise
flat surfaces approximate smooth surfaces, and they have exactly the intuitive content
one expects.

Primer on the Classical Geometries. The classical geometric spaces, S2, C, and
D, share several common features; let T denote any one of the three spaces. Each T
enjoys a Riemannian geometry; this is associated with a metric ρ based on a differential
element of arclength ds which gives lengths of curves and areas of regions as described
earlier. A geodesic, or “straight line”, segment in T is a shortest curve between two
points, p and q, and the distance ρ(p, q) is its length. A circle is the set of points a
given ρ-distance r (the radius) from a fixed point p (the center). Gaussian curvature
for each of our spaces can be computed directly from the metric in Table 1; in each case
it is constant. Angles between curves are computed using a general version of the Law
of Cosines which takes account of curvature.

Each space T has a collection Aut(T ) of one-to-one conformal self-maps, φ : T −→ T ,
termed automorphisms. These are mathematical groups under composition, and their
structures account for the practical advantages these spaces enjoy as targets for our
flat maps. (For example, Aut(S2) = M is equivalent to PSL(2,C), perhaps the most
thoroughly studied group in mathematics and physics.) The automorphism groups
share several useful properties: 1) Each φ ∈ Aut(T ) maps circles to circles (indeed, in
each case these are (up to orientation) the only self-maps of T with this property). 2)
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The orientation preserving rigid motions, or isometries, (automorphisms which also pre-
serve distances) form a subgroup. 3) Each group Aut(T ) is doubly transitive, meaning
roughly that given any points p, q ∈ T and any directions α, β, there exists φ ∈ Aut(T )
(in fact, a rigid motion) so that φ(p) = q and a curve passing through p in direction
α is mapped to a curve passing through q in direction β. In other words, all standard
normalizations can be accomplished with automorphisms.

As pointed out earlier, our three classical geometries form a unified and nested hier-
archy. A key ingredient is stereographic projection, which gives the inclusion C ⊂ S2.
Namely, every point z of C is identified with the point p of S2 where the line from z to
the south pole of S2 pierces S2. See Figure 15(f). Stereographic projection preserves cir-
cles, angles, and orientation and respects automorphisms. It also allows for the transfer
of complex arithmetic from C to S2, which we exploit in Table 1. Note that most texts
describing stereographic projection puncture S2 at the north pole. If the south pole is
used, the resulting stereographic map is more intuitative for the untrained user.

Here are observations about the individual geometries.

The Sphere. There is a simple geometric interpretation of the spherical metric ρ (see
Table 1): given points p, q ∈ S2, view them from the origin; the angle between the
two viewing directions (all angle measurements are in radians) is precisely the spherical
distance ρ(p, q). From this it’s easy to deduce that a circle in S2 is the intersection of
a Euclidean plane in R3 with S2 and that geodesic segments are arcs of great circles
(circles of radius π/2). In particular, this is a non-Euclidean geometry: any two straight
lines intersect. In normalizing our spherical maps we rely on the fact that for any two
triples {p1, p2, p3} and {q1, q2, q3} of points of S2 there exists a unique φ ∈ Aut(S2) so
that φ(pj) = qj, j = 1, 2, 3.

The Plane. The distance between z1 = x1 + iy1 and z2 = x2 + iy2 is |z1 − z2| =√
(x2 − x1)2 + (y2 − y1)2, the usual Pythagorean distance in R2. Each φ ∈ Aut(C) is an

affine map; that is, it is some combination of a rotation, a dilation, and/or a translation.
The identification of C under stereographic projection with S2 (minus the south pole)
is conformal and maps circles of C to circles of S2, though it does not respect centers.
Straight lines in C are generally treated as circles “going through infinity” because they
correspond under stereographic projection to circles in S2 starting and ending at the
south pole.

The Disc. The automorphisms of D preserve hyperbolic distances, and studying
ds, one can fairly easily establish the properties we listed in Section 3 about circles
and geodesics. For instance, suppose c is a Euclidean circle of radius a < 1. Center
c at origin and its hyperbolic radius can be computed as the Poincarè metric for D,

ρ(0, a) =
1

2
log(

1 + a

1− a
). Now move that Euclidean circle towards the boundary; ds tells

us that its hyperbolic radius grows and that the hyperbolic center is displaced ever
further towards the unit circle from its Euclidean center. The instant c touches ∂D
at some point ξ, the center also hits ξ — this is a horocycle, infinite radius and ideal
center at ξ. Hyperbolic geometry is a second type of non-Euclidean geometry: given a
line L and a point q not on L, there are infinitely many lines through q parallel to L.
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Primer on Surface Maps. A map (or mapping) f from one surface, S1, to another,
S2, is a one-to-one function f : S1 7→ S2. That is, every point x1 of S1 corresponds
with a unique point x2 = f(x1) in S2, and if x and y are distinct points of S1 then
f(x) and f(y) are distinct points of S2. Thus f effectively identifies S1 with the subset
f(S1) in S2 so that locations, curves, or regions of S1 are identified with corresponding
locations, curves, or regions in S2.

Assuming S1 and S2 have conformal structures, we’ve already noted that f is a
conformal map if it preserves angles between curves. An equivalent and more intuitive
condition may be paraphrased as follows: f is conformal if for each point p of S1 it
carries tiny circles centered at p to tiny (approximate) circles centered at f(p) in S2.
This latter condition can be loosened to define the more general class of quasiconformal
maps: f is κ-quasiconformal if for each point p of S1 it carries tiny circles centered at p
to tiny (approximate) ellipses centered at f(p) in S2 and having eccentricity bounded
by κ. For precise definitions see Lehto and Virtanen (1973).

There are innumerable equivalent (and precise) definitions of quasiconformal; it is a
highly developed field often used in studies of conformal mapping. κ, which is greater
than or equal to 1, is one measure of conformal distortion of κ-quasiconformal maps;
indeed, f is conformal if and only if it is 1-quasiconformal. However, κ indicates “worst-
case” local distortion and is not particularly relevant in practice. Even for large κ, a
κ-quasiconformal map f can convey significant conformal information.

Primer on Circle Packing. As defined earlier, a circle packing is a configuration of
circles with a specified pattern of tangencies. Here is some standard terminology:

Complex: K denotes a complex (technically, an abstract simplicial 2-complex) as-
sociated with a triangulation of a topological surface. This is basically a “list” of the
vertices v, edges 〈v, u〉, and oriented faces 〈v, u, w〉 of the triangulation, and represents
our “pattern”.

Packing: P denotes a circle packing for K in one of our target geometries T . More
specifically, P is a collection {cv} of circles, one for each vertex v of K, so that cv
is tangent to cu whenever 〈v, u〉 is an edge of K and so that the triple 〈cv, cu, cw〉 of
mutually tangent circles is positively oriented in T whenever 〈v, u, w〉 is a positively
oriented face of K.

Packing Label: R is the collection of radii associated with P ; for each vertex v of K,
rv is the radius (in the metric of T ) for the circle cv.

Carrier: carr(P ) denotes the concrete geometric triangulation in T formed by con-
necting the centers of tangent circles of P with geodesic segments; this provides a mesh
in T which is combinatorially equivalent to K.

In our circumstances: 1) The complex K is the triangular mesh of some reconstructed
cortical surface S. 2) The packing P is a circle packing for K guaranteed by the
Discrete Riemann Mapping Theorem or the Circle Packing Theorem (Beardon and
Stephenson, 1990). 3) The packing label R is what one computes (approximately) so
that P can be laid out. 4) Carr(P ) is used (as described below) to define the desired
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flat map f : S −→ T . Recalling that we are starting with a given topologically correct
complex K, here are some of the technical issues involved:

A) The computational effort lies in approximating packing labels R. With R in
hand, it is straightforward to construct P itself. Starting (in the appropriate geometric
space T ) with one circle and a tangent neighbor, one can successively lay out additional
circles which have two contiguous neighbors already in place. The packing condition
and respect for orientation ensure that there will be no ambiguity in placement. The
outcome is determined entirely by the first two circles, giving the three degrees of
freedom used in normalizations: coordinates of the first circle’s center and an angle for
the second circle’s point of tangency.

B) There is (as yet) no packing algorithm intrinsic to spherical geometry. One uses
the puncture trick described in Section 5 so the computations are actually done in D.
Other triangulated surfaces can also be packed in S2, as illustrated in Figure 15(e), but
all are projected from C or D.

C) Suppose P is a circle packing for K in the target space T . Each vertex p of
S corresponds to a vertex v of K and hence to a circle cv of P . Define f(p) = zv,
where zv is the center of cv in T . In this way the three vertices of any face of S are
identified with the three vertices of the corresponding triangle in carr(P ). We complete
the definition of f by extending, first to the edges of S and then to the faces. The
map f : S 7→ carr(P ) ⊂ R2 is the “flat” map on S induced by this particular packing
P , called a discrete conformal map. Of course, other packings P for K will induce
alternate maps. The main properties of f depend heavily on the geometry in which P
lives, but details in the definition of f , such as how to extend it from vertices to edges
and faces, are largely immaterial in practice.

D) A discrete conformal map f : S −→ T is κ-quasiconformal. One can establish an
upper bound on the dilatation κ based on two items of data. First is the degree of K,
the maximal number of edges emanating from any one vertex; the bound here derives
from the Ring Lemma of Rodin and Sullivan (1987). Second is the range of angles
in the faces of the triangulation of the surface S; the closer to π/3 (60 degrees), the
better this part of the bound. In practice, precise bounds for κ are not a high priority.
As mentioned earlier, κ is worst-case — generic behavior appears to have much less
conformal distortion. Moreover, our experience suggests that many of the advantages
of the discrete theory are intrinsic and do not depend on mere approximation of the
classical maps. In any case, mesh refinements, new computational approaches based
on inversive distance (a hyperbolic invariant) packings, and parallelization promise
continual improvements in these approximations.

E) All computations, manipulations, and visualizations of circle packings displayed in
this paper are implemented in the software suite CirclePack. The visual presentation of
a circle packing flat map uses either the circles of the packing or the faces of carrier. Any
combination of circles and/or faces, filled/unfilled, color/b&w, solid/semitransparent
can be chosen at any time. A color index is attached to each vertex or face for color
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rendering. CirclePack floods the interior of the object (circle or face) with the specified
color and renders its boundary in a slightly more saturated shade of the same color,
as this seems to give the viewer the best appreciation for the structure underlying
the flat map. Viewing of 3D surfaces requires a separate graphical interface. Many
packages are available for this and can be linked to CirclePack. Points or regions
chosen on one surface can be highlighted on another. Möbius transformations, which
allow the hyperbolic map focus or the spherical map poles and equator to be changed
interactively, occur in real time.
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Figure 1. Anterior and posterior views of triangulated surface of the
human cerebellum (56,676 triangles; 28,340 vertices). For the planar flat
maps, a boundary corresponding to the white matter cut-plane and filled-
in fourth ventricle was introduced where the brainstem attaches to the
cerebellum.

Figure 2. Lateral and medial views of triangulated surface of the Visible
Man right cerebral hemisphere (103,845 triangles; 52,360 vertices).
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(a) Spherical Map (b) Möbius transformation
that shifts E.

(c) Möbius transformation
that shifts N, S, E.

Figure 3. Automorphisms of the sphere S2. North (N) and south (S)
poles and an equatorial point (E) are marked in red.

Figure 4. Each circle is the same hyperbolic area. To our Euclidean
eyes, the circles appear to be shrinking, but in the hyperbolic plane they
are located farther and farther away. As a circle approaches the boundary
it approaches an infinite distance from the origin.
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(a) Hyperbolic map. (b) Möbius transformation
applied.

(c) Möbius transformation
applied again.

Figure 5. Automorphisms of the hyperbolic plane D. The automor-
phism φ : z 7→ (3z + 1)/(3 + z) is applied successively. In practice, this
allows selected regions to brought into focus while relegating other regions
to the periphery of the hyperbolic map.

Figure 6. Examples of circle packings.
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Figure 7. A triangulation and its corresponding circle packing.

(a) Positive curvature. (b) Complex of (a) in R2. (c) Packing condition satis-
fied.

Figure 8. Obtaining a circle packing when there is positive curvature.
Since the angle sum is less than 2π, the radius of the interior circle must
be decreased to satisfy the packing condition and make all circles tangent.
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(a) Negative curvature. (b) Complex of (a) in R2. (c) Packing condition satis-
fied.

Figure 9. Obtaining a circle packing when there is negative curvature.
Since the angle sum is greater than 2π, the radius of the interior circle
must be increased to satisfy the packing condition and make all circles
tangent.

Figure 10. Euclidean flat maps of the cerebellum (left) and cerebrum
(right). Colors are those of Figures 1 and 2.

27



Figure 11. Hyperbolic flat maps of the cerebellum with different
Möbius transformations applied. A polar Euclidean canonical grid sys-
tem has been imposed (compare with grid of Figure 14). Colors are those
of Figure 1.

Figure 12. Hyperbolic flat maps of the cerebrum with different Möbius
transformations applied. Colors are those of Figure 2.
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(a) Spherical map. (b) Map rotated. (c) Application of an auto-
morphism.

Figure 13. Spherical flat maps of the cerebellum. Colors are those of Figure 1.

(a) Euclidean map. (b) Hyperbolic map. (c) Spherical map.

Figure 14. Flat maps of the cerebellum with canonical coordinate grid
systems imposed. The local structures in the interior of the maps are
nearly identical. The hyperbolic map uses a grid of hyperbolic distances
rather than Euclidean distances (compare with grid of Figure 11). Colors
are those of Figure 1.
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(a) Subsurface of Figure 2. (b) Packing on the hyperbolic disk.

(c) Packing specifying boundary lengths. (d) Packing in the plane into a rectangle.

(e) Packing on the sphere. (f) Stereographic projection onto the hemisphere.

Figure 15. Quasi-conformal maps of the same complex using different
labels. Complex is a sub-surface of Figure 2 (211 triangles; 122 vertices
including 31 boundary vertices/edges).
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Table 1. Properties of the Three Different Geometries.

Property Description Geometry

Geometric sphere S2 = {(x, y, z) : x2 + y2 + z2 = 1} Spherical
model Euclidean plane R2 or complex plane C Euclidean

unit disc D = {(x, y) : x2 + y2 < 1} Hyperbolic

Points P = (x, y, z) Spherical
denoted P = (x, y) in R2 or z = x+ iy in C Euclidean

by z = x+ iy Hyperbolic

Differential ds =
√
dx2 + dy2 + dz2 Spherical

element of ds =
√
dx2 + dy2 Euclidean

arclength ds =
2|dz|

1− |z|2
Hyperbolic

Metric ρ ρ(Pj, Pk) = arccos(Pj · Pk) Spherical
(distance = arccos(xjxk + yjyk + zjzk) (radians)

between ρ(Pj, Pk) =
√

(xj − xk)2 + (yj − yk)2 Euclidean

points) ρ(zj, zk) =
1

2
log

(
|1− zjzk|+ |zj − zk|
|1− zjzk| − |zj − zk|

)
Hyperbolic

Curvature curvature +1; geodesics are great circles Spherical
and curvature 0; geodesics are straight lines Euclidean

geodesics curvature -1; geodesics are circle arcs that intersect
the boundary of D orthogonally

Hyperbolic

Conformal φ : z 7→ az + b

cz + d
, a, b, c, d ∈ C with ad− bc 6= 0 and Spherical

automorphisms where z is projected stereographically (full Möbius
group)
φ : z 7→ az + b, a, b ∈ C, a 6= 0 Euclidean

φ : z 7→ eiθ
( z − α

1− αz
)
, θ ∈ R, α ∈ D Hyperbolic

Packing
∑
〈v,u,w〉

arccos
{

cos(ru+rw)−cos(rv+ru) cos(rv+ru)
sin(rv+ru) sin(rv+rw)

}
= 2π Spherical

condition for
∑
〈v,u,w〉

arccos
{

(rv+ru)2+(rv+rw)2−(ru+rw)2

2(rv+ru)(rv+rw)

}
= 2π Euclidean

label R = {rv}
∑
〈v,u,w〉

arccos
{

cosh(rv+ru) cosh(rv+ru)−cosh(ru+rw)
sinh(rv+ru) sinh(rv+rw)

}
= 2π Hyperbolic
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